Skip to main content

The Role of Cardiac Nuclear Imaging in Heart Failure

  • Chapter
  • First Online:
  • 2631 Accesses

Abstract

The incidence of patients with congestive heart failure (CHF) is increasing in the U.S. and now constitutes over five million Americans [1]. Despite advances in treatment strategies, outcomes in patients with CHF are poor, especially in patients with left ventricular function less than 35% (normal 55–75%) [2]. Treatment plans for patients with heart failure are initially based upon whether the heart failure is due to ischemia (ischemic cardiomyopathy) or other causes (non-ischemic cardiomyopathy). This chapter will present the role of nuclear imaging in the evaluation and management of heart failure patients with regards to:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell C, Roger V, Sorlie P, Steinberger J, Thom T, Wilson M, Hong Y. Heart disease and stroke statistics – 2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117(4):e25–146.

    Article  PubMed  Google Scholar 

  2. Curtis JP, Sokol SI, Wang Y, Rathore SS, Ko DT, Jadbabaie F, Portnay EL, Marshalko SJ, Radford MJ, Krumholz HM. The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J Am Coll Cardiol. 2003;42(4):736–42.

    Article  PubMed  Google Scholar 

  3. Gheorghiade M, Sopko G, De LL, Velazquez EJ, Parker JD, Binkley PF, Sadowski Z, Golba KS, Prior DL, Rouleau JL, Bonow RO. Navigating the crossroads of coronary artery disease and heart failure. Circulation. 2006;114(11):1202–13.

    Article  PubMed  Google Scholar 

  4. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39(7):1151–8.

    Article  PubMed  Google Scholar 

  5. Soman P, Lahiri A, Mieres JH, Calnon DA, Wolinsky D, Beller GA, Sias T, Burnham K, Conway L, McCullough PA, Daher E, Walsh MN, Wight J, Heller GV, Udelson JE. Etiology and pathophysiology of new-onset heart failure: evaluation by myocardial perfusion imaging. J Nucl Cardiol. 2009;16(1):82–91.

    Article  PubMed  Google Scholar 

  6. Danias PG, Papaioannou GI, Ahlberg AW, O’Sullivan DM, Mann A, Boden WE, Heller GV. Usefulness of electrocardiographic-gated stress technetium-99m sestamibi single-photon emission computed tomography to differentiate ischemic from nonischemic cardiomyopathy. Am J Cardiol. 2004;94(1):14–9.

    Article  PubMed  Google Scholar 

  7. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, Hertenstein GK, Moutray KL, Reid K, Cullom SJ. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol. 2006;13(1):24–33.

    Article  PubMed  Google Scholar 

  8. Ramani GV, Soman P. Radionuclide imaging in heart failure. In: Heller GV, Hendel RC, editors. Nuclear cardiology: practical applications. 2nd ed. New York: McGraw-Hill Medical; 2011. p. 253–66.

    Google Scholar 

  9. Brindis RG, Douglas PS, Hendel RC, Peterson ED, Wolk MJ, Allen JM, Patel MR, Raskin IE, Hendel RC, Bateman TM, Cerqueira MD, Gibbons RJ, Gillam LD, Gillespie JA, Hendel RC, Iskandrian AE, Jerome SD, Krumholz HM, Messer JV, Spertus JA, Stowers SA. ACCF/ASNC appropriateness criteria for single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI): a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group and the American Society of Nuclear Cardiology endorsed by the American Heart Association. J Am Coll Cardiol. 2005;46(8):1587–605.

    Article  PubMed  Google Scholar 

  10. Wackers FJ, Berger HJ, Johnstone DE, Goldman L, Reduto LA, Langou RA, Gottschalk A, Zaret BL. Multiple gated cardiac blood pool imaging for left ventricular ejection fraction: validation of the technique and assessment of variability. Am J Cardiol. 1979;43(6):1159–66.

    Article  PubMed  CAS  Google Scholar 

  11. Felker GM, Shaw LK, O’Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002;39(2):210–8.

    Article  PubMed  Google Scholar 

  12. Ahlberg AW, Kazi FA, Azemi T, Katten DM, O’Sullivan DM, Papaioannou GI, Danias PG, Heller GV. Usefulness of stress gated technetium-99m single photon emission computed tomographic myocardial perfusion imaging for the prediction of cardiac death in patients with moderate to severe left ventricular systolic dysfunction and suspected coronary artery disease. Am J Cardiol. 2012;109(1):26–30.

    Article  PubMed  Google Scholar 

  13. Lertsburapa K, Ahlberg AW, Bateman TM, Katten D, Volker L, Cullom SJ, Heller GV. Independent and incremental prognostic value of left ventricular ejection fraction determined by stress gated rubidium 82 PET imaging in patients with known or suspected coronary artery disease. J Nucl Cardiol. 2008;15(6):745–53.

    PubMed  Google Scholar 

  14. Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med. 1999;341(8):577–85.

    Article  PubMed  CAS  Google Scholar 

  15. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, Agostini D, Weiland F, Chandna H, Narula J. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55(20):2212–21.

    Article  PubMed  Google Scholar 

  16. Nagahara D, Nakata T, Hashimoto A, Wakabayashi T, Kyuma M, Noda R, Shimoshige S, Uno K, Tsuchihashi K, Shimamoto K. Predicting the need for an implantable cardioverter defibrillator using cardiac metaiodobenzylguanidine activity together with plasma natriuretic peptide concentration or left ventricular function. J Nucl Med. 2008;49(2):225–33.

    Article  PubMed  Google Scholar 

  17. Hare JM, Colucci WS, Dilsizian V. Atlas of heart diseases. Philadelphia: Springer; 2008.

    Google Scholar 

  18. Rahimtoola SH. The hibernating myocardium. Am Heart J. 1989;117(1):211–21.

    Article  PubMed  CAS  Google Scholar 

  19. Carluccio E, Biagioli P, Alunni G, Murrone A, Giombolini C, Ragni T, Marino PN, Reboldi G, Ambrosio G. Patients with hibernating myocardium show altered left ventricular volumes and shape, which revert after revascularization: evidence that dyssynergy might directly induce cardiac remodeling. J Am Coll Cardiol. 2006;47(5):969–77.

    Article  PubMed  Google Scholar 

  20. Alderman EL, Fisher LD, Litwin P, Kaiser GC, Myers WO, Maynard C, Levine F, Schloss M. Results of coronary artery surgery in patients with poor left ventricular function (CASS). Circulation. 1983;68(4):785–95.

    Article  PubMed  CAS  Google Scholar 

  21. Reuter S, Garrigue S, Barold SS, Jais P, Hocini M, Haissaguerre M, Clementy J. Comparison of characteristics in responders versus nonresponders with biventricular pacing for drug-resistant congestive heart failure. Am J Cardiol. 2002;89(3):346–50.

    Article  PubMed  Google Scholar 

  22. Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe EL, Iskandrian AE. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol. 2005;12(6):687–95.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev U. Nair M.B.B.S., M.D., FACP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Nair, S.U., Heller, G.V., Heller, G.V. (2013). The Role of Cardiac Nuclear Imaging in Heart Failure. In: Heller, G., Hendel, R. (eds) Handbook of Nuclear Cardiology. Springer, London. https://doi.org/10.1007/978-1-4471-2945-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2945-5_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2944-8

  • Online ISBN: 978-1-4471-2945-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics