Skip to main content

Advanced Mechanical Testing and Analysis Methods

  • Chapter
  • First Online:
Book cover Materials for Nuclear Plants
  • 3537 Accesses

Abstract

Developments in materials testing, analysis and in physical interpretation of materials properties led to attempts to understand damage as a multi-scale process (in time and in space). Today’s materials testing remains not confined to traditional samples but it also employs millimeter-, micro- and even nano-sized samples. With remarkable improvements of analyses based on electron microscopes and the availability of very powerful synchrotron light sources and neutron techniques new possibilities for analysis of materials became available. Increasing capacity of advanced computers (parallel processing, storage capacity) made it possible to model materials on an atomistic basis and to perform extended calculations on micro-, meso- and macroscale. Advanced testing- and analysis are a necessary tool for validation of materials models. The present chapter provides an introduction into advanced testing, analysis and modeling techniques with particular emphasize on solution of problems of structural materials for nuclear applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Society for Testing of Materials (ASTM) (2011) http://www.astm.org/. Accessed 17 Oct 2011

  2. ISO standards (2011) http://www.iso.org/iso/home.html. Accessed 17 Oct 2011

  3. Chen J (2006) Paul Scherrer Institut, Switzerland, unpublished results

    Google Scholar 

  4. Magnusson P (2011) Thesis EPFL. Lausanne and Paul Scherrer Institute, Switzerland

    Google Scholar 

  5. Corwin WR, Rosinski ST, van Walle (eds) (1998) Small specimen test techniques. ASTM STP 1329

    Google Scholar 

  6. Sokolov MA, Landes JD, Lucas GE (eds) (2002) Small specimen test techniques: Vol. 4 ASTM STP 1418

    Google Scholar 

  7. Rosinski ST, Corwin WR (1998) ASTM –cross-comparison exercise on determination of material properties through miniature sample testing. In: [5], pp 3–14

    Google Scholar 

  8. Li M, Stubbins JF (2002) Subsize specimens for fatigue crack growth rate testing of metallic materials. In: [6], pp 321-335

    Google Scholar 

  9. Giovanola JH, Klopp RW, Crocker JE, Alexander DJ, Corwin WR, Nanstad KR (1998) Using small cracked round bars to measure the fracture toughness of a pressure vessel steel weldment: a feasibility study. In: [5], pp 328-352

    Google Scholar 

  10. Yagnik SK, Ramasubramanian R, Grigoriev V, Sainte-Catherine C, Bertsch J, Adamson RB, Kuo RC, Mahmood ST, Fukuda T, Efsing P, Oberländer BC (2007) Round-Robin testing of fracture toughness characteristics of thin- walled tubing. Presented at the 15th international symposium on “zirconium in the nuclear industry” 25 June 2007, http://www.astm.org/COMMIT/Zirc%20Presentations/09_Final_6-25.pdf

  11. Bertsch J, Hoffelner W (2006) Crack resistance curves determination of tube cladding material. J Nucl Mater 352:116–125. doi:10.1016/j.jnucmat.2006.02.045

    Article  Google Scholar 

  12. Grigoriev V, Josefsson B, Rosborg B (1996) In: ER Bradley, GP Sabol (eds) Zirconium in the nuclear industry: 11th international symposium, ASTM STP 1295, p 431

    Google Scholar 

  13. Bertolino G, Meyer G, Ipin JP (2002) Degradation of the mechanical properties of Zircaloy-4 due to hydrogen embrittlement. J Alloys Comp 330–332:408

    Article  Google Scholar 

  14. Toloczko MB, Abe K, Hamilton ML, Garner FA, Kurtz RJ (2002) The Effect of test machine compliance on the measured shear punch yield stress as predicted using finite element analysis In: [6], pp 339–349

    Google Scholar 

  15. Campitelli EN, Spaetig P, Bonade R, Hoffelner W, Victoria M (2004) Assessment of the constitutive properties from small ball punch test: experiment and modeling. J Nucl Mater 335:366–378

    Article  Google Scholar 

  16. Pouchon MA, Döbeli M, Schelldorfer R, Chen J, Hoffelner W, Degueldre C (2005) ODS steel as structural material for high temperature nuclear reactors, Boпpocы Aтoмнoй Hayки и Texники (Problems of Atomic Science and Technology) 3:122–127

    Google Scholar 

  17. Li XD, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Science 48(1):11–36. doi:10.1016/S1044-5803(02)00192-4

    MathSciNet  Google Scholar 

  18. Hosemann P, Vieh C, Greco RR, Kabra S, Valdez JA, Cappiello MJ, Maloy SA (2009) Nanoindentation on ion irradiated steels. J Nucl Mater 389:239–247

    Article  Google Scholar 

  19. Dorner D, Roller K, Skrotzki B, Stockhert B, Eggeler G (2003) Creep of a TiAl alloy: a comparison of indentation and tensile testing. Mater Sci Eng A 357(1–2):346–354

    Google Scholar 

  20. Uchic M, Dimiduk D (2005) A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater Sci Eng A 400–401:268–278. doi:10.1016/j.msea.2005.03.082

    Google Scholar 

  21. Pouchon MA, Chen J, Ghisleni R, Michler J, Hoffelner W (2010) Characterization of irradiation damage of ferritic ods alloys with advanced micro-sample methods. Exp Mech 50:79–84. doi:10.1007/s11340-008-9214-5

    Article  Google Scholar 

  22. Volkert CA, Lilleodden ET (2006) Size effects in the deformation of sub-micron Au columns. Philos Mag 86:5567–5579. doi:10.1080/14786430600567739

    Article  Google Scholar 

  23. Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305(5686):986–989

    Article  Google Scholar 

  24. Ghisleni R, Pouchon M, Mook WM, Chen J, Hoffelner W, Michler J (2008) Ion irradiation effects on the mechanical response of ferritic ODS alloy. MRS Fall Meeting 2008, Boston

    Google Scholar 

  25. Pouchon MA, Chen J, Hoffelner W (2009) Microcharacterization of damage in materials for advanced nuclear fission plants. In: Linsmeier C, Reinelt M (eds) 1st International conference on new materials for extreme environments.advanced materials research. 59 Trans Tech Publications, pp 269-274

    Google Scholar 

  26. Kulcinski et al. (1972) Proceedings of international conference on radiation induced voids in metals CONF-710601. National Technical Information Service, p 453

    Google Scholar 

  27. Jung P, Schwarz A, Sahu HK (1985) An apparatus for applying tensile, compressive and cyclic stresses on foil specimens during light ion irradiation. Nucl Instr Meth A 234:331

    Article  Google Scholar 

  28. Focused ion beam (2011) http://en.wikipedia.org/wiki/Focused_ion_beam. Accessed 1 Nov 2011

  29. Pouchon MA, Chen J, Doebeli M, Hoffelner W (2006) Oxide dispersion strengthened steel irradiation with helium ions. J Nucl Mater 352:57–61

    Article  Google Scholar 

  30. Atomic force microscope (2011) http://en.wikipedia.org/wiki/File:Atomic_force_microscope_block_diagram.svg. Accessed 17 Oct 2011

  31. Booker GR (1970) scanning electron microscopy. In: Amelinckx SA, Gevers R, Remant G, Van Landuyt J (eds) Modern diffraction and imaging techniques in materials science, North Holland Pub Co, Amsterdam, p 553

    Google Scholar 

  32. Sitzman SD (2004) Introduction to EBSD analysis of micro- to nanoscale microstructures in metals and ceramics. In: Proceedings of SPIE 5392 78 doi:10.1117/12.542082

  33. Abolhassani S, Schäublin R, Groeschel F, Bart G (2001) AEM and HRTEM analysis of the metal-oxide interface of zircaloy-4 prepared by FIB. In: Proceeding of microscopy and microanalysis 2001. Long Beach CA, 5–9 Aug, p 250

    Google Scholar 

  34. Hsiung LL (2010) HRTEM study of oxide nanoparticles in Fe-16Cr ODS ferritic steel developed for fusion energy. In: Méndez-Vilas A, Díaz J (eds) microscopy: science technology applications and education. FORMATEX 2010, pp 1811–1819. http://www.formatex.info/microscopy4/1811-1819.pdf. Accessed 1 Nov 2011

  35. Zinkle SJ, Ice GE, Miller MK, Pennycook SJ, Wang XL (2009) Advances in microstructural characterization. J Nucl Mater 386–388:8–14. doi:10.1016/j.jnucmat.2008.12.302

    Article  Google Scholar 

  36. The JANNUS facility (2011) http://www.cea.fr/var/cea/storage/static/gb/library/Clefs55/pdf-gb/p110-113_Serruysgb.pdf Accessed 5 Nov 2011

  37. Gavillet D, Martin M, Dai Y (2008) SIMS investigation of the spallation and transmutation products production in lead. J Nucl Mater 377(1):213–218

    Article  Google Scholar 

  38. Neutron irradiation facilities (2011) http://www.ncnr.nist.gov/nsources.html Accessed 4 Nov 2011

  39. Grosse M (2011) Neutron radiography: a powerful tool for fast, quantitative and non-destructive determination of hydrogen concentration and distribution in zirconium alloys. J ASTM International 8 4 DOI: 10.1520/JAI103251

  40. Evans A, Van Petegem S, Van Swygenhoven H (2009) POLDI: materials science and engineering instrument at SINQ. Neutron News 20(3):17–19

    Article  Google Scholar 

  41. Swiss light source SLS (2011) http://www.psi.ch/sls/about-sls Accessed 29 Oct 2011

  42. Swissfel (2011) http://www.psi.ch/swissfel/why-swissfel. Accessed 10 Nov 2011

  43. Jefferson Lab http://www.lightsources.org/images/posters/jlabposter3.jpg Accessed 10 November 2011

  44. Hoffelner W, Froideval A, Pouchon M, Samaras M (2008) Synchrotron X-rays for microstructural investigations of advanced reactor materials. Metall Mater Trans 39A:212–217

    Article  Google Scholar 

  45. Pouchon MA, Froideval A, Degueldre C, Gavillet D, Hoffelner W (2008) Synchrotron light techniques for the investigation of advanced nuclear reactor structural materials. In: structural materials for innovative nuclear systems (SMINS) Karlsruhe . Nuclear Energy Agency, Paris, 4–6 June 2007

    Google Scholar 

  46. Pouchon MA, Kropf AJ, Froideval A, Degueldre C, Hoffelner W (2007) An X-ray absorption spectroscopy study of an oxide dispersion strengthened steel. J Nucl Mater 362:253–258

    Article  Google Scholar 

  47. Wende H (2004) Recent advances in x-ray absorption spectroscopy. Rep Prog Phys 67:2105–2181

    Article  Google Scholar 

  48. Brüche E (1933) Elektronenmikroskopische abbildung mit lichtelektrischen elektronen. Z Physik 86:448–450

    Article  Google Scholar 

  49. Scholl A, Ohldag H, Nolting F, Anders S, Stöhr J (2005) Study of ferromagnet-antiferromagnet interfaces using X-ray PEEM. In: Hopster H, Oepen H (eds) Magnetic microscopy of nanostructures. Springer, Berlin, pp 29–50

    Chapter  Google Scholar 

  50. Froideval A, Iglesias R, Samaras M, Schuppler S, Nagel P, Grolimund D, Victoria M, Hoffelner W (2007) Magnetic and structural properties of FeCr alloys. Phys Rev Lett 99:237201

    Article  Google Scholar 

  51. Heimgarnter P, Restani R, Gavillet D (2005) New specimen holder for XAS-analyses of radioactive specimens at the swiss light source (SLS). In: European working group hot laboratories and remote handling. plenary meeting petten The Netherlands 23–25 May 2005

    Google Scholar 

  52. Odette GR, Wirth BD, Bacon DJ, Ghoniem NM (2001) Multiscale-multiphysics modeling of radiation-damaged materials: Embrittlement of pressure-vessel steels. MRS Bulletin March 176

    Google Scholar 

  53. Wirth BD, Caturla MJ, de la Diaz RT, Khraishi T, Zbib H (2001) Mechanical property degradation in irradiated materials: a multiscale modeling approach. Nucl Instr Meth B 180:23

    Article  Google Scholar 

  54. Wirth BD, Odette GR, Marian J, Ventelon L, Young-Vandersall JA, Zepeda-Ruiz LA (2004) Multiscale modeling of radiation damage in the fusion environment. J Nucl Mater 329–333:103–111. doi:10.1016/j.jnucmat.2004.04.156

    Article  Google Scholar 

  55. Malerba L (2010) Multiscale modelling of irradiation effects in nuclear power plant materials. In: Tipping PG (ed) Understanding and mitigating ageing in nuclear power plants. Woodhead Publ Ltd: 456-543

    Google Scholar 

  56. Kwon J, Lee GG, Shin C (2009) Multiscale modelling of radiation effects in materials: pressure vessel embrittlement. Nuclear Engineering and Technology 41:1

    Google Scholar 

  57. Samaras M, Victoria M (2008) Modelling in nuclear energy environments. Materials Today 11 12

    Google Scholar 

  58. Ghoniem NM, Busso EP, Kioussis N, Huang H (2003) Multiscale modelling of nanomechanics and micromechanics: an overview. Phil Mag 83(31):3475–3528. doi:10.1080/14786430310001607388

    Article  Google Scholar 

  59. Dudarev SL, Derlet PM (2005) A ‘magnetic’ interatomic potential for molecular dynamics simulations. J Phys Condens Matter 17(44):7097–7118

    Article  Google Scholar 

  60. Fu CC, Willaime F, Ordejon P (2004) Stability and mobility of mono- and di-interstitials in α-Fe. Phys Rev Lett 92:175503

    Article  Google Scholar 

  61. Hasegawa H, Pettifor D (1983) Microscopic theory of the temperature-pressure phase diagram of iron. Phys Rev Lett 50:130

    Article  Google Scholar 

  62. Garner FA, Toloczko MB, Sencer BH (2000) Comparison of swelling and irradiation creep behaviour of fcc austenitic and bcc ferritic-martensitic alloys at high neutron exposure. J Nucl Mat 276:123

    Article  Google Scholar 

  63. Samaras M, Hoffelner W, Fu CC, Guttmann M, Stoller RE (2007) Materials Modeling—a Key for the design of advanced high temperature reactor components. Revue Generale Nucleaire 5:50–57

    Google Scholar 

  64. Stoller RE, Mansur LK (2005) An assessment of radiation damage models and methods. ORNL/TM-2005/506 31 May

    Google Scholar 

  65. Wirth BD, Odette GR, Marian J, Ventelon L, Young-Vandersall JA, Zepeda-Ruiz LA (2004) J Nucl Mater 329–333:103

    Article  Google Scholar 

  66. Osetsky YN, Bacon DJ, Singh BN, Wirth B (2002) Atomistic study of the generation, interaction, accumulation and annihilation of cascade-induced defect clusters. J Nucl Mater 307–311:852

    Article  Google Scholar 

  67. Dalla Torre J, Bocquet JL, Doan NV, Adam E, Barbu A (2005) JERK an event-based KMC model to predict microstructure evolution of materials under irradiation. Phil Mag 85(4–7):549–558

    Article  Google Scholar 

  68. Barbu A, Becquart CS, Bocquet JL, Dalla Torre J, Domain C (2005) Comparison between three complementary approaches to simulate large fluence irradiation: application to electron irradiation of thin foils. Phil Mag 85(4–7):541–547

    Article  Google Scholar 

  69. Domain C, Becquart CS, Malerba L (2004) Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach. J Nucl Mater 335:121–145

    Article  Google Scholar 

  70. Stoller RE, Greenwood LR (1999) From molecular dynamics to kinetic rate theory: a simple example of multiscale modeling. In: Butalov VV, Diaz de la RT, Phillips P, Kaxiras E, Ghoniem N (eds) Multiscale modeling of materials, Materials Research Society, PA, pp 203–209

    Google Scholar 

  71. Stoller RE, Golubov SI, Domain C, Becquart S (2008) Mean field rate theory and object kinetic Monte Carlo: a comparison of kinetic models. J Nucl Mater 382:77–90

    Article  Google Scholar 

  72. Kubin LP (ed) (1990) Electron microscopy in plasticity and fracture research of materials. Akademie Verlag, Berlin, pp 23–32

    Google Scholar 

  73. Devincre B et al (2001) Mesoscopic simulations of plastic deformation. Mat Sci Engin A 211:309–310

    Google Scholar 

  74. PARADIS (2011) http://paradis.stanford.edu/. Accessed 28 Oct 2011

  75. Ghoniem N, Tong S, Sun L (2000) Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation. Phys Rev B 61(2):913–927

    Article  Google Scholar 

  76. Ortiz M (1999) Plastic yielding as a phase transition. J Appl Mech Trans ASME 66(2):289–298

    Article  Google Scholar 

  77. Koslowskia M, Cuitino AM, Ortiz MA (2002) Phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals. J Mech Phys Solids 50:2597–2635

    Article  MathSciNet  Google Scholar 

  78. Lukas H, Fries SG, Sundman B (2007) Computational Thermodynamics: the Calphad Method.. Cambridge University ISBN-10: 0521868114, ISBN-13: 978-0521868112

    Google Scholar 

  79. Samaras M, Hoffelner W, Victoria M (2007) Modelling of advanced structural materials for GEN IV reactors. J Nucl Mater 371:28–36

    Article  Google Scholar 

  80. Proville L, Bakó B (2010) Dislocation depinning from ordered nanophases in a model fcc crystal: from cutting mechanism to orowan looping. Acta Mater 58:5565

    Article  Google Scholar 

  81. Bakó B, Samaras M, Weygand D, Chen J, Gumbsch P, Hoffelner W (2009) The influence of helium bubbles on the critical resolved shear stress of dispersion strengthened alloys. J Nucl Mat 386–388:112

    Article  Google Scholar 

  82. Ispánovity PD, Bakó B, Weygand D, Hoffelner W, Samaras M (2010) Impact of gamma’ particle coarsening on the critical resolved shear stress of nickel-base superalloys with low aluminium and/or titanium content. J Nucl Mater 416(1–2):55–59. doi:10.1016/j.jnucmat.2010.11.051

    Google Scholar 

  83. Samaras M (2009) Multiscale modelling: the role of helium in iron. Mater Today 12(11):46–53

    Article  Google Scholar 

  84. Samaras M, Victoria M, Hoffelner W (2009) Advanced materials modelling—E.V. perspectives. J Nucl Mater 392:286–291

    Google Scholar 

  85. Pasianot RC, Malerba L (2007) Interatomic potentials consistent with thermodynamics: The Fe–Cu system. J Nucl Mater 360:118

    Google Scholar 

  86. Becquart CS, Raulot JM, Bencteux G, Domain C, Perez M, Garruchet S, Nguyen H (2007) Atomistic modeling of an Fe system with a small concentration of C. Comput Mater Sci 40:119

    Article  Google Scholar 

  87. Becquart CS, Souidi A, Domain C, Hou M, Malerba L, Stoller RE (2006) Effect of displacement cascade structure and defect mobility on the growth of point defect clusters under irradiation. J Nucl Mater 351:39

    Article  Google Scholar 

  88. Becquart CS, Domain C, Malerba L, Hou M (2005) The influence of the internal displacement cascades structure on the growth of point defect clusters in radiation environment. Nucl. Instrum Meth B 228(1–4):181–186

    Article  Google Scholar 

  89. Lambrecht M, Malerba L, Almazouzi A (2008) Influence of different chemical elements on irradiation-induced hardening embrittlement of RPV steels. J Nucl Mater 378(3):282–290. doi:10.1016/j.jnucmat.2008.06.030

    Article  Google Scholar 

  90. Vincent E, Becquart CS, Pareige C, Pareige P, Domain C (2008) Precipitation of the FeCu system: a critical review of atomic kinetic Monte Carlo simulations. J Nucl Mater 373:387–401

    Article  Google Scholar 

  91. Marini B, Massoud JP, Bugat S, Lidburry D (2007) ICFRM 2007, #521

    Google Scholar 

  92. Victoria M, Dudarev S, Boutard JL, Diegele E, Lässer R, Almazouzi A, Caturla MJ, Fu CC, Källne J, Malerba L, Nordlund K, Perlado M, Rieth M, Samaras M, Schaeublin R, Singh BN, Willaime F (2007) Fus Eng Des 82:2413

    Article  Google Scholar 

  93. Schaeublin R, Chiu YL (2007) Effect of helium on irradiation-induced hardening of iron: A simulation point of view. J Nucl Mater 362:152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hoffelner .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London Limited

About this chapter

Cite this chapter

Hoffelner, W. (2013). Advanced Mechanical Testing and Analysis Methods. In: Materials for Nuclear Plants. Springer, London. https://doi.org/10.1007/978-1-4471-2915-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2915-8_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2914-1

  • Online ISBN: 978-1-4471-2915-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics