Skip to main content

Nuclear Plants

  • Chapter
  • First Online:
Materials for Nuclear Plants
  • 3767 Accesses

Abstract

Structural materials are important for a wide range of nuclear power plants. Although the overwhelming majority of current nuclear power plants are light water reactors advanced plants like Generation IV or fusion are considered as future nuclear power options. Current nuclear plants are frequently in the stage of life-extension programs where damage assessments are most important. Future plants need predictions of long-term materials behaviour or even new materials to comply with operation conditions going beyond light water reactors. It is therefore the aim of this chapter to provide an introduction into operation conditions and materials needs of current and future nuclear plants. Changes in policy change priorities for new plants quickly which can have an impact on priorities discussed in this chapter. The materials issues for the different types of plants remain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Plans for New Reactors Worldwide (2011) World Nuclear Association. http://www.world-nuclear.org/info/inf17.html. Accessed 19 Sept 2011

  2. Nuclear Power Reactors (2011) World Nuclear Association. http://www.world-nuclear.org/info/inf32.html. Accessed 19 Sept 2011

  3. Pressurized water reactor (2011) Wikipedia. http://en.wikipedia.org/wiki/Pressurized_water_reactor. Accessed 15 Sept 2011

  4. Pressurized water reactor (2011) US-NRC. http://www.nrc.gov/reactors/pwrs.html. Accessed 15 Sept 2011

  5. VVER-reactor (2011) Wikipedia. http://en.wikipedia.org/wiki/VVER. Accessed 15 Sept 2011

  6. VVER-reactor (2011) http://www.nucleartourist.com/type/vver.htm. Accessed 15 Sept 2011

  7. USNRC (2011) http://www.nrc.gov/reactors/bwrs.html. Accessed 15 Sept 2011

  8. Wikipedia (2011) http://en.wikipedia.org/wiki/Boiling_water_reactor. Accessed 15 Sept 2011

  9. Wikipedia RBMK (2011) http://en.wikipedia.org/wiki/RBMK. Accessed 15 Sept 2011

  10. Wikipedia CANDU Reactor (2011) http://en.wikipedia.org/wiki/CANDU_reactor. Accessed 15 Sept 2011

  11. http://www.candu.org/candu_reactors.html#advantage. Accessed 15 Sept 2011

  12. Wikipedia Advanced Gas Cooled Reactor (2011) http://en.wikipedia.org/wiki/Advanced_gas-cooled_reactor. Accessed 15 Sept 2011

  13. Advanced Nuclear Power Reactors (2011) http://www.world-nuclear.org/info/inf08.html. Accessed 15 Sept 2011

  14. Tsuzuki K, Shiotami T, Ohno I, Kasai S (2009) Develpment of next generation light water reactors in Japan. In: International congress on advances in nuclear power plants (ICAPP’09), Tokyo, May 12 (2009)

    Google Scholar 

  15. Hoffelner W, Bratton R, Mehta H, Hasegawa K, Morton DK (2011) New Generation Reactors. In: Rao KR (ed) Energy and power generation handbook-established and emerging technologies ASME PRESS

    Google Scholar 

  16. Small Nuclear Power Reactors (2011) World Nuclear Association Document, September (2011) http://www.world-nuclear.org/info/inf33.html. Accessed 30 Sept 2011

  17. Technology Roadmap—Nuclear Energy Agency (NEA) and International Energy Agency (IEA) (2010) http://www.iea.org/papers/2010/nuclear_roadmap.pdf. Accessed 15 Sept 2011

  18. Terra Power (2011) http://www.intellectualventures.com/OurInventions/TerraPow er.aspx. Accessed 15 Sept 2011

  19. Wald ML (2011) TR10: Traveling-Wave Reactor. http://www.technologyreview.com/biomedicine/22114. Accessed 15 Sept 2011

  20. GENIV Roadmap (2002) http://gif.inel.gov/roadmap. Accessed 15 Sept 2011

  21. Fatal blow to GENP? http://www.world-nuclear-news.org/newsarticle.aspx?id=25517&terms=GNEP. Accessed 15 Sept 2011

  22. The International Framework for Nuclear Energy Cooperation (2011) http://www.ifnec.org/. Accessed 15 Sept 2011

  23. IAEA INPRO (2011) http://www.iaea.org/INPRO/.Accessed. 15 Sept 2011

  24. Omoto A (2009) International project on innovative nuclear reactors and fuel cycles (INPRO) and its potential synergy with GIF. In: GIF Symposium, Paris (France), 9–10 Sept 2009. www.gen-4.org/GIF/About/documents/GIFProceedingsWEB.pdf: pp 263–268

  25. International Atomic Energy Agency (2004) Methodology for the assessment of innovative nuclear reactors and fuel cycles. Report of the phase 1B of the international project on innovative nuclear reactors and fuel cycle (INPRO), IAEA-TECDOC-1434, IAEA, Vienna

    Google Scholar 

  26. DOE Fundamentals Handbook Nuclear Physics and Reactor Theory (1993) DOE-HDBK-1019/1-93. http://hss.energy.gov/nuclearsafety/techstds/docs/handbook/h1019v1.pdf. Accessed 30 Sept 2011

  27. Fast reactors (2011) http://en.wikipedia.org/wiki/Fast_breeder_reactor. Accessed 15 Sep 2011

  28. Carré F (2010) A Vision from France of nuclear fuel cycle options perceptions and realities. In: 2010 International congress on advances in nuclear power plants (ICAPP’10)—San Diego, June 14–17, (2010) see also: http://www.icapp.ans.org/icapp10/highlights/plenary%20stuff/p6/Carre.pdf. Accessed 15 Sept 2011

  29. Nakashima F, Mizuno T, Nishi H, Brunel L, Pillon S, Pasamehmetoglu K, Carmack J (2009) Current Status of global actinide cycle international demonstration project. In: GIF Symposium, Paris (France), 9–10 Sept (2009), pp 239–246, see also: www.gen4.org/GIF/About/documents/GIFProceedingsWEB.pdf. Accessed 15 Sept 2011

  30. GIF Symposium (2009) Paris (France), 9–10 September, 2009. www.gen-4.org/GIF/About/documents/GIFProceedingsWEB.pdf. Accessed 15 Sept 2011

  31. GE Hitachi Advanced Recycling Center—Solving the Spent Nuclear Fuel Dilemma (2010) GE Hitachi Nuclear Energy Press Release

    Google Scholar 

  32. Kakodkar A (2009) Technology options for long term nuclear power deployment. Nu-Power 23(1–4):22–28

    Google Scholar 

  33. Renault C, Hron M, Konings R, Holcomb DE (2009) The molten salt reactor (MSR) in generation IV: overview and perspective. In: GIF Symposium, Paris (France), 9–10 Sept 2009. www.gen-4.org/GIF/About/documents/GIFProceedingsWEB.pdf: 191–200. Accessed 15 Sept 2011

  34. Camplani A, Zambelli A (1986) Advanced nuclear power stations: superphenix and fast-breeder reactors. Endeavour 10(3):132–138

    Article  Google Scholar 

  35. Nickel H, Hofmann K, Wachholz W, Weisbrodt I (1991) The Helium-cooled high-temperature reactor in the federal republic of Germany—Safety features, integrity concept, outlook for design codes and licensing procedures. Nucl Eng Des 127:181–190

    Article  Google Scholar 

  36. Fast Breeder Reactor (2011) http://en.wikipedia.org/wiki/Fast_breeder_reactor. Accessed 15 Sept 2011

  37. High Temperature Reactor (2011) http://en.wikipedia.org/wiki/Very_high_temperature_reactor. Accessed 15 Sept 2011

  38. Bouchard J (2009) The global view. In: GIF Symposium-Paris (France)-9–10 Sept (2009), slides only

    Google Scholar 

  39. GIF Symposium-Paris (France)-9-10 September (2009) Conference Proceedings, http://www.gen-4.org/PDFs/GIF_RD_Outlook_for_Generation_IV_Nuclear_Energy_Systems.pdf. Accessed 15 Sept 2011

  40. Kotake S, Sakamoto Y, Mihara T, Kubo S, Uto N, Kamishima Y, Aoto K, Toda M (2010) Development of advanced loop-type fast reactor in Japan. Nucl Technol 170

    Google Scholar 

  41. Poplavskii VM, Tsibulya AM, Kamaev AA, Bagdasarov YE, Krivitskii IY, Matveev VI, Vasiliev BA, Budylskii AD, Kamanin YL, Kuzavkov NG, Timofeev AV, Shkarin VI, Suknev KL, Ershov VN, Popov SV, Znamenskii SG, Denisov VV, Karsonov VI (2004) Prospects for the BN-1800 sodium cooled fast reactor satisfying 21st Century nuclear power requirements. At Energ 96(5):308–314

    Article  Google Scholar 

  42. Koo GH (2009) Overview of LMR program and code rule needs in Korea. ASME Codes & Standards, Working Group on Liquid Metal Reactors, San Diego, USA

    Google Scholar 

  43. Kakodkar A (2009) Technology options for long term nuclear power deployment. Nu-Power 23(1–4):22–28

    Google Scholar 

  44. Srinivasan G, Kumar KV, Rajendrann B, Ramalingam PV (2006) The fast breeder test reactor—The design and operating experiences. Nucl Eng Des 236:796–811

    Article  Google Scholar 

  45. Chetal SC et al (2006) The design of the prototype fast breeder reactor. Nucl Eng Des 236:852–860

    Article  Google Scholar 

  46. Sustainable Nuclear Energy Platform (SNETP) (2011) Strategic Research Agenda, May 2009. http://www.snetp.eu/www/snetp/index.php?option=com_content&view=article&id=63&Itemid=36. Accessed 15 Sept 2011

  47. Varaine F, Stauff N, Masson M, Pelletier M, Mignot G, Rimpault G, Zaetta A, Rouault J (2009) Comparative review on different fuels for gen IV Sodium fast reactors: merits and drawbacks. In: International conference on fast reactors and related fuel cycles (FR09) December 7–11 2009—Kyoto Japan

    Google Scholar 

  48. Allen TR, Crawford DC (2007) Lead-cooled fast reactor systems and the fuels andmaterials challenges. science and technology of nuclear installations, Vol 2007. Article ID 97486 doi:10.1155/2007/97486

  49. HTTR reactor JAEA (2011) http://httr.jaea.go.jp/eng/index.html. Accessed 15 Sept 2011

  50. Sun Y, Xu Y (1995) Conference article: licensing experience of the HTR-10 test reactor, international atomic energy agency, Vienna (Austria) IAEA-TECDOC—899:157–162 http://www.iaea.org/inisnkm/nkm/aws/htgr/abstracts/abst_28008798.html. Accessed 15 Sept 2011

  51. Shenoy A (2007) Modular helium reactor design, technology and applications. Presented at UCSD center for energy research

    Google Scholar 

  52. Sun Y (2011) HTR-PM Project status and test program March 28–April 1, 2011, IAEA TWG-GCR-22. IAEA http://www.iaea.org/NuclearPower/Downloads/Technology/meetings/2011-March-TWG-GCR/Day1/HTR-PM-Status-SYL-20110328.pdf. Accessed 15 Sept 2011

  53. Next Generation Nuclear Plant (2011) http://www.ne.doe.gov/pdfFiles/factSheets/2012_NGNP_Factsheet_final.pdf. Accessed 2 July 2012

  54. Gilleland J, Ahlfeld C, Dadiomov D, Hyde R, Ishikawa Y, McAlees D, McWhirter J, Myhrvold N, Nuckolls J, Odedra A, Weaver KD, Whitmer C, Wood L, Zimmerman G (2008) Novel reactor designs to burn non-fissile fuels. Proceedings of ICAPP’08 Anaheim CA USA. June 8–12 2008 Paper 8319

    Google Scholar 

  55. Weaver KD, Ahlfeld C, Gilleland J, Whitmer C, Zimmerman G (2009) Extending the nuclear fuel cycle with traveling-wave reactors. In: Proceedings of global 2009 Paris France September 6–11 2009 Paper 9294

    Google Scholar 

  56. Rubbia C et al. (1995) CERN-AT-95-44-ET In: Arthur ED, Rodriguez A, Schriber SO (eds) Accelerator-driven transmutation technologies and applications.In: Proceedings of the conference Las Vegas NV July 1994. AIP Conference proceedings 346 Woodbury NY. American Institute of Physics, p 44

    Google Scholar 

  57. World Nuclear Assocoation (2011) Nuclear reactors for space (2011) Update May 2011. http://www.world-nuclear.org/info/inf82.html. Accessed 15 Sept 2011

  58. Class AG, Angeli D, Batta A, Dierckx M, Fellmoser F, Moreau V, Roelofs F, Schuurmans P, Van Tichelen K, Wetzel T (2011) Xt-Ads Windowless spallation target thermohydraulic design and experimental setup. J Nucl Mater PII S0022–3115(11):00409. doi:10.1016/j.jnucmat.2011.04.050

    Google Scholar 

  59. Giraud B, Poitevin Y, Ritter G (2011) Preliminary Design of a Gas-Cooled Accelerator Driven System Demonstrator. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/33/011/33011197.pdf. Accessed 15 Sept 2011

  60. Kettler J, Biss K, Bongardt K, Bourauel P, Cura H, Esser F, Greiner W, Hamzic S, Kolev N, Maier R, Mishustin I, Modolo G, Nabbi R, Nies R, Pshenichnov I, Rossbach M, Shetty N, Thomauske B, Wank A, Wolters J, Zimmer A (2011) Advanced gas-cooled accelerator-driven transmutation experiment—AGATE. http://www.inbk.rwth-aachen.de/publikationen/Kettler_AGATE_2011.pdf. Accessed 15 Sept 2011

  61. León PT, Martínez-Val JM, Mínguez E, Perlado JM, Piera M, Saphier D (2011) Transuranucs elimination in an optimized pebble-bed sub-critical reactor. http://www.oecd-nea.org/pt/docs/iem/madrid00/Proceedings/Paper18.pdf. Accessed 15 Sept 2011

  62. Wikipedia NASA (2011) http://saturn.jpl.nasa.gov/spacecraft/safety.cfm. Accessed 15 Sept 2011

  63. Anderson JL, Lantz E (2011) A nuclear thermionic space power concept using rod control and heat pipes. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19690016892_1969016892.pdf. Accessed 15 Sept 2011

  64. Busby JT, Leonard KL (2007) Space fission reactor structural materials: choices past, present, and future. Overview JOM J Miner Met Mater Soc 59(4):20–26. doi:10.1007/s11837-007-0049-9

    Article  Google Scholar 

  65. Nuclear Fusion (2011) http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/fusion.html. Accessed 4 Oct 2011

  66. Wikipedia (2011) http://en.wikipedia.org/wiki/Nuclear_fusion. Accessed 15 Sept 2011

  67. EFDA European fusion development agreement (2011) http://www.efda.org/the_iter_project/index.htm. Accessed 15 Sept 2011

  68. ITER www.iter.org. Accessed 15 September 2011

  69. Fusion- an introduction, University Uppsala (2011) http://www.fysast.uu.se/tk/en/content/fusion-introduction. Accessed 15 Sept 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hoffelner .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London Limited

About this chapter

Cite this chapter

Hoffelner, W. (2013). Nuclear Plants. In: Materials for Nuclear Plants. Springer, London. https://doi.org/10.1007/978-1-4471-2915-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2915-8_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2914-1

  • Online ISBN: 978-1-4471-2915-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics