Skip to main content

Arrhythmias in Right Heart Failure due to Pulmonary Hypertension

  • Chapter
  • First Online:
The Right Heart

Abstract

The clinical relevance of cardiac arrhythmias has not been systematically studied in patients with right heart failure and pulmonary arterial hypertension (PAH) despite being important contributors to morbidity and mortality. Electro-anatomical remodeling of the right ventricle and right atrium in response to longstanding pressure and volume overload, resulting from altered autonomics, repolarization abnormalities, and ischemia, may be the underlying substrate predisposing to enhanced arrhythmogenicity in patients with right heart failure and PAH.

Supraventricular tachycardias, such as atrial fibrillation, atrial flutter and more rarely atrio-ventricular nodal reentry tachycardia, are associated with worsened outcomes, and maintenance of sinus rhythm is a goal. Given the significant potential side effects of antiarrhythmic drugs for supraventricular tachycardias, percutaneous catheter ablation represents a safe and reliable alternative approach.

In contrast to patients with advanced left heart disease, life-threatening arrhythmias, such as ventricular tachycardia and ventricular fibrillation, are relatively rare in patients with PAH. Conversely, patients with PAH may often show bradycardia as pulseless electrical activity. Prophylactic antiarrhythmic therapy is not indicated for primary prevention of sudden cardiac death, and an implantable cardioverter-defibrillator should be offered as a treatment option to PAH patients who manifest either syncope or cardiac arrest in the setting of documented ventricular tachycardia/fibrillation. The role of pacing in PAH patients for relative bradycardia is not well established, highlighting the intrinsic difficulty in clinical management of PAH patients during cardiac arrest. Finally, the exact role of cardiac resynchronization therapy in these patients remains undefined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6MWD:

Six-minute walk distance

AF:

Atrial fibrillation

AFl:

Atrial flutter

APD:

Action potential duration

AVNRT:

Atrio-ventricular nodal reentry tachycardia

CPR:

Cardiopulmonary resuscitation

CTEPH:

Chronic thromboembolic pulmonary hypertension

CTI:

Cavo-tricuspid isthmus

ECG:

Electrocardiogram

Ito :

Transient outward potassium current

LV:

Left ventricle

NCX:

Na+-Ca2+ exchanger

PAH:

Pulmonary arterial hypertension

QTc:

Corrected QT interval

RV:

Right ventricle

SCD:

Sudden cardiac death

SR:

Sinus rhythm

SVT:

Supraventricular tachycardia

VF:

Ventricular fibrillation

VT:

Ventricular tachycardia

References

  1. Fishman AP. State of the art: chronic cor pulmonale. Am Rev Respir Dis. 1976;114:775–94.

    CAS  PubMed  Google Scholar 

  2. Bogaard HJ, Abe K, Vonk NA, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest. 2009;135:794–804.

    Article  CAS  PubMed  Google Scholar 

  3. Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117:1717–31.

    Article  PubMed  Google Scholar 

  4. Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, et al. Right ventricular 670 function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114:1883–91.

    Article  PubMed  Google Scholar 

  5. Anand IS, Chandrashekhar Y, Ferrari R, Sarma R, Guleria R, Jindal SK, et al. Pathogenesis of congestive state in chronic obstructive pulmonary disease. Studies of body water and sodium, renal function, hemodynamics, and plasma hormones during edema and after recovery. Circulation. 1992;86:12–21.

    Article  CAS  PubMed  Google Scholar 

  6. Farber MO, Roberts LR, Weinberger MH, Robertson GL, Fineberg NS, Manfredi F. Abnormalities of sodium and H2O handling in chronic obstructive lung disease. Arch Intern Med. 1982;142:1326–30.

    Article  CAS  PubMed  Google Scholar 

  7. Henkens IR, Mouchaers KT, Vonk-Noordegraaf A, Boonstra A, Swenne CA, Maan AC, et al. Improved ECG detection of presence and severity of right ventricular pressure load validated with cardiac magnetic resonance imaging. Am J Physiol Heart Circ Physiol. 2008;294:2150–7.

    Article  Google Scholar 

  8. Hlaing T, Guo D, Zhao X, DiMino T, Greenspon L, Kowey PR, et al. The QT and Tp-e intervals in left and right chest leads: comparison between patients with systemic and pulmonary hypertension. J Electrocardiol. 2005;38:154–8.

    Article  PubMed  Google Scholar 

  9. Folino AF, Bobbo F, Schiraldi C, Tona F, Romano S, Buja G, et al. Ventricular arrhythmias and autonomic profile in patients with primary pulmonary hypertension. Lung. 2003;181:321–8.

    Article  CAS  PubMed  Google Scholar 

  10. Coronel R, Wilders R, Verkerk AO, Wiegerinck RF, Benoist D, Bernus O. Electrophysiological changes in heart failure and their implications for arrhythmogenesis. Biochim Biophys Acta. 2013;1832:2432–41.

    Article  CAS  PubMed  Google Scholar 

  11. Janse MJ, van Capelle FJ, Morsink H, Kléber AG, Wilms-Schopman F, Cardinal R, et al. Flow of “injury” current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms. Circ Res. 1980;47:151–65.

    Article  CAS  PubMed  Google Scholar 

  12. Fontaine G, Aouate P, Fontaliran F. Repolarization and the genesis of cardiac arrhythmias. Role of body surface mapping. Circulation. 1997;95:2600–2.

    CAS  PubMed  Google Scholar 

  13. Schrier RW, Bansal S. Pulmonary hypertension, right ventricular failure, and kidney: different from left ventricular failure? Clin J Am Soc Nephrol. 2008;3:1232–7.

    Article  PubMed  Google Scholar 

  14. Rajdev A, Garan H, Biviano A. Arrhythmias in pulmonary arterial hypertension. Prog Cardiovasc Dis. 2012;55:180–6.

    Article  PubMed  Google Scholar 

  15. Algra A, Tijssen JG, Roelandt JR, Pool J, Lubsen J. QTc prolongation measured by standard 12-lead electrocardiography is an independent risk factor for sudden death due to cardiac arrest. Circulation. 1991;83:1888–94.

    Article  CAS  PubMed  Google Scholar 

  16. Hong-liang Z, Qin L, Zhi-hong L, Zhi-hui Z, Chang-ming X, Xin-hai N, et al. Heart rate-corrected QT interval and QT dispersion in patients with pulmonary hypertension. Wien Klin Wochenschr. 2009;121:330–3.

    Article  PubMed  Google Scholar 

  17. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res. 2004;95:754–63.

    Article  CAS  PubMed  Google Scholar 

  18. Nattel S, Maguy A, Le Bouter S, Yeh YH. Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev. 2007;87:425–56.

    Article  CAS  PubMed  Google Scholar 

  19. Nass RD, Aiba T, Tomaselli GF, Akar FG. Mechanisms of disease: ion channel remodeling in the failing ventricle. Nat Clin Pract Cardiovasc Med. 2008;5:196–207.

    Article  CAS  PubMed  Google Scholar 

  20. Akar FG, Tomaselli GF. Ion channels as novel therapeutic targets in heart failure. Ann Med. 2005;37:44–54.

    Article  CAS  PubMed  Google Scholar 

  21. Cutler MJ, Rosenbaum DS, Dunlap ME. Structural and electrical remodeling as therapeutic targets in heart failure. J Electrocardiol. 2007;40(6 Suppl):S1–7.

    Article  PubMed  Google Scholar 

  22. Wang Y, Hill JA. Electrophysiological remodeling in heart failure. J Mol Cell Cardiol. 2010;48:619–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kääb S, Nuss HB, Chiamvimonvat N, O’Rourke B, Pak PH, Kass DA, et al. Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res. 1996;78:262–73.

    Article  PubMed  Google Scholar 

  24. Kaab S, Dixon J, Duc J, Ashen D, Nabauer M, Beuckelmann DJ, et al. Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation. 1998;98:1383–93.

    Article  CAS  PubMed  Google Scholar 

  25. O’Rourke B, Kass DA, Tomaselli GF, Kaab S, Tunin R, Marban E. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res. 1999;84:562–70.

    Article  PubMed  Google Scholar 

  26. Houser SR, Piacentino 3rd V, Weisser J. Abnormalities of calcium cycling in the hypertrophied and failing heart. J Mol Cell Cardiol. 2000;32:1595–607.

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Tandan S, Cheng J, Yang C, Nguyen L, Sugianto J, et al. Ca2+/calmodulin-dependent protein kinase II-dependent remodeling of Ca2+ current in pressure overload heart failure. J Biol Chem. 2008;283:25524–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Undrovinas AI, Maltsev VA, Sabbah HN. Repolarization abnormalities in cardiomyocytes of dogs with chronic heart failure: role of sustained inward current. Cell Mol Life Sci. 1999;55:494–505.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Cheng J, Joyner RW, Wagner MB, Hill JA. Remodeling of early-phase repolarization: a mechanism of abnormal impulse conduction in heart failure. Circulation. 2006;113:1849–56.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Studer R, Reinecke H, Bilger J, Eschenhagen T, Bohm M, Hasenfuss G, et al. Gene expression of the cardiac Na+-Ca2+ exchanger in end-stage human heart failure. Circ Res. 1994;75:443–53.

    Article  CAS  PubMed  Google Scholar 

  31. Flesch M, Schwinger RH, Schiffer F, Frank K, Sudkamp M, Kuhn-Regnier F, et al. Evidence for functional relevance of an enhanced expression of the Na+-Ca2+ exchanger in failing human myocardium. Circulation. 1996;94:992–1002.

    Article  CAS  PubMed  Google Scholar 

  32. Reinecke H, Studer R, Vetter R, Holtz J, Drexler H. Cardiac Na+/Ca2+ exchange activity in patients with end-stage heart failure. Cardiovasc Res. 1996;31:48–54.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Z, Nolan B, Kutschke W, Hill JA. Na+-Ca2+ exchanger remodeling in pressure overload cardiac hypertrophy. J Biol Chem. 2001;276:17706–11.

    Article  CAS  PubMed  Google Scholar 

  34. Yue L, Feng J, Gaspo R, Li GR, Wang Z, Nattel S. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res. 1997;81:512–25.

    Article  CAS  PubMed  Google Scholar 

  35. Beuckelmann DJ, Nabauer M, Erdmann E. Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res. 1993;73:379–85.

    Article  CAS  PubMed  Google Scholar 

  36. Wang HS, Dixon JE, McKinnon D. Unexpected and differential effects of Cl channel blockers on the Kv4.3 and Kv4.2 K+ channels. Implications for the study of the Ito2 current. Circ Res. 1997;81:711–8.

    Article  CAS  PubMed  Google Scholar 

  37. Zipes DP, Jalife J. Arrhythmogenic mechanisms: automaticity, triggered activity, and reentry. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology. From cell to bedside. 3rd ed. Philadelphia: WB Saunders; 2000. p. 345–56.

    Google Scholar 

  38. Cranefield PF. Action potentials, afterpotentials and arrhythmias. Circ Res. 1977;41:415–25.

    Article  CAS  PubMed  Google Scholar 

  39. James TN. On the cause of syncope and sudden death in primary pulmonary hypertension. Ann Intern Med. 1962;56:252–64.

    Article  CAS  PubMed  Google Scholar 

  40. Kanemoto N, Sasamoto H. Arrhythmias in primary pulmonary hypertension. Jpn Heart J. 1979;20:765–75.

    Article  CAS  PubMed  Google Scholar 

  41. Galiè N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30:2493–537.

    Article  PubMed  Google Scholar 

  42. Tongers J, Schwerdtfeger B, Klein G, Kempf T, Schaefer A, Knapp JM, et al. Incidence and clinical relevance of supraventricular tachyarrhythmias in pulmonary hypertension. Am Heart J. 2007;153:127–32.

    Article  PubMed  Google Scholar 

  43. Ruiz-Cano MJ, Gonzalez-Mansilla A, Escribano P, et al. Clinical implications of supraventricular arrhythmias in patients with severe pulmonary arterial hypertension. Int J Cardiol. 2011;146:105–6.

    Article  PubMed  Google Scholar 

  44. Olsson KM, Nickel NP, Tongers J, Hoeper MM. Atrial flutter and fibrillation in patients with pulmonary hypertension. Int J Cardiol. 2013;167:2300–5.

    Article  PubMed  Google Scholar 

  45. Medi C, Kalman JM, Ling LH, Teh AW, Lee G, Lee G, et al. Atrial electrical and structural remodeling associated with longstanding pulmonary hypertension and right ventricular hypertrophy in humans. J Cardiovasc Electrophysiol. 2012;23:614–20.

    Article  PubMed  Google Scholar 

  46. Epstein AE, DiMarco JP, Ellenbogen KA, Estes 3rd NA, Freedman RA, Gettes LS, et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Circulation. 2013;127(3):e283–352.

    Article  PubMed  Google Scholar 

  47. Wyse DG, Waldo AL, DiMarco JP, Domanski MJ, Rosenberg Y, Schron EB, et al. Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) Investigators. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med. 2002;347:1825–33.

    Article  CAS  PubMed  Google Scholar 

  48. Whitbeck MG, Charnigo RJ, Khairy P, Ziada K, Bailey AL, Zegarra MM, et al. Increased mortality among patients taking digoxin – analysis from the AFFIRM study. Eur Heart J. 2013;34:1481–98.

    Article  CAS  PubMed  Google Scholar 

  49. Gheorghiade M, Fonarow GC, van Veldhuisen DJ, Cleland JG, Butler J, Epstein AE, et al. Lack of evidence of increased mortality among patients with atrial fibrillation taking digoxin: findings from post hoc propensity-matched analysis of the AFFIRM trial. Eur Heart J. 2013;34:1489–97.

    Article  CAS  PubMed  Google Scholar 

  50. Murphy SA. When ‘digoxin use’ is not the same as ‘digoxin use’: lessons from the AFFIRM trial. Eur Heart J. 2013;34:1465–7.

    Article  PubMed  Google Scholar 

  51. Mathur PN, Powles P, Pugsley SO, McEwan MP, Campbell EJ. Effect of digoxin on right ventricular function in severe chronic airflow obstruction. A controlled clinical trial. Ann Intern Med. 1981;95:283–8.

    Article  CAS  PubMed  Google Scholar 

  52. Mathur PN, Powles AC, Pugsley SO, McEwan MP, Campbell EJ. Effect of long-term administration of digoxin on exercise performance in chronic airflow obstruction. Eur J Respir Dis. 1985;66:273–83.

    CAS  PubMed  Google Scholar 

  53. Provencher S, Herve P, Jais X, Lebrec D, Humbert M, Simonneau G, et al. Deleterious effects of beta-blockers on exercise capacity and hemodynamics in patients with portopulmonary hypertension. Gastroenterology. 2006;130:120–6.

    Article  CAS  PubMed  Google Scholar 

  54. Echt DS, Liebson PR, Mitchell LB, Peters RW, Obias-Manno D, Barker AH, et al; CAST Investigators. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med. 1991;324:781–8.

    Google Scholar 

  55. Showkathali R, Tayebjee MH, Grapsa J, Alzetani M, Nihoyannopoulos P, Howard LS, et al. Right atrial flutter isthmus ablation is feasible and results in acute clinical improvement in patients with persistent atrial flutter and severe pulmonary arterial hypertension. Int J Cardiol. 2011;149:279–80.

    Article  PubMed  Google Scholar 

  56. Luesebrink U, Fischer D, Gezgin F, Duncker D, Koenig T, Oswald H, et al. Ablation of typical right atrial flutter in patients with pulmonary hypertension. Heart Lung Circ. 2012;21:695–9.

    Article  PubMed  Google Scholar 

  57. Bradfield J, Shapiro S, Finch W, Tung R, Boyle NG, Buch E, et al. Catheter ablation of typical atrial flutter in severe pulmonary hypertension. J Cardiovasc Electrophysiol. 2012;23:1185–90.

    Article  PubMed  Google Scholar 

  58. Murkofsky RL, Dangas G, Diamond JA, Mehta D, Schaffer A, Ambrose JA. A prolonged QRS duration on surface electrocardiogram is a specific indicator of left ventricular dysfunction. J Am Coll Cardiol. 1998;32:476–82.

    Article  CAS  PubMed  Google Scholar 

  59. Iuliano S, Fisher SG, Karasik PE, Fletcher RD, Singh SN, Department of Veterans Affairs Survival Trial of Antiarrhythmic Therapy in Congestive Heart Failure. QRS duration and mortality in patients with congestive heart failure. Am Heart J. 2002;143:1085–91.

    Article  PubMed  Google Scholar 

  60. Shenkman H, Pampati V, Khandelwal AK, McKinnon J, Nori D, Kaatz S, et al. Congestive heart failure and QRS duration: establishing prognosis study. Chest. 2002;122:528–34.

    Article  PubMed  Google Scholar 

  61. Baldasseroni S, Gentile A, Gorini M, Marchionni N, Marini M, Masotti G, et al; Italian Network on Congestive Heart Failure Investigators. Intraventricular conduction defects in patients with congestive heart failure: left but not right bundle branch block is an independent predictor of prognosis. A report from the Italian Network on Congestive Heart Failure (IN-CHF database). Ital Heart J. 2003;4:607–13.

    Google Scholar 

  62. Marcus JT, Gan CT, Zwanenburg JJ, Boonstra A, Allaart CP, Gotte MJ, et al. Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol. 2008;51:750–7.

    Article  PubMed  Google Scholar 

  63. Sun PY, Jiang X, Gomberg-Maitland M, Zhao QH, He J, Yuan P, et al. Prolonged QRS duration: a new predictor of adverse outcome in idiopathic pulmonary arterial hypertension. Chest. 2012;141:374–80.

    Article  PubMed  Google Scholar 

  64. Benoist D, Stones R, Drinkhill MJ, Benson AP, Yang Z, Cassan C, et al. Cardiac arrhythmia mechanisms in rats with heart failure induced by pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2012;302:H2381–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Tateno S, Niwa K, Nakazawa M, Iwamoto M, Yokota M, Nagashima M, et al. Risk factors for arrhythmia and late death in patients with right ventricle to pulmonary artery conduit repair – Japanese multicenter study. Int J Cardiol. 2006;106:373–81.

    Article  PubMed  Google Scholar 

  66. Humbert M. A critical analysis of survival in idiopathic pulmonary arterial hypertension. Presse Med. 2010;39 Suppl 1:1S41–5.

    PubMed  Google Scholar 

  67. McLaughlin VV. Looking to the future: a new decade of pulmonary arterial hypertension therapy. Eur Respir Rev. 2011;20:262–9.

    Article  CAS  PubMed  Google Scholar 

  68. Arena V, De Giorgio F, Abbate A, Capelli A, De Mercurio D, Carbone A. Fatal pulmonary arterial dissection and sudden death as initial manifestation of primary pulmonary hypertension: a case report. Cardiovasc Pathol. 2004;13:230–2.

    Article  PubMed  Google Scholar 

  69. Salhab KF, Al Kindi AH, Ellis SG, Lad N, Svensson LG. Percutaneous coronary intervention of the left main coronary artery in a patient with extrinsic compression caused by massive pulmonary artery enlargement. J Thorac Cardiovasc Surg. 2012;144:1517–8.

    Article  PubMed  Google Scholar 

  70. Doyen D, Moceri P, Moschietto S, Cerboni P, Ferrari E. Left main coronary artery compression associated with primary pulmonary hypertension. J Am Coll Cardiol. 2012;60:559.

    Article  PubMed  Google Scholar 

  71. Lee MS, Oyama J, Bhatia R, Kim YH, Park SJ. Left main coronary artery compression from pulmonary artery enlargement due to pulmonary hypertension: a contemporary review and argument for percutaneous revascularization. Catheter Cardiovasc Interv. 2010;76:543–50.

    Article  PubMed  Google Scholar 

  72. Tonelli AR, Arelli V, Minai OA, Newman J, Bair N, Heresi GA, et al. Causes and circumstances of death in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2013;188(3):365–9.

    Article  PubMed  Google Scholar 

  73. Hoeper MM, Galiè N, Murali S, Olschewski H, Rubenfire M, Robbins IM, et al. Outcome after cardiopulmonary resuscitation in patients with pulmonary arterial hypertension. Am J Respir Crit Care Med. 2002;165:341–4.

    Article  PubMed  Google Scholar 

  74. Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer M, et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (writing committee to develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation. 2006;114:e385–484.

    Article  PubMed  Google Scholar 

  75. Handoko ML, Lamberts RR, Redout EM, de Man FS, Boer C, Simonides WS, et al. Right ventricular pacing improves right heart function in experimental pulmonary arterial hypertension: a study in the isolated heart. Am J Physiol Heart Circ Physiol. 2009;297:H1752–9.

    Article  CAS  PubMed  Google Scholar 

  76. Hardziyenka M, Campian ME, Bouma BJ, Linnenbank AC, de Bruin-Bon HA, Kloek JJ, et al. Right-to-left ventricular diastolic delay in chronic thromboembolic pulmonary hypertension is associated with activation delay and action potential prolongation in right ventricle. Circ Arrhythm Electrophysiol. 2009;2:555–61.

    Article  PubMed  Google Scholar 

  77. Hardziyenka M, Surie S, de Groot JR, de Bruin-Bon HA, Knops RE, Remmelink M, et al. Right ventricular pacing improves haemodynamics in right ventricular failure from pressure overload: an open observational proof-of-principle study in patients with chronic thromboembolic pulmonary hypertension. Europace. 2011;13:1753–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele D’Alto MD, PhD, FESC .

Editor information

Editors and Affiliations

Additional information

Disclaimer

Authors declare that there are no grant supports or any potential conflicts of interest, including related consultancies, shareholdings and funding grants.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

D’Alto, M., Di Nardo, G. (2014). Arrhythmias in Right Heart Failure due to Pulmonary Hypertension. In: Gaine, S., Naeije, R., Peacock, A. (eds) The Right Heart. Springer, London. https://doi.org/10.1007/978-1-4471-2398-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2398-9_17

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2397-2

  • Online ISBN: 978-1-4471-2398-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics