Skip to main content

The Neuropathology of Progressive Multiple Sclerosis

  • Chapter
  • First Online:
Progressive Multiple Sclerosis

Abstract

The neuropathological findings in progressive MS support the hypothesis that neuroaxonal loss is the major substrate of progressive disability. Neuroaxonal injury appears to be initiated within focal regions of inflammatory demyelination. However, it is possible that at a certain stage, other factors ensue, which result in neurodegeneration persisting in the absence of ongoing demyelination. Such factors might include compartmentalized low-grade inflammation, loss of trophic support provided by myelin, oligodendrocytes, and astrocytes, and an energy-deficient state induced by sodium channel redistribution and mitochondrial depletion. Axonal degeneration may be paralleled by a declining capacity for repair, failure to remyelinate, and ongoing gliosis. Ultimately, a shift in the balance between injury and repair is likely to result in the numbers of functioning axons falling below a required threshold, causing permanent disability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carswell R. Pathological anatomy: illustrations of the elementary forms of disease. London: Longman; 1838.

    Google Scholar 

  2. Charcot JM. Histologie de la sclérose en plaques. Gazette Hôpitaux. 1868;41:554–5.

    Google Scholar 

  3. Kornek B, Lassmann H. Axonal pathology in multiple sclerosis. A historical note. Brain Pathol. 1999;9(4):651–6.

    Article  PubMed  CAS  Google Scholar 

  4. Cox G. Neuropathological techniques. In: Bancroft JD, Stevens A, editors. Theory and practice of histological techniques. New York: Churchill-Livingstone; 1977. p. 249–73.

    Google Scholar 

  5. Pittock SJ, et al. Clinical course, pathological correlations, and outcome of biopsy proved inflammatory demyelinating disease. J Neurol Neurosurg Psychiatry. 2005;76(12):1693–7.

    Article  PubMed  CAS  Google Scholar 

  6. Lassmann H, et al. Immunopathology of multiple sclerosis: report on an international meeting held at the Institute of Neurology of the University of Vienna. J Neuroimmunol. 1998;86(2):213–7.

    Article  PubMed  CAS  Google Scholar 

  7. Kutzelnigg A, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128(Pt 11):2705–12.

    Article  PubMed  Google Scholar 

  8. Prineas JW, et al. Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol. 2001;50(5):646–57.

    Article  PubMed  CAS  Google Scholar 

  9. Revesz T, et al. A comparison of the pathology of primary and secondary progressive multiple sclerosis. Brain. 1994;117(Pt 4):759–65.

    Article  PubMed  Google Scholar 

  10. Tallantyre EC, et al. Greater loss of axons in primary progressive multiple sclerosis plaques compared to secondary progressive disease. Brain. 2009;132(Pt 5):1190–9.

    Article  PubMed  CAS  Google Scholar 

  11. Ozawa K, et al. Patterns of oligodendroglia pathology in multiple sclerosis. Brain. 1994;117(Pt 6):1311–22.

    Article  PubMed  Google Scholar 

  12. Frischer JM, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009;132(Pt 5):1175–89.

    Article  PubMed  Google Scholar 

  13. Barnett MH, et al. Immunoglobulins and complement in post mortem multiple sclerosis tissue. Ann Neurol. 2009;65(1):32–46.

    Article  PubMed  Google Scholar 

  14. Lucchinetti C, et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707–17.

    Article  PubMed  CAS  Google Scholar 

  15. Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol. 2004;55(4):458–68.

    Article  PubMed  Google Scholar 

  16. Breij EC, et al. Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol. 2008;63(1):16–25.

    Article  PubMed  CAS  Google Scholar 

  17. Prineas JW, Connell F. Remyelination in multiple sclerosis. Ann Neurol. 1979;5(1):22–31.

    Article  PubMed  CAS  Google Scholar 

  18. Barkhof F, et al. Remyelinated lesions in multiple sclerosis: magnetic resonance image appearance. Arch Neurol. 2003;60(8):1073–81.

    Article  PubMed  Google Scholar 

  19. Wolswijk G. Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis. Brain. 2000;123(Pt 1):105–15.

    Article  PubMed  Google Scholar 

  20. Wolswijk G. Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain. 2002;125(Pt 2):338–49.

    Article  PubMed  Google Scholar 

  21. Kwon EE, Prineas JW. Blood-brain barrier abnormalities in longstanding multiple sclerosis lesions. An immunohistochemical study. J Neuropathol Exp Neurol. 1994;53(6):625–36.

    Article  PubMed  CAS  Google Scholar 

  22. Leech S, et al. Persistent endothelial abnormalities and blood-brain barrier leak in primary and secondary progressive multiple sclerosis. Neuropathol Appl Neurobiol. 2007;33(1):86–98.

    Article  PubMed  CAS  Google Scholar 

  23. Plumb J, et al. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol. 2002;12(2):154–69.

    Article  PubMed  Google Scholar 

  24. Claudio L, Raine CS, Brosnan CF. Evidence of persistent blood-brain barrier abnormalities in chronic-progressive multiple sclerosis. Acta Neuropathol. 1995;90(3):228–38.

    Article  PubMed  CAS  Google Scholar 

  25. Adams RA, et al. The fibrin-derived gamma377–395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J Exp Med. 2007;204(3):571–82.

    Article  PubMed  CAS  Google Scholar 

  26. Hochmeister S, et al. Dysferlin is a new marker for leaky brain blood vessels in multiple sclerosis. J Neuropathol Exp Neurol. 2006;65(9):855–65.

    Article  PubMed  CAS  Google Scholar 

  27. Ferguson B, et al. Axonal damage in acute multiple sclerosis lesions. Brain. 1997;120(Pt 3):393–9.

    Article  PubMed  Google Scholar 

  28. Bitsch A, et al. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain. 2000;123(Pt 6):1174–83.

    Article  PubMed  Google Scholar 

  29. Kornek B, et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol. 2000;157(1):267–76.

    Article  PubMed  CAS  Google Scholar 

  30. Trapp BD, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338(5):278–85.

    Article  PubMed  CAS  Google Scholar 

  31. Kuhlmann T, et al. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain. 2002;125(Pt 10):2202–12.

    Article  PubMed  Google Scholar 

  32. Bjartmar C, et al. Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol. 2000;48(6):893–901.

    Article  PubMed  CAS  Google Scholar 

  33. Lovas G, et al. Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain. 2000;123(Pt 2):308–17.

    Article  PubMed  Google Scholar 

  34. Seewann A, et al. Diffusely abnormal white matter in chronic multiple sclerosis: imaging and histopathologic analysis. Arch Neurol. 2009;66(5):601–9.

    Article  PubMed  Google Scholar 

  35. Dawson JW. The histology of disseminated sclerosis. Trans R Soc Edinb. 1916;50:517–740.

    Google Scholar 

  36. Dinkler M. Zur Kasuistik der multiplen Herdsklerose des Gehirns und Ruckenmarks. Deutsche Zeitschrift für Nervenheilkunde. 1904;26:233–47.

    Article  Google Scholar 

  37. Sander M. Hirnrindenbefunde bei multiper Sklerose. Mschr Psychiat Neurol. 1898;IV:427–36.

    Article  Google Scholar 

  38. Schob F. Ein Betrag zur patologischen Anatomie der multiplen Sklerose. Monatsschr Psychiatr Neurol. 1907;22:62–87.

    Article  Google Scholar 

  39. Brownell B, Hughes JT. The distribution of plaques in the cerebrum in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1962;25:315–20.

    Article  PubMed  CAS  Google Scholar 

  40. Lumsden CE. The neuropathology of multiple sclerosis. In: Vinken PJ, Bruyn GW, editors. Handbook of clinical neurology. Amsterdam: North-Holland; 1970. p. 217–309.

    Google Scholar 

  41. Itoyama Y, et al. Immunocytochemical observations on the distribution of myelin-associated glycoprotein and myelin basic protein in multiple sclerosis lesions. Ann Neurol. 1980;7(2):167–77.

    Article  PubMed  CAS  Google Scholar 

  42. Bo L, et al. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol. 2003;62(7):723–32.

    PubMed  Google Scholar 

  43. Bo L, et al. Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult Scler. 2003;9(4):323–31.

    Article  PubMed  CAS  Google Scholar 

  44. Vercellino M, et al. Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol. 2005;64(12):1101–7.

    Article  PubMed  Google Scholar 

  45. Kutzelnigg A, et al. Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol. 2007;17(1):38–44.

    Article  PubMed  Google Scholar 

  46. Gilmore CP, et al. Regional variations in the extent and pattern of grey matter demyelination in multiple sclerosis: a comparison between the cerebral cortex, cerebellar cortex, deep grey matter nuclei and the spinal cord. J Neurol Neurosurg Psychiatry. 2009;80(2):182–7.

    Article  PubMed  CAS  Google Scholar 

  47. Moll NM, et al. Cortical demyelination in PML and MS: similarities and differences. Neurology. 2008;70(5):336–43.

    Article  PubMed  CAS  Google Scholar 

  48. Papadopoulos D, et al. Substantial archaeocortical atrophy and neuronal loss in multiple sclerosis. Brain Pathol. 2009;19(2):238–53.

    Article  PubMed  Google Scholar 

  49. Gilmore CP, et al. Spinal cord gray matter demyelination in multiple sclerosis-a novel pattern of residual plaque morphology. Brain Pathol. 2006;16(3):202–8.

    Article  PubMed  Google Scholar 

  50. Bo L, et al. Lack of correlation between cortical demyelination and white matter pathologic changes in multiple sclerosis. Arch Neurol. 2007;64(1):76–80.

    Article  PubMed  Google Scholar 

  51. Peterson JW, et al. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol. 2001;50(3):389–400.

    Article  PubMed  CAS  Google Scholar 

  52. Geurts JJ, et al. Cortical lesions in multiple sclerosis: combined post mortem MR imaging and histopathology. AJNR Am J Neuroradiol. 2005;26(3):572–7.

    PubMed  Google Scholar 

  53. Wegner C, et al. Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology. 2006;67(6):960–7.

    Article  PubMed  CAS  Google Scholar 

  54. Magliozzi R, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007;130(Pt 4):1089–104.

    PubMed  Google Scholar 

  55. Serafini B, et al. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004;14(2):164–74.

    Article  PubMed  Google Scholar 

  56. Aloisi F, Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol. 2006;6(3):205–17.

    Article  PubMed  CAS  Google Scholar 

  57. Magliozzi R, et al. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol. 2010;68(4):477–93.

    Article  PubMed  CAS  Google Scholar 

  58. Kidd D, et al. Cortical lesions in multiple sclerosis. Brain. 1999;122(Pt 1):17–26.

    Article  PubMed  Google Scholar 

  59. Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci. 2008;31:247–69.

    Article  PubMed  CAS  Google Scholar 

  60. Gilmore CP, et al. Spinal cord neuronal pathology in multiple sclerosis. Brain Pathol. 2009;19(4):642–9.

    Article  PubMed  Google Scholar 

  61. Bruck W. The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. J Neurol. 2005;252 Suppl 5:v3–9.

    Article  PubMed  Google Scholar 

  62. Al-Abdulla NA, Portera-Cailliau C, Martin LJ. Occipital cortex ablation in adult rat causes retrograde neuronal death in the lateral geniculate nucleus that resembles apoptosis. Neuroscience. 1998;86(1):191–209.

    Article  PubMed  CAS  Google Scholar 

  63. Bergers E, et al. Axonal damage in the spinal cord of MS patients occurs largely independent of T2 MRI lesions. Neurology. 2002;59(11):1766–71.

    Article  PubMed  CAS  Google Scholar 

  64. Evangelou N, et al. Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol. 2000;47(3):391–5.

    Article  PubMed  CAS  Google Scholar 

  65. Ganter P, Prince C, Esiri MM. Spinal cord axonal loss in multiple sclerosis: a post mortem study. Neuropathol Appl Neurobiol. 1999;25(6):459–67.

    Article  PubMed  CAS  Google Scholar 

  66. DeLuca GC, Ebers GC, Esiri MM. Axonal loss in multiple sclerosis: a pathological survey of the corticospinal and sensory tracts. Brain. 2004;127(Pt 5):1009–18.

    Article  PubMed  CAS  Google Scholar 

  67. Dutta R, et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol. 2006;59(3):478–89.

    Article  PubMed  CAS  Google Scholar 

  68. Mews I, et al. Oligodendrocyte and axon pathology in clinically silent multiple sclerosis lesions. Mult Scler. 1998;4(2):55–62.

    PubMed  CAS  Google Scholar 

  69. Barnes D, et al. The longstanding MS lesion. A quantitative MRI and electron microscopic study. Brain. 1991;114(Pt 3):1271–80.

    Article  PubMed  Google Scholar 

  70. Androdias G, et al. Meningeal T cells associate with diffuse axonal loss in multiple sclerosis spinal cords. Ann Neurol. 2010;68(4):465–76.

    Article  PubMed  CAS  Google Scholar 

  71. Evangelou N, et al. Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain. 2000;123(Pt 9):1845–9.

    Article  PubMed  Google Scholar 

  72. Redford EJ, Kapoor R, Smith KJ. Nitric oxide donors reversibly block axonal conduction: demyelinated axons are especially susceptible. Brain. 1997;120(Pt 12):2149–57.

    Article  PubMed  Google Scholar 

  73. Sun D, et al. Cytokine-induced enhancement of autoimmune inflammation in the brain and spinal cord: implications for multiple sclerosis. Neuropathol Appl Neurobiol. 2004;30(4):374–84.

    Article  PubMed  CAS  Google Scholar 

  74. Werner P, Pitt D, Raine CS. Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol. 2001;50(2):169–80.

    Article  PubMed  CAS  Google Scholar 

  75. Lappe-Siefke C, et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet. 2003;33(3):366–74.

    Article  PubMed  CAS  Google Scholar 

  76. Chari DM, Crang AJ, Blakemore WF. Decline in rate of colonization of oligodendrocyte progenitor cell (OPC)-depleted tissue by adult OPCs with age. J Neuropathol Exp Neurol. 2003;62(9):908–16.

    PubMed  CAS  Google Scholar 

  77. Bartos A, et al. Elevated intrathecal antibodies against the medium neurofilament subunit in multiple sclerosis. J Neurol. 2007;254(1):20–5.

    Article  PubMed  Google Scholar 

  78. Rawes JA, et al. Antibodies to the axolemma-enriched fraction in the cerebrospinal fluid and serum of patients with multiple sclerosis and other neurological diseases. Mult Scler. 1997;3(6):363–9.

    Article  PubMed  CAS  Google Scholar 

  79. Lycke JN, et al. Neurofilament protein in cerebrospinal fluid: a potential marker of activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1998;64(3):402–4.

    Article  PubMed  CAS  Google Scholar 

  80. Silber E, et al. Patients with progressive multiple sclerosis have elevated antibodies to neurofilament subunit. Neurology. 2002;58(9):1372–81.

    Article  PubMed  CAS  Google Scholar 

  81. Hirano A, Llena JF. Morphology of central nervous system axons, in the axon. In: Waxman SG, Kocsis JD, Stys PK, editors. Structure, function and pathophysiology. New York: Oxford University Press; 1995. p. 49–67.

    Google Scholar 

  82. Waxman SG. Acquired channelopathies in nerve injury and MS. Neurology. 2001;56(12):1621–7.

    Article  PubMed  CAS  Google Scholar 

  83. Mahad DJ, et al. Mitochondrial changes within axons in multiple sclerosis. Brain. 2009;132(Pt 5):1161–74.

    Article  PubMed  Google Scholar 

  84. Kremenchutzky M, et al. The natural history of multiple sclerosis: a geographically based study 9: observations on the progressive phase of the disease. Brain. 2006;129(Pt 3):584–94.

    Article  PubMed  CAS  Google Scholar 

  85. Confavreux C, et al. Relapses and progression of disability in multiple sclerosis. N Engl J Med. 2000;343(20):1430–8.

    Article  PubMed  CAS  Google Scholar 

  86. Cottrell DA. The natural history of multiple sclerosis: a geographically based study. 5. The clinical features and natural history of primary progressive multiple sclerosis. Brain. 1999;122(Pt 4):625–39.

    Article  PubMed  Google Scholar 

  87. Runmarker B, Andersen O. Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up. Brain. 1993;116(Pt 1):117–34.

    Article  PubMed  Google Scholar 

  88. Weinshenker BG. The natural history of multiple sclerosis: a geographically based study. 2. Predictive value of the early clinical course. Brain. 1989;112(Pt 6):1419–28.

    Article  PubMed  Google Scholar 

  89. Bramow S, et al. Demyelination versus remyelination in progressive multiple sclerosis. Brain. 2010;133(10):2983–98.

    Article  PubMed  Google Scholar 

  90. Lucchinetti C, Bruck W. The pathology of primary progressive multiple sclerosis. Mult Scler. 2004;10 Suppl 1:S23–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Evangelou M.D., D.Phil. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Bo, L., Evangelou, N., Tallantyre, E. (2013). The Neuropathology of Progressive Multiple Sclerosis. In: Wilkins, A. (eds) Progressive Multiple Sclerosis. Springer, London. https://doi.org/10.1007/978-1-4471-2395-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2395-8_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2394-1

  • Online ISBN: 978-1-4471-2395-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics