Skip to main content

Science and Technology of Dry Powder Inhalers

  • Chapter
  • First Online:

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

The technology of dry powder inhalers has often surpassed our scientific understanding of the mechanisms of formulation, aerosol performance, and manufacture controls for these devices. However, with greater research effort being devoted to these systems, the science is beginning to drive the technological innovation. In this chapter, dry powder inhaler technology is discussed in relation to this growing body of scientific understanding. In addition, a section on the practical implications, most notably on manufacturing of these systems, is also included.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Frijlink HW, de Boer AH (2005) Trends in the technology-driven development of new inhalation devices. Drug Discov Today Technol 2:47–57

    Article  CAS  Google Scholar 

  2. Smyth HDC, Leach CL (2005) Alternative propellant aerosol delivery systems. Crit Rev Ther Drug Carrier Syst 22:493–534

    PubMed  Google Scholar 

  3. Islam N, Gladki E (2008) Dry powder inhalers (DPIs) – a review of device reliability and innovation. Int J Pharm 360:1–11

    Article  PubMed  CAS  Google Scholar 

  4. Ashurst I, Malton A, Prime D, Sumby B (2000) Latest advances in the development of dry powder inhalers. Pharm Sci Technol Today 3:246–256

    Article  PubMed  CAS  Google Scholar 

  5. Crowder TM, Louey MD, Sethuraman VV, Smyth HDC, Hickey AJ (2001) An odyssey in inhaler formulation and design. Pharm Technol 7:99–107

    Google Scholar 

  6. Frijlink HW, De Boer AH (2004) Dry powder inhalers for pulmonary drug delivery. Expert Opin Drug Deliv 1:67–86

    Article  PubMed  CAS  Google Scholar 

  7. Chow A, Tong H, Chattopadhyay P, Shekunov B (2007) Particle engineering for pulmonary drug delivery. Pharm Res 24:411–437

    Article  PubMed  CAS  Google Scholar 

  8. Finlay WH (2001) The mechanics of inhaled pharmaceutical aerosols. Academic, London

    Google Scholar 

  9. de Boer A, Hagedoorn P, Gjaltema D, Goede J, Frijlink H (2003) Air classifier technology (ACT) in dry powder inhalation Part 1. Introduction of a novel force distribution concept (FDC) explaining the performance of a basic air classifier on adhesive mixtures. Int J Pharm 260:187–200

    Article  PubMed  Google Scholar 

  10. Hickey AJ (2004) Pharmaceutical Inhalation aerosol technology. Marcel Dekker, New York, NY

    Google Scholar 

  11. Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew ML, Mintzes J, Deaver D, Lotan N, Langer R (1997) Large porous particles for pulmonary drug delivery. Science 276:1868–1872

    Article  PubMed  CAS  Google Scholar 

  12. Coates MS, Fletcher DF, Chan H-K, Raper JA (2004) Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 1: grid structure and mouthpiece length. J Pharm Sci 93:2863–2876

    Article  PubMed  CAS  Google Scholar 

  13. Coates MS, Fletcher DF, Chan H-K, Raper JA (2005) The role of capsule on the performance of a dry powder inhaler using computational and experimental analyses. Pharm Res 22:923–932

    Article  PubMed  CAS  Google Scholar 

  14. Coates MS, Chan H-K, Fletcher DF, Raper JA (2005) Influence of air flow on the performance of a dry powder inhaler using computational and experimental analyses. Pharm Res 22:1445–1453

    Article  PubMed  CAS  Google Scholar 

  15. Coates MS, Chan H-K, Fletcher DF, Raper JA (2006) Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 2: air inlet size. J Pharm Sci 95:1382–1392

    Article  PubMed  CAS  Google Scholar 

  16. Coates MS, Chan H-K, Fletcher DF, Chiou H (2007) Influence of mouthpiece geometry on the aerosol delivery performance of a dry powder inhaler. Pharm Res 24:1450–1456

    Article  PubMed  CAS  Google Scholar 

  17. Brambilla G, Cocconi D, Armanni A, Smith S, Lye E, Burge S (2006) Designing a novel dry powder inhaler: the NEXTTM DPI (Part 1). Respir Drug Deliv 2:553–555

    Google Scholar 

  18. Wachtel H, Ertunc O, Koksoy C, Delgado A (2008) Aerodynamic optimization of Handihaler and Respimat: the roles of computational fluid dynamics and flow visualization. Respir Drug Deliv 1(2008):165–174

    Google Scholar 

  19. Mack GS (2007) Pfizer dumps Exubera. Nat Biotech 25:1331–1332

    Article  CAS  Google Scholar 

  20. Gupta V, Gupta SK (1984) Fluid mechanics and its applications. New Age International, New Delhi

    Google Scholar 

  21. Wetterlin K (1988) Turbuhaler: a new powder inhaler for administration of drugs to the ­airways. Pharm Res 5:506–508

    Article  PubMed  CAS  Google Scholar 

  22. de Boer AH, Gjaltema D, Hagedoorn P (1996) Inhalation characteristics and their effects on in vitro drug delivery from dry powder inhalers Part 2: effect of peak flow rate (PIFR) and inspiration time on the in vitro drug release from three different types of commercial dry powder inhalers. Int J Pharm 138:45–56

    Article  Google Scholar 

  23. Needham M, Fradley G, Cocks P (2010) Investigating the efficiency of reverse cyclone technology for DPI drug delivery. Respir Drug Deliv 2:369–372

    Google Scholar 

  24. Stein S, Hodson D, Alband T, Sitz R, Robison T, Wang Z, Chiou H, Simons J, McNally R, Ganser J (2010) The 3M taper dry powder inhaler device. Respir Drug Deliv 2:377–380

    Google Scholar 

  25. Aydin M, Akouka H, Becker D, Merrill T, Reynolds E, Shukla R, Gumaste A, and Byron DA (2008) Application of synthetic jetting for pulmonary delivery of drug candidates. Respir Drug Deliv 2:635–640

    Google Scholar 

  26. Voss A, Finlay WH (2002) Deagglomeration of dry powder pharmaceutical aerosols. Int J Pharm 248:39–50

    Article  PubMed  CAS  Google Scholar 

  27. Bisgaard H, Klug B, Sumby BS, Burnell PKP (1998) Fine particle mass from the Diskus inhaler and Turbuhaler inhaler in children with asthma. Eur Respir J 11:1111–1115

    Article  PubMed  CAS  Google Scholar 

  28. de Boer A, Hagedoorn P, Gjaltema D, Goede J, Kussendrager K, Frijlink H (2003) Air classifier technology (ACT) in dry powder inhalation. Part 2. The effect of lactose carrier surface properties on the drug-to-carrier interaction in adhesive mixtures for inhalation. Int J Pharm 260:201–216

    Article  PubMed  Google Scholar 

  29. de Boer A, Hagedoorn P, Gjaltema D, Goede J, Frijlink H (2006) Air classifier technology (ACT) in dry powder inhalation. Part 3. Design and development of an air classifier family for the Novolizer® multi-dose dry powder inhaler. Int J Pharm 310:72–80

    Article  PubMed  Google Scholar 

  30. de Boer AH, Hagedoorn P, Gjaltema D, Lambregts D, Irngartinger M, Frijlink HW (2004) The mode of drug particle detachment from carrier crystals in an air classifier-based inhaler. Pharm Res 21:2167–2174

    Article  PubMed  Google Scholar 

  31. de Boer AH, Hagedoorn P, Gjaltema D, Lambregts D, Irngartinger M, Frijlink HW (2004) The rate of drug particle detachment from carrier crystals in an air classifier-based inhaler. Pharm Res 21:2158–2166

    Article  PubMed  Google Scholar 

  32. de Boer A, Hagedoorn P, Westerman E, Lebrun P, Heijerman H, Frijlink H (2006) Design and in vitro performance testing of multiple air classifier technology in a new disposable inhaler concept (Twincer®) for high powder doses. Eur J Pharm Sci 28:171–178

    Article  PubMed  Google Scholar 

  33. Selvam P, McNair D, Truman R, Smyth HDC (2010) A novel dry powder inhaler: effect of device design on dispersion performance. Int J Pharm 401:1–6

    Article  PubMed  CAS  Google Scholar 

  34. Eggins BR (2002) Chemical sensors and biosensors. Wiley, West Sussez

    Google Scholar 

  35. Brown B, Rasmussen J, Becker D, Friend DR (2004) A piezo-electronic inhaler for local and systemic applications. Drug Deliv Technol 4:90–93

    CAS  Google Scholar 

  36. Crowder T, Hickey A (2006) Powder specific active dispersion for generation of pharmaceutical aerosols. Int J Pharm 327:65–72

    Article  PubMed  CAS  Google Scholar 

  37. Clark AR, Hollingworth AM (1993) The relationship between powder inhaler resistance and peak inspiratory conditions in healthy volunteers – implications for in vitro testing. J Aerosol Med 6:99–110

    Article  PubMed  CAS  Google Scholar 

  38. Meakin BJ, Ganderton D, PANZA I, Ventura P (1998) The effect of flow rate on drug delivery from the pulvinal, a high-resistance dry powder inhaler. J Aerosol Med 11:143–152

    Article  PubMed  CAS  Google Scholar 

  39. Srichana T, Martin GP, Marriott C (1998) Dry powder inhalers: the influence of device resistance and powder formulation on drug and lactose deposition in vitro. Eur J Pharm Sci 7:73–80

    Article  PubMed  CAS  Google Scholar 

  40. Mendes P, Pinto J, Sousa J (2007) A non-dimensional functional relationship for the fine particle fraction produced by dry powder inhalers. J Aerosol Sci 38:612–624

    Article  CAS  Google Scholar 

  41. Johannes HW, Nigel DD, Joyce MW, Sunalene GD, Peter NL (1999) Inhalation therapy in asthma: Nebulizer or pressurized metered-dose inhaler with holding chamber? In vivo comparison of lung deposition in children. J Pediatr 135:28–33

    Article  Google Scholar 

  42. Laws EM, Livesey JL (1978) Flow through screens. Annu Rev Fluid Mech 10:247–266

    Article  Google Scholar 

  43. Lu J, Rohani S (2009) Polymorphism and crystallization of active pharmaceutical ingredients (APIs). Curr Med Chem 16:884–905

    Article  PubMed  CAS  Google Scholar 

  44. Iacocca RG, Burcham CL, Hilden LR (2010) Particle engineering: a strategy for establishing drug substance physical property specifications during small molecule development. J Pharm Sci 99:51–75

    Article  PubMed  CAS  Google Scholar 

  45. Sollohub K, Cal K (2010) Spray drying technique: II. Current applications in pharmaceutical technology. J Pharm Sci 99:587–597

    PubMed  CAS  Google Scholar 

  46. Ward GH, Schultz RK (1995) Process-induced crystallinity changes in albuterol sulfate and its effect on powder physical stability. Pharm Res 12:773–779

    Article  PubMed  CAS  Google Scholar 

  47. Perkins MC, Bunker M, James J, Rigby-Singleton S, Ledru J, Madden-Smith C, Luk S, Patel N, Roberts CJ (2009) Towards the understanding and prediction of material changes during micronisation using atomic force microscopy. Eur J Pharm Sci 38:1–8

    Article  PubMed  CAS  Google Scholar 

  48. Jacobson R (2005) Inert milling systems. Pharm Eng. 25

    Google Scholar 

  49. Podczeck F (1998) The relationship between physical properties of lactose monohydrate and the aerodynamic behaviour of adhered drug particles. Int J Pharm 160:119–130

    Article  CAS  Google Scholar 

  50. Bridson RH, Robbins PT, Chen Y, Westerman D, Gillham CR, Roche TC, Seville JPK (2007) The effects of high shear blending on [alpha]-lactose monohydrate. Int J Pharm 339:84–90

    Article  PubMed  CAS  Google Scholar 

  51. Staniforth JN (1995) Performance-modifying influences in dry powder inhalation systems. Aerosol Sci Technol 22:346–353

    Article  CAS  Google Scholar 

  52. Eilbeck J, Rowley G, Carter PA, Fletcher EJ (2000) Effect of contamination of pharmaceutical equipment on powder triboelectrification. Int J Pharm 195:7–11

    Article  PubMed  CAS  Google Scholar 

  53. Rowley G, Mackin LA (2003) The effect of moisture sorption on electrostatic charging of selected pharmaceutical excipient powders. Powder Technol 135–136:50–58

    Article  Google Scholar 

  54. Crowder TM (2007) Precision powder metering utilizing fundamental powder flow characteristics. Powder Technol 173:217–223

    Article  CAS  Google Scholar 

  55. Tuley R, Shrimpton J, Jones MD, Price R, Palmer M, Prime D (2008) Experimental observations of dry powder inhaler dose fluidisation. Int J Pharm 358:238–247

    Article  PubMed  CAS  Google Scholar 

  56. Maggi L, Bruni R, Conte U (1999) Influence of the moisture on the performance of a new dry powder inhaler. Int J Pharm 177:83–91

    Article  PubMed  CAS  Google Scholar 

  57. US Food and Drug Administration (1998) Guidance for industry: metered dose inhaler (MDI) and dry powder inhaler (DPI) drug products, chemistry, manufacturing and controls documentation. US Department of Health and Human Sciences, FDA Center for Drug Evaluation and Research (CDER)

    Google Scholar 

  58. Podczeck F (1998) Evaluation of the adhesion properties of salbutamol sulphate to inhaler materials. Pharm Res 15:806–808

    Article  PubMed  CAS  Google Scholar 

  59. Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, Böni H (2005) Global perspectives on e-waste. Environ Impact Assess Rev 25:436–458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Crowder .

Editor information

Editors and Affiliations

Appendix

Appendix

9.1.1 Patents

US Patent No. 11,713,180

US Patent No. 6,889,690

US Patent No. 6,138,673

US Patent No. 7,107,988

US Patent No. 6,237,591

US Patent No. 6,971,384

US Patent No. 5,655,523

US Patent No. 5,724,959

US Patent No. 5,775,320

US Patent No. 6,257,233

US Patent No. 6,182,655

US Patent No. 5,087,710

US Patent No. 6,328,033

US Patent No. 5,875,776

US Patent No. 7,334,577

US Patent No. 6,561,186

US Patent No. 6,026,809

US Patent No. 6,089,227

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Controlled Release Society

About this chapter

Cite this chapter

Crowder, T.M., Donovan, M.J. (2011). Science and Technology of Dry Powder Inhalers. In: Smyth, H., Hickey, A. (eds) Controlled Pulmonary Drug Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9745-6_9

Download citation

Publish with us

Policies and ethics