Skip to main content

Development of KNN-Based Piezoelectric Materials

  • Chapter
  • First Online:
Lead-Free Piezoelectrics

Abstract

Piezoelectric materials are technologically important because of their application in various kinds of devices including ultrasonic medical imaging, ultrasonic nondestructive testing, speakers, resonators, gas igniters, gyroscope, pressure sensors etc [1–3]. Piezoelectrics are finding applications in new emerging areas as well such as micromotors, energy harvesting devices, magnetoelectric sensors, and high power transformers [4–6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosen CZ, Hiremath BV, Newnham R (1992) Key papers in physics piezoelectricity. American Institute of Physics, New York

    Google Scholar 

  2. Uchino K (2009) Ferroelectric devices, 2nd edn. CRC Press, New York

    Google Scholar 

  3. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, New York

    Google Scholar 

  4. Kim H, Tadesse Y, Priya S (2009) In: Priya S, Inman DJ (eds) Piezoelectric energy harvesting, energy harvesting technologies. Springer, New York, pp 3–39

    Chapter  Google Scholar 

  5. Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19(1):167–184

    Article  MathSciNet  Google Scholar 

  6. Hollenstein E, Damjanovic D, Setter N (2007) Temperature stability of the piezoelectric properties of Li-modified KNN ceramics. J Eur Ceram Soc 27(13–15):4093–4097

    Article  Google Scholar 

  7. Park S-E, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82(4):1804–1811

    Article  Google Scholar 

  8. Herklotz A et al. (2010) Electrical characterization of PMN–28%PT(001) crystals used as thin-film substrates. J Appl Phys 108(9):094101

    Article  Google Scholar 

  9. Takenaka T, Nagata H (2005) Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc 25(12):2693–2700

    Article  Google Scholar 

  10. Takenaka T et al. (2007) Lead-free piezoelectric ceramics based on perovskite structures. J Electroceram 19(4):259–265

    Article  Google Scholar 

  11. Panda P (2009) Review: environmental friendly lead-free piezoelectric materials. J Mater Sci 44(19):5049–5062

    Article  Google Scholar 

  12. Rödel J et al. (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92(6):1153–1177

    Article  Google Scholar 

  13. Maeder MD, Damjanovic D, Setter N (2004) Lead free piezoelectric materials. J Electroceram 13(1):385–392

    Article  Google Scholar 

  14. Kosec M et al. (2008) KNN-based piezoelectric ceramics. In: Safari A, Akdoğan EK (eds) Piezoelectric and acoustic materials for transducer applications. Springer, New York, pp 81–102

    Chapter  Google Scholar 

  15. Zhang S, Xia R, Shrout T (2007) Lead-free piezoelectric ceramics vs. PZT? J Electroceram 19(4):251–257

    Article  Google Scholar 

  16. Shrout T, Zhang S (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 19(1):113–126

    Article  Google Scholar 

  17. Ringgaard E, Wurlitzer T, Wolny WW (2005) Properties of lead-free piezoceramics based on alkali niobates. Ferroelectrics 319(1):97–107

    Article  Google Scholar 

  18. Egerton L, Dillon DM (1959) Piezoelectric and dielectric properties of ceramics in the system potassium—sodium niobate. J Am Ceram Soc 42(9):438–442

    Article  Google Scholar 

  19. Tellier J et al. (2009) Crystal structure and phase transitions of sodium potassium niobate perovskites. Solid State Sci 11(2):320–324

    Article  Google Scholar 

  20. Baker DW et al. (2009) A comprehensive study of the phase diagram of KxNa1-xNbO3. Applied Physics Letters 95(9)

    Google Scholar 

  21. Kodre A et al. (2009) Extended x-ray absorption fine structure study of phase transitions in the piezoelectric perovskite K0.5Na0.5NbO3. J Appl Phys 105(11):113528

    Article  Google Scholar 

  22. Satoshi W et al. (2001) Poling treatment and piezoelectric properties of potassium niobate ferroelectric single crystals. Jpn J Appl Phys 40:5690–5697

    Article  Google Scholar 

  23. Shirane G, Newnham R, Pepinsky R (1954) Dielectric properties and phase transitions of NaNbO3 and (Na, K)NbO3. Phys Rev 96(3):581

    Article  Google Scholar 

  24. Matthias BT (1949) New ferroelectric crystals. Phys Rev 75(11):1771

    Article  Google Scholar 

  25. Kakimoto K, Masuda I, Ohsato H (2005) Lead-free KNbO3 piezoceramics synthesized by pressure-less sintering. J Eur Ceram Soc 25(12):2719–2722

    Article  Google Scholar 

  26. Yamanouchi K et al. (2001) Single crystal growth of KNbO3 and application to surface acoustic wave devices. J Eur Ceram Soc 21(15):2791–2795

    Article  Google Scholar 

  27. Jaeger RE, Egerton L (1962) Hot pressing of potassium-sodium niobates. J Am Ceram Soc 45(5):209–213

    Article  Google Scholar 

  28. Dubernet P, Ravez J (1998) Dielectric study of KNbO3 ceramics over a large range of frequency (102-9Hz) and temperature (300-800 K). Ferroelectrics 211(1):51–66

    Article  Google Scholar 

  29. Ahn C-W et al. (2010) Effect of elemental diffusion on temperature coefficient of piezoelectric properties in KNN-based lead-free composites. J Mater Sci Lett 45(14):3961–3965

    Article  Google Scholar 

  30. Bomlai P et al. (2007) Effect of calcination conditions and excess alkali carbonate on the phase formation and particle morphology of Na0.5K0.5NbO3 powders. J Am Ceram Soc 90(5):1650–1655

    Article  Google Scholar 

  31. Wu L et al. (2008) Influence of compositional ratio K/Na on physical properties in (KxNa1-x)NbO3 ceramics. J Appl Phy 103(8)

    Google Scholar 

  32. Bernard J et al. (2008) Low-temperature sintering of (Na0.5K0.5)NbO3 ceramics. J Am Ceram Soc 91(7):2409–2411

    Article  Google Scholar 

  33. Hagh M, Jadidian NB, Safari A (2007) Property-processing relationship in lead-free (K, Na, Li) NbO3 solid solution system. J Electroceram 18(3):339–346

    Article  Google Scholar 

  34. Jenko D et al. (2005) Electron microscopy studies of potassium sodium niobate ceramics. Microsc Microanal 11(06):572–580

    Article  Google Scholar 

  35. Ahn C-W et al. (2009) Sintering behavior of lead-free (K, Na)NbO3-basedpiezoelectric ceramics. J Am Ceram Soc 92(9):2033–2038

    Article  Google Scholar 

  36. Skidmore TA, Milne SJ (2007) Phase development during mixed-oxide processing of a [(Na0.5K0.5)NbO3]1-x-[LiTaO3] x powder. J Mater Res 22(08):2265–2272

    Article  Google Scholar 

  37. Wang Y et al. (2007) Compositional Inhomogeneity in Li- and Ta-Modified (K, Na)NbO3 Ceramics. J Am Ceram Soc 90(11):3485–3489

    Article  Google Scholar 

  38. Du Hl et al. (2006) Effect of poling condition on piezoelectric properties of (Na0.5K0.5)NbO3 ceramics. Transactions of Nonferrous Metals Society of China 16(Suppl 2):s462–s465

    Article  Google Scholar 

  39. German RM (1996) Sintering theory and practice. Wiley, New York

    Google Scholar 

  40. Rahaman MN (2007) Ceramic processing. CRC/Taylor & Francis, Boca Raton

    Google Scholar 

  41. Wang Y et al. (2008) High-temperature instability of Li- and Ta-modified (K, Na)NbO3 piezoceramics. J Am Ceram Soc 91(6):1962–1970

    Article  Google Scholar 

  42. Pang X et al. (2011) Study on the sintering mechanism of KNN-based lead-free piezoelectric ceramics. J Mater Sci Lett 46(7):2345–2349

    Article  Google Scholar 

  43. Ahn C-W et al. (2008) Low temperature sintering and piezoelectric properties of CuO-doped (Na0.5K0.5)NbO3 ceramics. Ferroelectrics Lett Sec 35(3-4):66–72

    Article  Google Scholar 

  44. Lin DM, Kwok KW et al. (2008) Piezoelectric and ferroelectric properties of Cu-doped Na0.5K0.5NbO3 lead-free ceramics. J Phys Appl Phys 41(4)

    Google Scholar 

  45. Du H et al. (2006) Preparation and piezoelectric properties of (Na0.5K0.5)NbO3lead-free piezoelectric ceramics with pressure-less sintering. Mater Sci Eng B 131(1-3):83–87

    Article  Google Scholar 

  46. Zhao P, Zhang B-P, Li J-F (2008) Enhanced dielectric and piezoelectric properties in LiTaO3-doped lead-free (K, Na)NbO3 ceramics by optimizing sintering temperature. Scripta Mater 58(6):429–432

    Article  MathSciNet  Google Scholar 

  47. Zuo R et al. (2006) Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J Am Ceram Soc 89(6):2010–2015

    Article  Google Scholar 

  48. Zhen Y, Li J-F (2006) Normal sintering of (K, Na)NbO3-based ceramics: influence of sintering temperature on densification, microstructure, and electrical properties. J Am Ceram Soc 89(12):3669–3675

    Article  Google Scholar 

  49. Castro A et al. (2004) Sodium niobate ceramics prepared by mechanical activation assisted methods. J Eur Ceram Soc 24(6):941–945

    Article  Google Scholar 

  50. Li JF et al. (2006) Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J Am Ceram Soc 89(2):706–709

    Article  Google Scholar 

  51. Bieling LE et al. (1968) Isostatically hot-pressed sodium–potassium niobate transducer material for ultrasonic devices. Ceram. Bull 47(1151)

    Google Scholar 

  52. Haertling GH (1967) Properties of hot-pressed ferroelectric alkali niobate ceramics. J Am Ceram Soc 50(6):329–330

    Article  Google Scholar 

  53. Kosec M, Kolar D (1975) On activated sintering and electrical properties of NaKNbO3. Mater Res Bull 10(5):335–339

    Article  Google Scholar 

  54. Smeltere I et al. (2009) Sintering of lead-free (K0.5Na0.5)NbO3 based solid solution. Integr Ferroelectr 108(1):46–56

    Article  Google Scholar 

  55. Park S-H, Ahn C-W, Nahm S, Song J-S (2004) Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Jpn J Appl Phys 43:L1072

    Article  Google Scholar 

  56. Li Z et al. (2010) Dielectric and piezoelectric properties of ZnO and SnO2 co-doping Na0.5K0.5NbO3ceramics. Phys B Condens Matter 405(1):296–299

    Article  Google Scholar 

  57. Matsubara M et al. (2004) Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid. Jpn J Appl Phys 1 43(10):7159–7163

    Article  Google Scholar 

  58. Matsubara M et al. (2005) Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Jpn J Appl Phys 1 44(1A):258–263

    Article  Google Scholar 

  59. Li E et al. (2007) Influence of CuO on the structure and piezoelectric properties of the alkaline niobate-based lead-free ceramics. J Am Ceram Soc 90(6):1787–1791

    Article  Google Scholar 

  60. Lin D et al. (2008) Piezoelectric and ferroelectric properties of Cu-doped K0.5Na0.5NbO3 lead-free ceramics. J Phys D Appl Phys 41(4):045401

    Article  Google Scholar 

  61. Ahn C-W et al. (2008) Effect of CuO and MnO2 on sintering temperature, microstructure, and piezoelectric properties of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3 ceramics. Mater Lett 62(20):3594–3596

    Article  Google Scholar 

  62. Yan K et al. (2010) Microstructure and piezoelectric properties of (K0.5Na0.5)NbO3–BaTiO3 lead-free piezoelectric ceramics modified by B2O3–CuO. J Am Ceram Soc 93(11): 3823–3827

    Article  Google Scholar 

  63. Seo IT et al. (2008) Effect of CuO on the sintering and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05SrTiO3 lead-free piezoelectric ceramics. J Am Ceram Soc 91(12): 3955–3960

    Article  Google Scholar 

  64. Eichel R-A et al. (2009) Local variations in defect polarization and covalent bonding in ferroelectric Cu2+-doped PZT and KNN functional ceramics at the morphotropic phase boundary. Phys Chem Chem Phys 11(39):8698–8705

    Article  Google Scholar 

  65. Park B-C et al. (2010) Highly enhanced mechanical quality factor in lead-free (K0.5Na0.5)NbO3 piezoelectric ceramics by co-doping with K5.4Cu1.3Ta10O29 and CuO. Mater Lett 64(14):1577–1579

    Article  Google Scholar 

  66. Li-Mei Z et al. (2009) Thermal stability and humidity resistance of ScTaO4 modified (K0.5Na0.5)NbO3 ceramics. Chinese Phys Lett 26(12):127701

    Article  Google Scholar 

  67. Guo YP, Kakimoto K, Ohsato H (2005) (Na0.5K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics. Mater Lett 59(2–3):241–244

    Article  Google Scholar 

  68. Guo YP, Kakimoto K, Ohsato H (2004) Structure and electrical properties of lead-free (Na0.5K0.5)NbO3-BaTiO3 ceramics. Jpn J Appl Phys 1 43(9B):6662–6666

    Article  Google Scholar 

  69. Guo YP, Kakimoto K, Ohsato H (2004) Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3-SrTiO3 ceramics. Solid State Commun 129(5):279–284

    Article  Google Scholar 

  70. Guo Y, Kakimoto P, Ohsato H (2004) Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl Phys Lett 85(18):4121–4123

    Article  Google Scholar 

  71. Zuo R, Ye C (2007) Structures and piezoelectric properties of (NaKLi)1-x(BiNaBa)xNb1-x TixO3 lead-free ceramics. Appl Phys Lett 91(6):062916

    Article  Google Scholar 

  72. Zuo R, Ye C, Fang X (2008) Na0.5K0.5NbO3-BiFeO3 lead-free piezoelectric ceramics. J Phys Chem Solids 69(1):230–235

    Article  Google Scholar 

  73. Zuo R, Fang X, Ye C (2007) Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3 -(Bi0.5Na0.5)TiO3 ceramics. Appl Phys Lett 90(9):092904

    Article  Google Scholar 

  74. Saito Y, Takao H (2006) High performance lead-free piezoelectric ceramics in the (Na0.5K0.5)NbO3 -LiTaO3 solid solution system. Ferroelectrics 338(1):17–32

    Article  Google Scholar 

  75. Ming B-Q et al. (2007) Piezoelectric properties of (Li, Sb, Ta) modified (Na, K)NbO3 lead-free ceramics. J Appl Phys 101(5):054103

    Article  Google Scholar 

  76. Park H-Y et al. (2007) Microstructure and piezoelectric properties of lead-free (1 - x)(Na0.5K0.5)NbO3-xCaTiO3 ceramics. J Appl Phys 102(12):124101

    Article  Google Scholar 

  77. Lang SB, Zhu W, Cross LE (2006) Piezoelectric and Pyroelectric Properties of (K0.5Na0.5)1 - x (Nb1 -yTay)O3 Ceramics. Ferroelectrics 336(1):15–21

    Article  Google Scholar 

  78. Dai Y, Zhang X, Zhou G (2007) Phase transitional behavior in (Na0.5K0.5)NbO3 -LiTaO3 ceramics. Appl Phys Lett 90(26):262903

    Article  Google Scholar 

  79. Zuo R, Fu J (2011) Rhombohedral–tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3–LiTaO3–BaZrO3 lead-free ceramics. J Am Ceram Soc 94(5):1467–1470

    Article  Google Scholar 

  80. Ahn CW, Park C-H, Viehland D, Nahm S, Kang DH, Bae K-S, Priya S (2008) Correlation between phase transitions and piezoelectric properties in lead-free (K,Na,Li)NbO3–BaTiO3 ceramics. Jpn J Appl Phys 47:8880

    Article  Google Scholar 

  81. Du H et al. (2007) An approach to further improve piezoelectric properties of(Na0.5K0.5)NbO3 -based lead-free ceramics. Appl Phys Lett 91(20):202907

    Article  Google Scholar 

  82. Zhang Q et al. (2010) Effects of Sb content on electrical properties of lead-free piezoelectric (Na0.535K0.480)0.942Li0.058(Nb1-xSbx)O3 ceramics. J Alloy Comp 490(1-2):260–263

    Article  Google Scholar 

  83. Zang GZ et al. (2006) Perovskite (Na0.5K0.5)(1-x)(LiSb)xNb1-xO3 lead-free piezoceramics. Appl Phys Lett 88(21)

    Google Scholar 

  84. Wang Y et al. (2008) Electrical properties and temperature stability of a new kind of lead-free piezoelectric ceramics. J Phys D Appl Phys 41(24):245401

    Article  Google Scholar 

  85. Du HL et al. (2007) An approach to further improve piezoelectric properties of 0.95(Na0.5K0.5)NbO3 based lead-free ceramics. Appl Phys Lett 91(20)

    Google Scholar 

  86. Lei C, Ye ZG (2008) Lead-free piezoelectric ceramics derived from the Na0.5K0.5NbO3-AgNbO3 solid solution system. Appl Phys Lett 93(4)

    Google Scholar 

  87. Cho K-H et al. (2007) Microstructure and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3-0.05SrTiO3 Ceramics. J Am Ceram Soc 90(6):1946–1949

    Article  Google Scholar 

  88. Kosec M et al. (2004) New lead-free relaxors based on the K0.5Na0.5NbO3–SrTiO3 solid solution. J Mater Res 19(6):1849–1854

    Article  Google Scholar 

  89. Ahn CW et al. (2008) Dielectric and piezoelectric properties of (1-x) (Na0.5K0.5)NbO3-x BaTiO3 ceramics. J Mater Sci Lett 43(20):6784–6797

    Article  Google Scholar 

  90. Choi C-H et al. (2007) (1 - x)BaTiO3 - x((Na0.5K0.5)NbO3 ceramics for multilayer ceramic capacitors. Appl Phys Lett 90(13):132905

    Article  Google Scholar 

  91. Park HY et al. (2006) Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05BaTiO3 ceramics. Appl Phys Lett 89(6)

    Google Scholar 

  92. Saito Y et al. (2004) Lead-free piezoceramics. Nature 432(7013):84–87

    Article  Google Scholar 

  93. Ando, M et al. (1999) Piezoelectric Ceramic composition. US Patent 6,083,415, Murata Manufacturing Co

    Google Scholar 

  94. Messing GL et al. (2004) Templated grain growth of textured piezoelectric ceramics. Crit Rev Solid State Mater Sci 29:45–96

    Article  Google Scholar 

  95. Hong S-H, Trolier-McKinstry S, Messing GL (2000) Dielectric and Electromechanical Properties of Textured Niobium-Doped Bismuth Titanate Ceramics. J Am Ceram Soc 83(1):113–118

    Article  Google Scholar 

  96. Zhang Z et al. (2004) Grain orientation effects on the properties of a bismuth layer-structured ferroelectric (BLSF) Bi3NbTiO9 solid solution. J Am Ceram Soc 87(4):602–605

    Article  Google Scholar 

  97. Takeuchi T et al. (2000) Unidirectionally textured CaBi4Ti4O15 ceramics by the reactive templated grain growth with an extrusion. Jpn J Appl Phys 39:5577

    Article  Google Scholar 

  98. Takeuchi T et al. (1999) Piezoelectric Properties of Bismuth Layer-Structured Ferroelectric Ceramics with a Preferred Orientation Processed by the Reactive Templated Grain Growth Method. Jpn J Appl Phys 38:5553

    Article  Google Scholar 

  99. Cihangir D et al. (2002) Dielectric and piezoelectric properties of textured Sr0.53Ba0.47Nb2O6 ceramics prepared by templated grain growth. J Mater Res 17(9)

    Google Scholar 

  100. Yilmaz H, Trolier-McKinstry S, Messing GL (2003) (Reactive) Templated Grain Growth of Textured Sodium Bismuth Titanate (Na1/2Bi1/2TiO3-BaTiO3) Ceramics—II Dielectric and Piezoelectric Properties. J Electroceram 11(3):217–226

    Article  Google Scholar 

  101. Zhao W et al. (2009) Fabrication of Na0.5Bi0.5TiO3–BaTiO3 textured ceramics templated by plate-like Na0.5Bi0.5TiO3 particles. J Am Ceram Soc 92(7):1607–1609

    Article  Google Scholar 

  102. Tani T (1998) Crystalline-oriented Piezoelectric Bulk Ceramics with a Perovskite-type Structure. J Korean Phys Soc 32

    Google Scholar 

  103. Takao H et al. (2006) Microstructural evolution of crystalline-oriented (K0.5Na0.5)NbO3 piezoelectric ceramics with a sintering aid of CuO. J Am Ceram Soc 89(6):1951–1956

    Article  Google Scholar 

  104. Chang Y et al. (2010) Microstructure development and piezoelectric properties of highly textured CuO-doped KNN by templated grain growth. J Mater Res 25(4)

    Google Scholar 

  105. Chang Y et al. (2009) <001> textured (K0.5Na0.5)Nb0.97Sb0.03O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range. Appl Phys Lett 95(23):232905

    Article  Google Scholar 

  106. Shibata K et al. (2008) Crystalline structure of highly piezoelectric (K, Na)NbO3 films deposited by RF magnetron sputtering. Jpn J Appl Phys 47:8909–8913

    Article  Google Scholar 

  107. Cho C-R, Grishin A (2000) Background oxygen effects on pulsed laser deposited K0.5Na0.5NbO3 films: From superparaelectric state to ferroelectricity. J Appl Phys 87(9): 4439–4448

    Article  Google Scholar 

  108. Tanaka K, Nishizawa K, Miki T, Kato K (2005) Microstructure control and dielectric/piezoelectric properties of alkoxy-derived Ba(Ti,Zr)O3 thin films. Jpn J Appl Phys 44

    Google Scholar 

  109. Abazari M et al. (2010) Nanoscale characterization and local piezoelectric properties of lead-free KNN-LT-LS thin films. J Phys D Appl Phys 43(2):025405

    Article  Google Scholar 

  110. Nakashima Y, Hiroshi M, Tetsuo S, Toshinobu Y (2007) Lead-Free Piezoelectric (K,Na)NbO3 Thin Films Derived from Metal Alkoxide Precursors. Jpn J Appl Phys 46

    Google Scholar 

  111. Wang X et al. (2002) Growth and Characterization of K0.5Na0.5NbO3Thin Films on Polycrystalline Pt80Ir20 Substrates. J Mater Res 05:1183–1191

    Article  Google Scholar 

  112. Wang L, Yao K, Ren W (2008) Piezoelectric K0.5Na0.5NbO3 thick films derived from polyvinylpyrrolidone-modified chemical solution deposition. Appl Phys Lett 93(9)

    Google Scholar 

  113. Goh PC, Yao K, Chen Z (2010) Lead-free piezoelectric (K0.5Na0.5)NbO3 thin films derived from chemical solution modified with stabilizing agents. Appl Phys Lett 97(10):102901

    Article  Google Scholar 

  114. Ahn C-W et al. (2009) The effect of K and Na excess on the ferroelectric and piezoelectric properties of K0.5Na0.5NbO3 thin films. J Phys D Appl Phys 42(21):215304

    Article  Google Scholar 

  115. Lee HJ et al. (2009) Ferroelectric and piezoelectric properties of Na0.52K0.48NbO3 thin films prepared by radio frequency magnetron sputtering. Appl Phys Lett 94(9):092902

    Article  Google Scholar 

  116. Ryu J et al. (2008) Ferroelectric and piezoelectric properties of 0.948((K0.5Na0.5)NbO3-0.052LiSbO3 lead-free piezoelectric thick film by aerosol deposition. Appl Phys Lett 92(1):012905

    Article  Google Scholar 

  117. Abazari M, Safari A (2010) Leakage current behavior in lead-free ferroelectric (K, Na)NbO3-LiTaO3-LiSbO3 thin films. Appl Phys Lett 97(26):262902

    Article  Google Scholar 

  118. Kizaki Y, Noguchi Y, Miyayama M (2006) Defect control for low leakage current in (K0.5Na0.5)NbO3single crystals. Appl Phys Lett 89(14):142910

    Article  Google Scholar 

  119. Lin D et al. (2010) Influence of MnO2 Doping on the Dielectric and Piezoelectric Properties and the Domain Structure in (K0.5Na0.5)NbO3 Single Crystals. J Am Ceram Soc 93(4): 941–944

    Article  Google Scholar 

  120. Ursi CH et al. (2010) Dielectric, ferroelectric, piezoelectric, and electrostrictive properties of K0.5Na0.5NbO3 single crystals. J Appl Phys 107(3):033705

    Article  Google Scholar 

  121. Bencan A et al. (2009) Compositional and Structural Study of a (K0.5Na0.5)NbO3 Single Crystal Prepared by Solid State Crystal Growth. Microsc Microanal 15(5):435–440

    Article  Google Scholar 

  122. Bencan A et al. (2006) Electron microscopy studies of alkali niobate single crystals using the solid state crystal growth method. Scanning 28(2):123–124

    Google Scholar 

  123. Lin D et al. (2009) Dielectric/piezoelectric properties and temperature dependence of domain structure evolution in lead free single crystal. Solid State Comm 149(39–40):1646–1649

    Article  Google Scholar 

  124. Ahn C-W et al. (2009) A generalized rule for large piezoelectric response in perovskite oxide ceramics and its application for design of lead-free compositions. J Appl Phys 105(11): 114108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashank Priya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gupta, S., Maurya, D., Yan, Y., Priya, S. (2012). Development of KNN-Based Piezoelectric Materials. In: Priya, S., Nahm, S. (eds) Lead-Free Piezoelectrics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9598-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9598-8_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9597-1

  • Online ISBN: 978-1-4419-9598-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics