Skip to main content

Plant Nutrient Use

  • Chapter
  • First Online:

Abstract

Nutrient absorption, use, and loss by plants are key steps in the mineral cycling of ecosystems. This chapter describes the factors that regulate nutrient cycling through vegetation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aber, J., W. McDowell, K. Nadelhoffer, A. Magill, G. Bernstson, et al. 1998. Nitrogen saturation in temperate forest ecosystems. BioScience 48:921-934.

    Article  Google Scholar 

  • Aerts, R. 1995. Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology 84:597-608.

    Article  Google Scholar 

  • Aerts, R. and F.S. Chapin, III. 2000. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research 30:1-67.

    Article  CAS  Google Scholar 

  • Allen, M.F. 1991. The Ecology of Mycorrhizae. Cambridge University Press, Cambridge.

    Google Scholar 

  • Andersson, T. 1991. Influence of stemflow and throughfall from common oak (Quercus robur) on soil chemistry and vegetation patterns. Canadian Journal of Forest Research 21:917-924.

    Article  CAS  Google Scholar 

  • Barber, S.A. 1984. Soil Nutrient Bioavailability. John Wiley & Sons, New York.

    Google Scholar 

  • Bates, T.R. and J.P. Lynch. 1996. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell and Environment 19:529-538.

    Article  CAS  Google Scholar 

  • Berendse, F. and R. Aerts. 1987. Nitrogen-use efficiency: A biologically meaningful definition? Functional Ecology 1:293-296.

    Google Scholar 

  • Bloom, A.J. and F.S. Chapin, III. l98l. Differences in steady-state net ammonium and nitrate influx by cold and warm-adapted barley varieties. Plant Physiology 68:1064-l1067.

    Google Scholar 

  • Booth, M.G. and J.D. Hoeksema. 2010. Mycorrhizal networks counteract competitive effects of canopy trees on seedling survival. Ecology 91:2294-2302.

    Article  PubMed  Google Scholar 

  • Bormann, F.H. and G.E. Likens. 1979. Pattern and Process in a Forested Ecosystem. Springer-Verlag, New York.

    Book  Google Scholar 

  • Boyd, R.S. 2004. Ecology of metal hyperaccumulation. New Phytologist 162:563-567.

    Article  Google Scholar 

  • Chapin, F.S., III, D.A. Johnson, and J.D. McKendrick. 1980. Seasonal movement of nutrients in plants of differing growth form in an Alaskan tundra ecosystem: Implications for herbivory. Journal of Ecology 68:189-209.

    Article  CAS  Google Scholar 

  • Chapin, F.S., III, K. Van Cleve, and P.R. Tryon. 1986a. Relationship of ion absorption to growth rate in taiga trees. Oecologia 69:238-242.

    Article  Google Scholar 

  • Chapin, F.S., III, P.M. Vitousek, and K. Van Cleve. 1986b. The nature of nutrient limitation in plant communities. American Naturalist 127:48-58.

    Article  Google Scholar 

  • Chapin, F.S., III, N. Fetcher, K. Kielland, K.R. Everett, and A.E. Linkins. 1988. Productivity and nutrient cycling of Alaskan tundra: Enhancement by flowing soil water. Ecology 69:693-702.

    Article  Google Scholar 

  • Chapin, F.S., III, E.-D. Schulze, and H.A. Mooney. 1990. The ecology and economics of storage in plants. Annual Review of Ecology and Systematics 21:423-448.

    Article  Google Scholar 

  • Chapin, F.S., III. 1991b. Effects of multiple environmental stresses on nutrient availability and use. Pages 67-88 in H.A. Mooney, W.E. Winner, and E.J. Pell, editors. Response of Plants to Multiple Stresses. Academic Press, San Diego.

    Chapter  Google Scholar 

  • Chapin, F.S., III. 1993b. Functional role of growth forms in ecosystem and global processes. Pages 287-312 in J.R. Ehleringer and C.B. Field, editors. Scaling Physiological Processes: Leaf to Globe. Academic Press, San Diego.

    Chapter  Google Scholar 

  • Chapin, F.S., III, L. Moilanen, and K. Kielland. 1993. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361:150-153.

    Article  CAS  Google Scholar 

  • Chapin, F.S., III and V.T. Eviner. 2004. Biogeochemistry of terrestrial net primary production. Pages 215-247 in W.H. Schlesinger, editor. Treatise on Geochemistry. Elsevier, Amsterdam.

    Google Scholar 

  • Clarkson, D.T. 1985. Factors affecting mineral nutrient acquisition by plants. Annual Review of Plant Physiology 36:77-115.

    Article  CAS  Google Scholar 

  • Coley, P.D., J.P. Bryant, and F.S. Chapin, III. 1985. Resource availability and plant anti-herbivore defense. Science 230:895-899.

    Article  PubMed  CAS  Google Scholar 

  • Craine, J.M., C. Morrow, and W.D. Stock. 2008. Nutrient concentration ratios and co-limitation of aboveground production by nitrogen and phosphorus in Kruger National Park, South Africa. New Phytologist 179:829-836.

    Article  PubMed  CAS  Google Scholar 

  • Craine, J.M. 2009. Resource Strategies of Wild Plants. Princeton University Press, Princeton.

    Book  Google Scholar 

  • Driscoll, C.T., G.B. Lawrence, A.J. Bulger, T.J. Butler, C.S. Cronan, et al. 2001. Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects and management strategies. BioScience 51:180-198.

    Article  Google Scholar 

  • Dugdale, R.C. and J.J. Goering. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnology and Oceanography 12:196-206.

    Article  CAS  Google Scholar 

  • Dugdale, R.C., F.P. Wilkerson, and H.J. Minas. 1995. The role of a silicate pump in driving new production. Deep Sea Research (Part I, Oceanographic Research Papers) 42:697-719.

    Google Scholar 

  • Elser, J.J., M.E.S. Bracken, E. Cleland, D.S. Gruner, W.S. Harpole, et al. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10:1135-1142.

    Article  PubMed  Google Scholar 

  • Evans, L.T. 1980. The natural history of crop yield. American Scientist 68:388-397.

    Google Scholar 

  • Falkowski, P.G., R.T. Barber, and V. Smetacek. 1998. Biogeochemical controls and feedbacks on ocean primary production. Science 281:200-206.

    Article  PubMed  CAS  Google Scholar 

  • Falkowski, P.G. 2000. Rationalizing elemental ratios in unicellular algae. Journal of Phycology 36:3-6.

    Article  CAS  Google Scholar 

  • Freschet, G.T., J.H.C. Cornelissen, R.S.P. van Longtestijn, and R. Aerts. 2010. Evidence of the 'plant economics spectrum' in a subarctic flora. Journal of Ecology 98:362-373.

    Article  Google Scholar 

  • Green, M.B. and J.C. Finlay. 2010. Patterns of hydrologic control over stream water total nitrogen to phosphorus ratios. Biogeochemistry 99:15-30.

    Article  CAS  Google Scholar 

  • Guildford, S.J. and R.E. Hecky. 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnology and Oceanography 45:1213-1223.

    Article  CAS  Google Scholar 

  • Gulmon, S.L. and H.A. Mooney. 1986. Costs of defense on plant productivity. Pages 681-698 in T.J. Givnish, editor. On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Güsewell, S. 2004. N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist 164:243-266.

    Article  Google Scholar 

  • Hedin, L.O., J.J. Armesto, and A.H. Johnson. 1995. Patterns of nutrient loss from unpolluted, old-growth temperate forests: Evaluation of biogeochemical theory. Ecology 76:493-509.

    Article  Google Scholar 

  • Herms, D.A. and W.J. Mattson. 1992. The dilemma of plants: To grow or defend. Quarterly Review of Biology 67:283-335.

    Article  Google Scholar 

  • Hobbie, S.E. 1992. Effects of plant species on nutrient cycling. Trends in Ecology & Evolution 7:336-339.

    Article  CAS  Google Scholar 

  • Hodge, A., D. Robinson, B. Griffiths, and A. Fitter. 1999. Why plants bother: Root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant, Cell and Environment 22:811-820.

    Article  Google Scholar 

  • Horne, A.J. and C.R. Goldman. 1994. Limnology. McGraw-Hill, New York.

    Google Scholar 

  • Howarth, R.W. and R. Marino. 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnology and Oceanography 51:364-376.

    Article  CAS  Google Scholar 

  • Howarth, R.W., F. Chan, D.J. Conley, J. Garnier, S.C. Doney, et al. 2010. Coupled biogeochemical cycles: Eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment.

    Google Scholar 

  • Hu, S., F.S. Chapin, III, M.K. Firestone, C.B. Field, and N.R. Chiariello. 2001. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188-191.

    Article  PubMed  CAS  Google Scholar 

  • Huante, P., E. Rincón, and F.S. Chapin, III. 1998. Effect of changing light availability on nutrient foraging in tropical deciduous tree-seedlings. Oikos 82:449-458.

    Article  Google Scholar 

  • Ingestad, T. and G.I. Ågren. 1988. Nutrient uptake and allocation at steady-state nutrition. Physiologia Plantarum 72:450-459.

    Article  CAS  Google Scholar 

  • Jonasson, S. and F.S. Chapin, III. 1985. Significance of sequential leaf development for nutrient balance of the cotton sedge, Eriophorum vaginatum L. Oecologia 67:511-518.

    Article  Google Scholar 

  • Kahmen, A., W. Wanek, and N. Buchmann. 2008. Foliar ∂15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia 156:861-870.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalff, J. 2002. Limnology. Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Kielland, K. 1994. Amino acid absorption by arctic plants: Implications for plant nutrition and nitrogen cycling. Ecology 75:2373-2383.

    Article  Google Scholar 

  • Kielland, K. 1997. Role of free amino acids in the nitrogen economy of arctic cryptogams. Ecoscience 4:75-79.

    Google Scholar 

  • Kielland, K., J.W. McFarland, and K. Olson. 2006. Amino acid uptake in deciduous and coniferous taiga ecosystems. Plant and Soil 288:297-307.

    Article  CAS  Google Scholar 

  • Kobe, R.K., C.A. Lepczyk, and M. Iyer. 2005. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 86:2780-2792.

    Article  Google Scholar 

  • Koerselman, W. and A.F.M. Mueleman. 1996. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33:1441-1450.

    Article  Google Scholar 

  • Koide, R.T. 1991. Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytologist 117:365-386.

    Article  CAS  Google Scholar 

  • Kroehler, C.J. and A.E. Linkins. 1991. The absorption of inorganic phosphate from 32P-labeled inositol hexaphosphate by Eriophorum vaginatum. Oecologia 85:424-428.

    Article  Google Scholar 

  • Kronzucker, H.J., M.Y. Siddiqi, and A.M. Glass. 1997. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385:59-61.

    Article  CAS  Google Scholar 

  • Lambers, H. and H. Poorter. 1992. Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Advances in Ecological Research 23:187-261.

    Article  CAS  Google Scholar 

  • Lambers, H., O.K. Atkin, and I. Scheurwater. 1996. Respiratory patterns in roots in relation to their functioning. Pages 323-362 in Y. Waisel, A. Eshel, and U. Kafkaki, editors. Plant Roots: The Hidden Half. Marcel Dekker, New York.

    Google Scholar 

  • Lambers, H., F.S. Chapin, III, and T.L. Pons. 2008. Plant Physiological Ecology. 2nd edition. Springer, New York.

    Book  Google Scholar 

  • Larcher, W. 2003. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups. 4th edition. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • LeBauer, D.S. and K.K. Treseder. 2008. Nitrogen limitation of net primary production in terrestrial ecosystems is globally distributed. Ecology 89:371-379.

    Article  PubMed  Google Scholar 

  • Lee, R.B. 1982. Selectivity and kinetics of ion uptake by barley plant following nutrient deficiency. Annals of Botany 50:429-449.

    CAS  Google Scholar 

  • Lee, R.B. and K.A. Rudge. 1987. Effects of nitrogen deficiency on the absorption of nitrate and ammonium by barley plants. Annals of Botany 57:471-486.

    Google Scholar 

  • Lekberg, Y. and R.T. Koide. 2005. Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytologist 168:189-204.

    Article  PubMed  CAS  Google Scholar 

  • Mann, K.H. and J.R.N. Lazier. 2006. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. Third edition. Blackwell Publishing, Victoria, Australia.

    Google Scholar 

  • Marschner, H. 1995. Mineral Nutrition in Higher Plants. 2nd edition. Academic Press, London.

    Google Scholar 

  • Martin, J.H. 1990. Glacial-interglacial CO2 exchange: The iron hypothesis. Paleoceanography 5:1-13.

    Article  Google Scholar 

  • McKane, R.B., L.C. Johnson, G.R. Shaver, K.J. Nadelhoffer, E.B. Rastetter, et al. 2002. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68-71.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J.T. 1980. The nitrogen uptake kinetics of Spartina alterniflora in culture. Ecology 61:1114-1121.

    Article  CAS  Google Scholar 

  • Mulholland, P.J., A.M. Helton, G.C. Poole, R.O. Hall, Jr., S.K. Hamilton, et al. 2008. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202-205.

    Article  PubMed  CAS  Google Scholar 

  • Näsholm, T., A. Ekblad, A. Nordin, R. Giesler, M. Högberg, et al. 1998. Boreal forest plants take up organic nitrogen. Nature 392:914-916.

    Article  Google Scholar 

  • Näsholm, T., K. Huss-Danell, and P. Högberg. 2000. Uptake of organic nitrogen in the field by four agriculturally important plant species. Ecology 81:1155-1161.

    Article  Google Scholar 

  • Nye, P.H. and P.B. Tinker. 1977. Solute Movement in the Soil-Root System. University of California Press, Berkeley.

    Google Scholar 

  • Peterson, B.J., W.M. Wolheim, P.J. Mujlholland, J.R. Webster, J.L. Meyer, et al. 2001. Control of nitrogen export from watersheds by headwater streams. Science 292:86-90.

    Article  PubMed  CAS  Google Scholar 

  • Pugnaire, F.I. and F.S. Chapin, III. 1992. Environmental and physiological factors governing nutrient resorption efficiency in barley. Oecologia 90:120-126.

    Article  Google Scholar 

  • Raab, T.K., D.A. Lipson, and R.K. Monson. 1999. Soil amino acid utilization among species of the Cyperaceae: Plant and soil processes. Ecology 80:2408-2419.

    Article  Google Scholar 

  • Raper, C.D., Jr., D.L. Osmond, M. Wann, and W.W. Weeks. 1978. Interdependence of root and shoot activities in determining nitrogen uptake rate of roots. Botanical Gazette 139:289-294.

    Article  CAS  Google Scholar 

  • Rastetter, E.B. and G.R. Shaver. 1992. A model of multiple-element limitation for acclimating vegetation. Ecology 73:1157-1174.

    Article  Google Scholar 

  • Read, D.J. and R. Bajwa. 1985. Some nutritional aspects of the biology of ericaceous mycorrhizas. Proceedings of the Royal Society of Edinburgh 85B:317-332.

    Google Scholar 

  • Read, D.J. 1991. Mycorrhizas in ecosystems. Experientia 47:376-391.

    Article  Google Scholar 

  • Redfield, A.C. 1958. The biological control of chemical factors in the environment. American Scientist 46:205-221.

    CAS  Google Scholar 

  • Reich, P.B. and J. Oleksyn. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences, USA 101:11001-11006.

    Article  CAS  Google Scholar 

  • Richardson, A.E., T.S. George, I. Jakobsen, and R.J. Simpson. 2007. Plant utilization of inositol phosphates. Pages 242-260 in B.L. Turner, A.E. Richardson, and E.J. Mullaney, editors. Inositol Phosphates: Linking Agriculture and the Environment. CABI Publishing, Wallingford.

    Chapter  Google Scholar 

  • Robinson, D. 1994. The responses of plants to non-uniform supplies of nutrients. New Phytologist 127:635-674.

    Article  CAS  Google Scholar 

  • Rovira, A.D. 1969. Plant root exudates. Botanical Review 35:35-56.

    Article  CAS  Google Scholar 

  • Schimel, J.P. and J. Bennett. 2004. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 85:591-602.

    Article  Google Scholar 

  • Schindler, D.W. 1971. Carbon, nitrogen, and phosphorus and the eutrophication of freshwater lakes. Journal of Phycology 7:321-329.

    CAS  Google Scholar 

  • Schindler, D.W. 1974. Eutrophication and recovery in experimental lakes: Implications for lake management. Science 184:897-899.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, D.W., R.E. Hecky, D.L. Findlay, M.P. Stainton, B.R. Parker, et al. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen inputs: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences, USA 105:11254-11258.

    Article  CAS  Google Scholar 

  • Simard, S.W., D.A. Perry, M.D. Jones, D.D. Myrold, D.M. Durall, et al. 1997. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579-582.

    Article  CAS  Google Scholar 

  • Smart, D.R. and A.J. Bloom. 1988. Kinetics of ammonium and nitrate uptake among wild and cultivated tomatoes. Oecologia 76:336-340.

    Article  Google Scholar 

  • Smirnoff, N., P. Todd, and G.R. Stewart. 1984. The occurrence of nitrate reduction in the leaves of woody plants. Annals of Botany 54:363-374.

    CAS  Google Scholar 

  • Smith, S.E. and D.J. Read. 1997. Mycorrhizal Symbiosis. Academic Press, London.

    Google Scholar 

  • Sterner, R.W. and J.J. Elser. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.

    Google Scholar 

  • Sterner, R.W. 2008. On the phosphorus limitation paradigm for lakes. International Review of Hydrobiology 93:433-445.

    Article  CAS  Google Scholar 

  • Stock, W.D. and O.A.M. Lewis. 1984. Uptake and assimilation of nitrate and ammonium by an evergreen Fynbos shrub species Protea repens L. (Proteaceae). New Phytologist 97:261-268.

    Article  CAS  Google Scholar 

  • Thomas, W.A. 1969. Accumulation and cycling of calcium by dogwood trees. Ecological Monographs 39:101–120.

    Article  Google Scholar 

  • Tjoelker, M.G., J.M. Craine, D. Wedin, P.B. Reich, and D. Tilman. 2005. Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist 167:493-508.

    Article  PubMed  CAS  Google Scholar 

  • Tyrrell, T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525-531.

    Article  CAS  Google Scholar 

  • Ulrich, A. and J.J. Hills. 1973. Plant analysis as an aid in fertilizing sugar crops: Part I. Sugar beets. Pages 271-288 in L.M. Walsh and J.D. Beaton, editors. Soil Testing and Plant Analysis. Soil Science Society of America, Madison, WI.

    Google Scholar 

  • Valiela, I. 1995. Marine Ecological Processes. 2nd edition. Springer-Verlag, New York.

    Book  Google Scholar 

  • Van Breemen, N. and A.C. Finzi. 1998. Plant-soil interactions: Ecological aspects and evolutionary implications. Biogeochemistry 42:1-19.

    Article  Google Scholar 

  • Vitousek, P.M. 1982. Nutrient cycling and nutrient use efficiency. American Naturalist 119:553-572.

    Article  Google Scholar 

  • Vitousek, P.M. and R.W. Howarth. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13:87-115.

    Article  Google Scholar 

  • Vitousek, P.M. and C.B. Field. 1999. Ecosystem constraints to symbiotic nitrogen fixers: A simple model and its implications. Biogeochemistry 46:179–202.

    CAS  Google Scholar 

  • Vitousek, P.M. 2004. Nutrient Cycling and Limitation: Hawai'i as a Model System. Princeton University Press, Princeton.

    Google Scholar 

  • Vitousek, P.M., S. Porder, B.Z. Houlton, and O.A. Chadwick. 2010. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications 20:5-15.

    Article  PubMed  Google Scholar 

  • Walker, T.W. and J.K. Syers. 1976. The fate of phosphorus during pedogenesis. Geoderma 15:1-19.

    Article  CAS  Google Scholar 

  • Walters, M.B. and P.B. Reich. 1999. Low-light carbon balance and shade tolerance in the seedlings of woody plants: Do winter deciduous and broad-leaved evergreen species differ? New Phytologist 143:143-154.

    Article  Google Scholar 

  • Wilcox, H.E. 1991. Mycorrhizae. Pages 731-765 in Y. Waisel, A. Eshel, and U. Kafkaki, editors. Plant Roots: The Hidden Half. Marcel Dekker, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Stuart Chapin III .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chapin, F.S., Matson, P.A., Vitousek, P.M. (2011). Plant Nutrient Use. In: Principles of Terrestrial Ecosystem Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9504-9_8

Download citation

Publish with us

Policies and ethics