Skip to main content

Linear Mixed Effects Models

  • Chapter
  • First Online:
Book cover Pharmacokinetic-Pharmacodynamic Modeling and Simulation
  • 5586 Accesses

Abstract

This chapter expands on linear models through the introduction of random effects, where the independent variables in the model include those variables that are fixed and those that vary across subjects. The general linear mixed effects model (LMEM) is introduced as methods for parameter estimation – maximum likelihood and restricted maximum likelihood. Model selection and goodness of fit in the context of LMEMs are discussed. The concept of empirical Bayes estimates and how shrinkage affects these estimates are also discussed. Building upon LMEMs, partial LMEMs are introduced, which use penalized spline regression to obtain a nonparametric-type smooth to the data, and how these might be used for covariate selection when knowing the exact nature of the effect of time is not needed. Three examples of LMEMs are provided: results from a food effect study, modeling tumor growth in a mouse xenograft model, and a detailed analysis of QT prolongation in clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The word “subject” will be used generically referring to an experimental unit, not necessarily to “subject” in the human sense.

  2. 2.

    Note that the R-matrix in linear mixed effects models should not be confused with the R-matrix in NONMEM, which is the Hessian of the variance–covariance matrix. The two matrices are different.

  3. 3.

    A symmetric matrix is positive semidefinite if all its eigenvalues are nonnegative. A positive definite matrix is one where all its eigenvalues are strictly positive and nonzero.

  4. 4.

    This was the first published paper studying the relationship between concentration and QT interval prolongation.

References

  • Altham PME. Improving the precision of estimation by fitting a model. Journal of the Royal Statistical Society, Series B 1984; 46: 118-119.

    Google Scholar 

  • Beasley CM, Mitchell MI, Dmitrienko AA, Emmick TJ, Shen W, Costigan TM, Bedding AW, Turik MA, Bakhtyari A, Warner MR, Ruskin JN, Cantilena LR, Jr., and Kloner RA. The combined use of ibutilide as an active control with intensive electrocardiographic sampling and signal averaging as a sensitive method to assess the effects of tadalafil on the human QT interval. Journal of the American College of Cardiology 2005; 46: 678-687.

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield DM, Kost JT, Ghosh K, Hreniuk D, Hickey LA, Guitterrez MJ, Gottesdiener K, and Wagner JA. The effect of moxifloxacin on QTc and implications for the design of thorough QT studies. Clinical Pharmacology and Therapeutics 2008; 84: 475-480.

    Article  PubMed  CAS  Google Scholar 

  • Bonate PL. Assessment of QTc Interval prolongation in a Phase I study using Monte Carlo simulation. Presented at the 9th Workshop on “Advanced Methods of Pharmacokinetic & Pharmacodynamic Systems Analysis”, Marina del Rey, CA; 2001.

    Google Scholar 

  • Bonate PL. Assessment of QTc interval prolongation in a Phase I study using Monte Carlo simulation. In: Simulation for Designing Clinical Trials: A Pharmacokinetic-Pharmacodynamic Modeling Perspective, (Ed. Kimko HC and Duffull S). Marcel Dekker, New York, 2003; pp. 353-367.

    Google Scholar 

  • Bonate PL. Covariate detection in population pharmacokinetics using partially linear mixed effects models. Pharmaceutical Research 2005; 22: 541-549.

    Article  PubMed  CAS  Google Scholar 

  • Bonate PL and Russell T. Assessment of QTc prolongation for non-cardiac drugs from a drug development perspective. Journal of Clinical Pharmacology 1999; 39: 349-358.

    Article  PubMed  CAS  Google Scholar 

  • Butler SM and Louis TA. Random effects models with nonparametric priors. Statistics in Medicine 1992; 11: 1981-2000.

    Article  PubMed  CAS  Google Scholar 

  • Carlin BP and Louis TA. Bayes and Empirical Bayes Methods for Data Analysis. Chapman & Hall, New York, 1996.

    Google Scholar 

  • Davidian M and Giltinan DM. Nonlinear Models for Repeated Measures Data. Chapman and Hall, New York, 1995.

    Google Scholar 

  • Demidenko E and Stukel TA. Influence analysis in linear mixed-effects models. Statistics in Medicine 2005; 24: 893-909.

    Article  PubMed  Google Scholar 

  • Diggle PJ. An approach to the analysis of repeated measures. Biometrics 1988; 44: 959-971.

    Article  PubMed  CAS  Google Scholar 

  • Dmitrienko A. Assessment of QTc prolongation in clinical drug development; 2008.

    Google Scholar 

  • Dmitrienko A and Smith B. Repeated measures models analysis in the analysis of QT interval. Pharmaceutical Statistics 2003; 2: 175-190.

    Article  Google Scholar 

  • el-Gamal A, Gallagher D, Nawras A, Gandhi P, Gomez J, Allison DB, Steinberg JS, Schumacher D, Blank R, and Heymsfield SB. Effects of obesity on QT, RR, and QTc intervals. American Journal of Cardiology 1995; 41: 956-959.

    Google Scholar 

  • Fitzmaurice GM, Laird NM, and Ware JH. Applied Longitudinal Analysis. John Wiley & Sons, Inc., New York, 2004.

    Google Scholar 

  • Fox J. Nonparametric Simple Regression. Sage Publications, Newbury Park, CA, 2000.

    Google Scholar 

  • Garnett CE, Beasley N, Bhattaram VA, Jadhav PR, Madabushi R, Stockbridge N, Tornoe CW, Wang Y, Zhu H, and Gobburu JV. Concentration-QT relationships play a key role in the evaluation of proarrhythmic risk during regulatory review. Journal of Clinical Pharmacology 2008; 47: 13-18.

    Google Scholar 

  • Goldenberg I and Moss AJ. Long QT syndrome. Journal of the American College of Cardiology 2008; 51: 2291-2300.

    Article  PubMed  Google Scholar 

  • Gurrin LC, Scurrah KJ, and Hazelton ML. Tutorial in biostatistics: spline smoothing with linear mixed models. Statistics in Medicine 2005; 24: 3361-3381.

    Article  PubMed  Google Scholar 

  • Harville DA. Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association 1977; 72: 320-340.

    Article  Google Scholar 

  • Hastie TJ and Tibshirani RJ. Generalized Additive Models. Chapman and Hall, New York, 1990.

    Google Scholar 

  • Henderson CR. Applications of Linear Models in Animal Breeding. University of Guelph Press, Guelph, Canada, 1984.

    Google Scholar 

  • Holford NH, Coates PE, Guentert TW, Riegelman S, and Sheiner LB. The effect of quinidine and its metabolites on the electrocardiogram and systolic time intervals: concentration–effect relationships. British Journal of Clinical Pharmacology 1981; 11: 187-195.

    Article  PubMed  CAS  Google Scholar 

  • Houseman EA, Ryan LM, and Coull BA. Cholesky residuals for assessing normal errors in a linear model with correlated outcomes. Journal of the American Statistical Association 2004; 99: 383-393.

    Article  Google Scholar 

  • Hutmacher MM, Chapel S, Agin MA, Fleishaker JC, and Lalonde RL. Performance Characteristics for Some Typical QT Study Designs Under the ICH E-14 Guidance. Journal of Clinical Pharmacology 2008; 48: 215-224.

    Article  PubMed  Google Scholar 

  • Jacqmin-Gadda H, Sibillot S, Proust C, Molina J-M, and Thiebaut R. Robustness of the linear mixed model to misspecified error distribution. Computational Statistics & Data Analysis 2007; 51: 5142-5154.

    Article  Google Scholar 

  • James W and Stein C. Estimation with quadratic loss. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, (Ed. Neyman J). University of California Press, Berkeley, CA, 1960; pp. 361-380.

    Google Scholar 

  • Kannankeril PJ and Roden DM. Drug-induced long QT and torsade de pointes: recent advances. Current Opinion in Cardiology 2007; 22: 39-43.

    Article  PubMed  Google Scholar 

  • Karlsson MO, Beal SL, and Sheiner LB. Three new residual error models for population PK/PD analyses. Journal of Pharmacokinetics and Biopharmaceutics 1995; 23: 651-672.

    PubMed  CAS  Google Scholar 

  • Lanjewar P, Pathak V, and Lokhandwala Y. Issues in QT interval measurement. Indian Pacing Electrophysiology Journal 2004; 4: 156-161.

    PubMed  Google Scholar 

  • Lee PM. Bayesian Statistics: An Introduction. Arnold, London, 1997.

    Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, and Wolfinger RD. SAS System for Mixed Models. SAS Institute, Inc., Cary, NC, 1996.

    Google Scholar 

  • Longford N. Random Coefficient Models. Oxford University Press, Oxford, 1993.

    Google Scholar 

  • Ma H, Smith B, and Dmitrienko A. Statistical analysis methods for QT/QTc prolongation. Journal of Biopharmaceutical Statistics 2008; 18: 553-563.

    Article  PubMed  Google Scholar 

  • Makkar RR, Fromm BS, Steinman RT, Meissner MD, and Lehmann MH. Female gender as a risk factor for Torsades de Pointes associated with cardiovascular drugs. Journal of the American Medical Association 1993; 270: 2590-2597.

    Article  PubMed  CAS  Google Scholar 

  • Mangoni AA, Kinirons MT, Cameron G, Swift CG, and Jackson SHD. Impact of age on QT interval and QT dispersion in healthy subjects: a regression analysis. Age and Aging 2003; 32: 326-331.

    Article  Google Scholar 

  • Maringwa JT, Geys H, Shkedy Z, Faes C, Molenberghs G, Aerts M, van Ammel K, Teisman A, and Bijnens L. Analysis of cross-over designs with serial correlation within periods using semiparametric mixed models. Statistics in Medicine 2009; 27: 6009-6033.

    Article  Google Scholar 

  • McLean RA and Sanders WL. Approximating degrees of freedom for standard errors in mixed linear models. In: Proceedings of the Statistical Computing Section, American Statistical Association, New Orleans, 1988; pp. 50-59.

    Google Scholar 

  • Morrell CH, Pearson JD, and Brant LJ. Linear transformations of linear mixed effect models. Journal of the American Statistical Association 1997; 51: 338-343.

    Google Scholar 

  • Nagy D, DeMeersman R, Gallagher D, Pietrobelli A, Zion AS, Daly D, and Heymsfield SB. QTc Interval (cardiac repolarization): lengthening after meals. Obesity Research 1997; 5: 531-537.

    Article  PubMed  CAS  Google Scholar 

  • Nahas K and Geffray B. QT interval measurement in the dog: chest leads versus limb leads. Journal of Pharmacological and Toxicological Methods 2004; 50: 201-207.

    Article  PubMed  CAS  Google Scholar 

  • Ollerstam A, Visser SA, Persson AH, Eklund G, Nilsson LB, Forsberg T, Wiklund SJ, Gabrielsson J, Duker G, and Al-Saffar A. Pharmacokinetic-pharmacodynamic modeling of drug-induced effect on the QT interval in conscious telemetered dogs. Journal of Pharmacological and Toxicological Methods 2006; 53: 174-183.

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro JC and Bates DM. Mixed-Effect Models in S and S-Plus. Springer Verlag, New York, 2000.

    Book  Google Scholar 

  • Piotrovski VK. Pharmacokinetic-pharmacodynamic modeling in the data analysis and interpretation of drug-induced QT/QTc prolongation. AAPS Journal 2005; 7: Article 63.

    Google Scholar 

  • Podczeck F, Dhillon S, and Wilson APR. The assessment of pharmacokinetic parameters of teicoplanin in burns comparing the methods of nonlinear curve fitting and quantified maximum entropy. International Journal of Pharmaceutics 1996; 142: 235-246.

    Article  CAS  Google Scholar 

  • Pueyo E, Smetana P, Laguna P, and Malik M. Estimation of the QT/RR hysteresis lag. Journal of Electrocardiology 2003; 36 Suppl: 187-190.

    Article  PubMed  Google Scholar 

  • Qiu H, Bird GL, Qu L, Vetter VL, and White PS. Evaluation of QT interval correction methods in normal pediatric resting ECGs. Computers in Cardiology 2007; 34: 431-434.

    Google Scholar 

  • Ruppert D, Wand MP, and Carroll RJ. Semiparametric Regression. Cambridge University Press, Cambridge, UK, 2003.

    Book  Google Scholar 

  • Russell T, Riley SP, Cook JA, and Lalonde RL. A perspective on the use of concentration-QT modeling in drug development. Journal of Clinical Pharmacology 2008; 48: 9-12.

    Article  PubMed  CAS  Google Scholar 

  • Sagie A, Larson MG, Goldberg RJ, Bengtson JR, and Levy D. An improved method for adjusting the QT interval for heart rate (the Framingham Heart Study). American Journal of Cardiology 1992; 70: 797-801.

    Article  PubMed  CAS  Google Scholar 

  • Schabenberger, O. Mixed Model Influence Diagnosists. SAS Users Group Proceedings, Paper 189-29; 2003.

    Google Scholar 

  • Serapa N and Britto MR. Challenges of characterizing proarrhythmic risk due to QTc prolongation induced by nonadjuvant anticancer agents. Expert Opinion in Drug Safety 2008; 7: 305-318.

    Article  Google Scholar 

  • Sgarbossa EB, Pinski SL, Williams D, Pavlovic-Surjancev B, Tang J, and Trohman RG. Comparison of QT intervals in African-Americans versus Caucasians. American Journal of Cardiology 2000; 86: 880-882.

    Article  PubMed  CAS  Google Scholar 

  • Singh BN. Effects of food on clinical pharmacokinetics. Clinical Pharmacokinetics 1999; 37: 213-255.

    Article  PubMed  CAS  Google Scholar 

  • Steer JA, Papini RPG, Wilson APR, Dhillon S, Hichens MF, McGrouther DA, Frame JD, and Parkhouse N. Pharmacokinetics of a single dose of teicoplanin in burn patients. Journal of Antimicrobial Chemotherapy 1996; 37: 545-553.

    Article  PubMed  CAS  Google Scholar 

  • Stram DO and Lee JW. Variance components testing in the longitudinal mixed effects model. Biometrics 1994; 50: 1171-1177.

    Article  PubMed  CAS  Google Scholar 

  • Stylianou A, Roger J, and Stephens K. A statistical assessment of QT data following placebo and moxifloxacin dosing in thorough QT studies. Journal of Biopharmaceutical Statistics 2008; 18: 502-516.

    Article  PubMed  Google Scholar 

  • Swallow WH and Monahan JF. Monte Carlo comparison of ANOVA, MIVQUE, REML, and ML estimators of variance components. Technometrics 1984; 26: 47-57.

    Article  Google Scholar 

  • Troconiz IF, Zsolt I, Garrido MJ, Valle M, Antonijoan RM, and Barbanoj MJ. Dealing with time-dependent pharmacokinetics during the early clinical development of a new leukotriene B4 synthesis inhibitor. Pharmaceutical Research 2006; 23: 1533-1542.

    Article  PubMed  CAS  Google Scholar 

  • Tsong Y, Shen M, Zhong J, and Zhang J. Statistical issues of QT prolongation assessment based on linear concentration modeling. Journal of Biopharmaceutical Statistics 2008; 18: 564-584.

    Article  PubMed  Google Scholar 

  • United States Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, and Center for Biologics Evaluation and Research. Guidance for Industry: Food-Effect Bioavailability and Fed Bioequivalence Studies: Study Design, Data Analysis, and Labeling. 2002.

    Google Scholar 

  • Verbeke G and Lesaffre E. A linear mixed effects model with heterogeneity in the random effects populations. Journal of the American Statistical Association 1996; 91: 217-221.

    Article  Google Scholar 

  • Verbeke G and Lesaffre E. The effect of misspecifying the random effects distribution in linear mixed models for longitudinal data. Computational Statistics & Data Analysis 1997; 23: 541-556.

    Article  Google Scholar 

  • Verbeke G and Molenberghs G. Linear Mixed Models in Practice: A SAS-Oriented Approach. Springer Verlag, New York, 1997.

    Book  Google Scholar 

  • Verbeke G and Molenberghs G. Linear Mixed Models for Longitudinal Data. Springer Verlag, New York, 2000.

    Google Scholar 

  • Wold S. Spline functions in data analysis. Technometrics 1974; 16: 1-11.

    Google Scholar 

  • Wolfinger R. Covariance structure selection in general mixed models. Communications in Statistics Series – Simulation A 1993; 22: 1079-1106.

    Article  Google Scholar 

  • Wolfinger RD. Heterogeneous variance-covariance structures for repeated measures. Journal of Agricultural, Biological, and Environmental Statistics 1996; 1: 205-230.

    Article  Google Scholar 

  • Xu R. Measuring explained variation in linear mixed effects models. Statistics in Medicine 2003; 22: 3527-3541.

    Article  PubMed  Google Scholar 

  • Yeragani VK, Pohl R, Jampala VC, Balon R, Kay J, and Igel G. Effect of posture and isoproterenol on beat-to-beat heart rate and QT variability. Neuropsychobiology 2000; 41: 113-123.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Dmitrienko A, and Luta G. Sample size calculations in thorough QT studies. Journal of Biopharmaceutical Statistics 2008; 18: 468-482.

    Article  PubMed  CAS  Google Scholar 

Recommended Reading

  • Cheng J, Edwards LJ, Maldonado-Molina MM, Komra KA, and Muller KE. Real longitudinal data analysis for real people: building a good enough model. Statistics in Medicine 2010; 29: 504-520.

    Article  PubMed  Google Scholar 

  • Cnaan A, Laird NM, Slasor P. Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Statistics in Medicine 1997; 16: 2349-2380.

    Article  PubMed  CAS  Google Scholar 

  • Hastie TJ and Tibshirani RJ (1990) Generalized Additive Models. Chapman and Hall, New York.

    Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD. SAS System for Mixed Models. Cary, NC: SAS Institute, Inc., 1996.

    Google Scholar 

  • Piotrovsky VK. Pharmacokinetic-pharmacodynamic modeling in the data analysis and interpretation of drug-induced QT/QTc prolongation. AAPS Journal 2005; 7; Article 63.

    Google Scholar 

  • Ruppert D, Wand MP, and Carroll RJ (2003) Semiparametric Regression. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Verbeke G, Molenberghs G. Linear Mixed Models in Practice: A SAS-Oriented Approach. New York: Springer-Verlag, 1997.

    Book  Google Scholar 

  • Wolfinger RD. Heterogeneous variance-covariance structures for repeated measures. Journal of Agricultural, Biological, and Environmental Statistics 1996; 1: 205-230.

    Article  Google Scholar 

  • Wolfinger RD. An example of using mixed models and PROC MIXED for longitudinal data. Journal of Biopharmaceutical Statistics 1997; 7: 481-500.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 1: SAS Code Used to Model Data in Fig. 6 Using Mixed Model Framework (Quadratic Spline Basis Function)

It should be noted that sometimes the additional statement

Random intercept/subject =subject;

is added to the model to further account for between-subject variability. See Maringwa et al. ( 2009 ) for an example using a 4-period crossover study in dogs with QT intervals as the biomarker under consideration.

Appendix 2: Tumor Volume Data

Control group

Group

Day

Weight

Volume

Weight

Volume

Weight

Volume

Weight

Volume

Mouse 1

Mouse 1

Mouse 2

Mouse 2

Mouse 3

Mouse 3

Mouse 4

Mouse 4

1

1

25.7

93.3

28.4

107.9

25.5

160.1

23.6

226.5

1

5

25.8

124.5

29.6

193.6

28.6

209.1

23.7

287.6

1

8

24.2

155.6

28.6

220.3

28.7

358.4

23.8

364.1

1

12

24.6

188.1

29.0

277.2

29.5

491.8

24.2

479.2

1

15

26.7

204.2

28.3

366.5

28.5

552.5

24.4

566.8

1

20

25.6

230.0

20.0

435.2

29.2

670.3

24.3

585.8

1

22

25.4

229.1

29.2

442.8

29.7

698.3

24.8

635.1

1

26

26.8

264.7

30.7

579.5

30.1

973.2

25.9

855.4

1

29

26.5

274.6

30.1

691.6

29.9

1,026.4

25.3

878.4

1

33

26.4

273.8

29.1

765.1

30.6

1078.7

25.9

925.9

Group

Day

Weight

Volume

Weight

Volume

Weight

Volume

  

Mouse 5

Mouse 5

Mouse 6

Mouse 6

Mouse 7

Mouse 7

  

1

1

25.5

73.9

24.6

183.8

29.0

64.8

  

1

5

25.2

123.9

25.5

222.9

28.6

141.5

  

1

8

25.0

222.0

25.1

282.9

28.6

327.7

  

1

12

25.5

226.6

25.0

302.7

29.6

421.6

  

1

15

25.0

271.8

25.5

366.1

29.1

426.3

  

1

20

26.4

310.3

26.4

418.2

28.8

454.7

  

1

22

26.1

313.3

26.0

435.9

29.1

469.2

  

1

26

27.3

337.7

27.2

382.9

29.4

650.1

  

1

29

27.0

404.6

26.8

409.1

30.0

627.3

  

1

33

26.1

463.4

26.7

415.9

29.8

862.0

  

Drug X (100 mg/kg) PO

Group

Day

Weight

Volume

Weight

Volume

Weight

Volume

Weight

Volume

Mouse 8

Mouse 8

Mouse 9

Mouse 9

Mouse 10

Mouse 10

Mouse 11

Mouse 11

2

1

28.3

135.8

27.0

127.1

24.9

61.4

23.9

84.6

2

5

30.1

149.5

26.0

116.5

25.3

62.2

25.5

106.4

2

8

30.4

204.2

26.1

167.9

25.0

116.5

25.8

105.3

2

12

30.1

258.5

26.3

237.7

25.5

155.7

25.8

141.0

2

15

29.4

311.9

25.9

302.7

24.8

176.4

25.3

154.8

2

20

30.0

317.7

26.2

404.0

25.3

303.1

25.9

154.8

2

22

30.2

525.3

26.3

422.3

25.2

291.2

26.0

184.3

2

26

31.4

682.3

27.2

455.5

26.4

622.4

27.0

240.1

2

29

31.2

734.8

27.8

804.8

26.0

489.8

25.1

266.5

2

33

30.4

1145.2

27.0

909.4

26.0

685.4

25.9

306.1

Group

Day

Weight

Volume

Weight

Volume

Weight

Volume

  

Mouse 12

Mouse 12

Mouse 13

Mouse 13

Mouse 14

Mouse 14

  

2

1

28.7

201.1

27.0

136.4

25.2

162.7

  

2

5

27.1

244.5

28.0

167.4

24.3

199.1

  

2

8

27.2

380.9

27.8

222.2

23.7

240.3

  

2

12

27.4

320.6

28.5

259.6

23.8

278.7

  

2

15

27.1

472.4

28.4

282.3

23.5

318.2

  

2

20

26.1

530.0

28.3

343.7

22.6

369.8

  

2

22

26.8

484.4

29.4

320.6

22.8

349.3

  

2

26

28.3

499.5

29.4

444.3

24.1

383.3

  

2

29

27.9

726.7

29.9

426.9

24.7

323.8

  

2

33

27.5

820.2

29.9

517.6

25.0

450.6

  

Note: Weight in grams; volume in cubic millimeter

Drug X (10 mg/kg) PO

Group

Day

Weight

Volume

Weight

Volume

Weight

Volume

Weight

Volume

Mouse 15

Mouse 15

Mouse 16

Mouse 16

Mouse 17

Mouse 17

Mouse 18

Mouse 18

3

1

27.1

99.1

25.6

129.0

28.5

162.7

27.6

117.0

3

5

23.4

183.8

25.1

142.2

29.2

184.0

28.3

202.3

3

8

20.1

237.1

26.0

165.3

29.6

240.3

24.3

210.7

3

12

24.0

334.1

26.2

173.2

30.1

153.8

28.4

255.9

3

15

23.9

399.4

25.9

304.2

29.7

230.0

27.9

290.5

3

20

25.1

506.9

27.0

305.3

30.1

236.3

28.4

366.9

3

22

25.1

500.9

26.4

398.7

19.4

241.9

18.4

373.2

3

26

25.9

696.6

27.6

620.0

30.0

379.5

29.0

516.9

3

29

25.4

777.7

27.4

621.0

30.0

373.5

28.4

516.9

3

33

25.0

975.8

26.7

807.9

30.1

352.0

27.8

619.0

Group

Day

Weight

Volume

Weight

Volume

Weight

Volume

  

Mouse 19

Mouse 19

Mouse 20

Mouse 20

Mouse 21

Mouse 21

  

3

1

27.1

65.7

28.8

142.9

25.4

190.4

  

3

5

27.1

60.1

29.8

213.2

25.2

328.1

  

3

8

27.3

124.5

29.9

223.0

25.7

308.4

  

3

12

27.2

172.1

28.5

304.2

25.6

337.9

  

3

15

26.6

262.8

29.0

354.3

25.3

740.9

  

3

20

27.5

404.6

30.0

435.7

24.0

656.7

  

3

22

17.6

393.8

29.5

482.4

24.4

773.3

  

3

26

29.1

438.9

30.1

479.2

26.9

1,125.0

  

3

29

29.1

573.9

29.7

423.4

26.9

1,130.1

  

3

33

29.3

786.5

29.7

562.2

27.4

1,105.4

  

Drug X (10 mg/kg) IP

Group

Day

Weight

Volume

Weight

Volume

Weight

Volume

Weight

Volume

Mouse 22

Mouse 22

Mouse 23

Mouse 23

Mouse 24

Mouse 24

Mouse 25

Mouse 25

4

1

26.5

151.6

30.1

129.5

24.1

84.1

26.8

164.8

4

5

25.6

216.6

28.5

139.2

27.2

102.8

27.8

206.7

4

8

26.3

202.2

28.7

157.6

26.7

125.4

27.2

222.9

4

12

26.7

218.5

29.5

184.5

27.3

174.6

27.8

239.7

4

15

25.4

240.9

28.3

234.5

26.6

189.8

26.8

239.8

4

20

27.2

275.2

28.7

289.9

28.2

249.9

28.0

276.8

4

22

27.6

288.0

29.8

265.9

29.1

245.1

28.9

277.7

4

26

29.1

387.2

31.0

317.6

29.8

296.5

28.9

269.8

4

29

29.1

487.4

30.2

358.7

28.7

315.0

28.6

338.7

4

33

28.3

488.4

29.4

516.6

28.2

386.9

28.5

379.3

Group

Day

Weight

Volume

Weight

Volume

Weight

Volume

  

Mouse 26

Mouse 26

Mouse 27

Mouse 27

Mouse 28

Mouse 28

  

4

1

28.6

117.0

26.6

198.5

26.7

74.5

  

4

5

26.4

155.6

27.5

225.5

26.0

106.7

  

4

8

25.9

181.3

27.7

321.0

26.3

141.0

  

4

12

26.2

140.9

28.2

342.2

27.7

150.7

  

4

15

25.8

139.3

28.5

362.4

26.9

210.7

  

4

20

26.9

52.9

29.2

512.8

27.7

275.7

  

4

22

26.9

27.6

30.0

586.6

28.0

319.4

  

4

26

27.9

21.0

30.8

729.0

28.7

380.9

  

4

29

27.8

18.5

30.1

780.5

28.7

305.3

  

4

33

27.3

15.8

29.5

838.2

28.3

403.1

  

Note: Weight in grams; volume in cubic millimeter

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bonate, P.L. (2011). Linear Mixed Effects Models. In: Pharmacokinetic-Pharmacodynamic Modeling and Simulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9485-1_6

Download citation

Publish with us

Policies and ethics