Skip to main content

Library-Independent Bacterial Source Tracking Methods

  • Chapter
  • First Online:

Abstract

In recent years numerous library-independent methods for microbial source tracking have become available either relying on selective cultivation of source-specific bacteria or, increasingly, on direct detection of source-specific genetic markers. The scientific foundation for the detection of source-specific bacterial populations is discussed and an overview is provided of the methods developed in this field in the last 30 years. Another focus is on potential advantages and drawbacks as well as method performance characteristics in method development, evaluation and application. Unfortunately, few methods have been evaluated and applied beyond the regional geographical scale, making it clear that the global toolbox for bacterial MST is still in the development and evaluation stage. However, recent advances in statistical methods for interpretation of MST results will help account for less than perfect diagnostic sensitivities and specificities, while integrated study design must consider pollution source complexity and dynamics. Numerous successful MST applications have proven the practicality and potential of library-independent bacterial MST methods for the characterization and identification of fecal pollution sources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

     The terms “bacteria” and “bacterial” are used synonymous to prokaryotic organisms encompassing the superkingdoms Bacteria and Archaea.

References

  • Adams LM, Simmons CP, Robins-Browne RM et al (1997) Identification and characterization of a K88- and CS31A-like operon of a rabbit enteropathogenic Escherichia coli strain which encodes fimbriae involved in the colonization of rabbit intestine. Infect Immun 65:5222–5230

    PubMed  CAS  Google Scholar 

  • Ahmed W, Stewart J, Powell D et al (2008a) A real-time polymerase chain reaction assay for quantitative detection of the human-specific Enterococci surface protein marker in sewage and environmental waters. Environ Microbiol 10(12):3255–3264

    Article  PubMed  CAS  Google Scholar 

  • Ahmed W, Stewart J, Powell D et al (2008b) Evaluation of the host-specificity and prevalence of Enterococci surface protein (esp) marker in sewage and its application for sourcing human fecal pollution. J Environ Qual 37:1583–1588

    Article  PubMed  CAS  Google Scholar 

  • Ahmed W, Powell D, Gardner T et al (2008c) Detection and source identification of faecal pollution in non-sewered catchment by means of host-specific molecular markers. Water Sci Technol 58:579–586

    Article  PubMed  CAS  Google Scholar 

  • Ahmed W, Stewart J, Gardner T et al (2008d) Evaluation of Bacteroides markers for the detection of human faecal pollution. Lett Appl Microbiol 46:237–242

    Article  PubMed  CAS  Google Scholar 

  • Ahmed W, Goonetilleke A, Gardner T et al (2009a) Evaluation of multiple sewage-associated Bacteroides PCR markers for sewage pollution tracking. Water Res 43:4872–4877

    Article  PubMed  CAS  Google Scholar 

  • Ahmed W, Goonetilleke A, Gardner T et al (2009b) Comparison of molecular markers to detect fresh sewage in environmental waters. Water Res 43(9):4908–4917

    Article  PubMed  CAS  Google Scholar 

  • Al-Diwany LJ, Cross T (1978) Ecological studies on Nocardioforms and other Actinomycetes in aquatic habitats. In: Mordarski, M., Kurylowicz, W. and Jeljaszewicz, J. (ed) Nocardia and Streptomyces, Proceedings of the international symposium on Nocardia and Streptomyces, 153–160. Gustav Fischer Verlag, New York, NY

    Google Scholar 

  • Amador JA, Sotomayor-Ramírez D, Bachoon D et al (2008) Tracking human faecal contamination in tropical reservoirs in Puerto Rico. Lakes & Reservoirs: Research and Management 13(4):301–317

    Article  CAS  Google Scholar 

  • Anderson KL, Whitlock JE, Harwood VJ (2005) Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Appl Environ Microbiol 71(6):3041–3048

    Article  PubMed  CAS  Google Scholar 

  • APHA (1992) Standard methods for the examination of water and wastewater, 16th edn. American Public Health Association, Washington D.C.

    Google Scholar 

  • Bachoon DS, Nichols TW, Oetter DR et al (2009) Assessment of faecal pollution and relative algal abundances in Lakes Oconee and Sinclair, Georgia, USA. Lakes & Reservoirs: Research and Management 14:139–149

    Article  Google Scholar 

  • Backhed F, Ley RE, Sonnenburg JL et al (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    Article  PubMed  CAS  Google Scholar 

  • Bae S, Wuertz S (2009a) Discrimination of viable and dead fecal Bacteroidales bacteria by quantitative PCR with propidium monoazide. Appl Environ Microbiol 75(9):2940–2944

    Article  PubMed  CAS  Google Scholar 

  • Bae S, Wuertz S (2009b) Rapid decay of host-specific fecal Bacteroidales cells in seawater as measured by quantitative PCR with propidium monoazide. Water Res 43(19):4850–4859

    Article  PubMed  CAS  Google Scholar 

  • Bahaka D, Neut C, Khattabi A et al (1993) Phenotypic and genomic analyses of human strains ­belonging or related to Bifidobacterium-longum, Bifidobacterium-infantis, and Bifidobacterium-breve. Int J Syst Bacteriol 43:565–573

    Article  PubMed  CAS  Google Scholar 

  • Balleste E, Bonjoch X, Belanche LA et al (2010) Molecular indicators used in the development of predictive models for microbial source tracking. Appl Environ Microbiol 76(6):1789–1795

    Article  PubMed  CAS  Google Scholar 

  • Bambic D, Wuertz S, Ban M (2007) Fecal source tracking using human toolkits based on library-independent chemical and microbial markers. P Water Environ F 15:931–945

    Article  Google Scholar 

  • Bell A, Layton AC, Sayler GS et al (2009) Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. J Environ Qual 38:1224–1232

    Article  PubMed  CAS  Google Scholar 

  • Bernhard AE, Field KG (2000a) Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl Environ Microbiol 66:1587–1594

    Article  PubMed  CAS  Google Scholar 

  • Bernhard AE and Field KG (2000b) A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteriodales-Prevotella genes encoding 16S rRNA. Appl Environ Microbiol 66(10):4571–4574

    Article  PubMed  CAS  Google Scholar 

  • Blanch AR, Belanche-Munoz L, Bonjoch X et al (2004) Tracking the origin of faecal pollution in surface water: an ongoing project within the European Union research programme. J Water Health 2:249–260

    PubMed  Google Scholar 

  • Blanch AR, Belanche-Munoz L, Bonjoch X et al (2006) Integrated analysis of established and novel microbial and chemical methods for microbial source tracking. Appl Environ Microbiol 72:5915–5926

    Article  PubMed  CAS  Google Scholar 

  • Boehm AB, Yamahara KM, Nelson KL (2009) Covariation and photoinactivation of traditional and novel indicator organisms and human viruses at a sewage-impacted marine beach. Environ Sci Technol, 43:8046–8052

    Article  PubMed  CAS  Google Scholar 

  • Bonjoch X, Balleste E, Blanch AR (2004) Multiplex PCR with 16S rRNA gene-targeted primers of Bifidobacterium spp. to identify sources of fecal pollution. Appl Environ Microbiol 70:3171–3175

    Article  PubMed  CAS  Google Scholar 

  • Bonjoch X, Balleste E, Blanch AR (2005) Enumeration of bifidobacterial populations with selective media to determine the source of waterborne fecal pollution. Water Res 39:1621–1627

    Article  PubMed  CAS  Google Scholar 

  • Bonjoch X, Lucena F, Blanch AR (2009) The persistence of bifidobacteria populations in a river measured by molecular and culture techniques. J Appl Microbiol 107:1178–1185

    Article  PubMed  CAS  Google Scholar 

  • Booth J, Brion GM (2004) The utility of the AC/TC ratio for watershed management: a case study. Water Sci Technol 50:199–203

    PubMed  CAS  Google Scholar 

  • Bosshard F, Riedel K, Schneider T et al (2010) Protein oxidation and aggregation in UVA-irradiated Escherichia coli cells as signs of accelerated cellular senescence. Environ Microbiol 12(11):2931–45

    Article  PubMed  CAS  Google Scholar 

  • Bower PA, Scopel CO, McLellan SL (2005) Detection of genetic markers of fecal indicator bacteria in Lake Michigan and determination of their relationship to Escherichia coli densities using standard microbiological methods. Appl Environ Microbiol 71(12):8305–8313

    Article  PubMed  CAS  Google Scholar 

  • Buchan A, Alber M, Hodson RE (2001) Strain-specific differentiation of environmental Escherichia coli isolates via denaturing gradient gel electrophoresis (DGGE) analysis of the 16S-23S intergenic spacer region. FEMS Microbiol Ecol 35:313–321

    PubMed  CAS  Google Scholar 

  • Burtscher MM, Zibuschka F, Mach RL et al (2009) Heterotrophic plate count vs. in situ bacterial 16S rRNA gene amplicon profiles from drinking water reveal completely different communities with distinct spatial and temporal allocations in a distribution net. Water SA 35:495–504

    CAS  Google Scholar 

  • Byamukama D, Mach RL, Farnleitner AH (2005) Discrimination efficacy of fecal pollution detection in different aquatic habitats of a high altitude tropical country using presumptive coliform, Escherichia coli and Clostridium perfringens spores. Appl Environ Microbiol 71(1):65–71

    Article  PubMed  CAS  Google Scholar 

  • Byappanahalli MN, Przybyla-Kelly K, Shively DA et al (2008) Environmental occurrence of the enterococcal surface protein (esp) gene is an unreliable indicator of human fecal contamination. Environ Sci Technol 42:8014–8020

    Article  PubMed  CAS  Google Scholar 

  • Cawthorn DM, Witthuhn RC (2008) Selective PCR detection of viable Enterobacter sakazakii cells ­utilizing propidium monoazide or ethidium bromide monoazide. J Appl Microbiol 105:1178–1185

    Article  PubMed  CAS  Google Scholar 

  • Chern EC, Tsai Y, Olson BH (2004a) Occurrence of genes associated with enterotoxigenic and enterohemorrhagic Escherichia coli in agricultural waste lagoons. Appl Environ Microbiol 70(1):356–362

    Article  PubMed  CAS  Google Scholar 

  • Chern EC, Olson BH (2004b) Development of a biomarker to detect bird fecal waste in ­environmental waters. In: Perez JMS, Andion LG, Brebbia CA (ed) Coastal environment V: Incorporating oil spill studies. 95-102, WIT Press, Southampton, UK.

    Google Scholar 

  • Chern EC, Brenner KP, Haugland RA et al (2009) Comparison of fecal indicator bacteria densities in marine recreational waters by QPCR. Water Qual Expo Health 1:203–214

    Article  Google Scholar 

  • Cho JC, Kim SJ (2000) Increase in bacterial community diversity in subsurface aquifers receiving livestock wastewater input. Appl Environ Microbiol 66:956–965

    Article  PubMed  CAS  Google Scholar 

  • Cimenti M, Biswas N, Bewtra JK et al (2005) Evaluation of microbial indicators for the determination of bacterial groundwater contamination sources. Water Air Soil Poll 168:157–169

    Article  CAS  Google Scholar 

  • Coakley T, Brion GM, Fryar A (2009) Relationships between indicators of faecal load, source, and age: developing a multi-indicator approach for risk characterization. In: Rose JB (ed) 15th Int Symp Health Related Microbiol/Internat Water Association, Naxos, Greece

    Google Scholar 

  • Converse RR, Blackwood AD, Noble RT et al (2009) Rapid QPCR-based assay for fecal Bacteroides spp. as a tool for assessing fecal contamination in recreational waters. Water Res 43(19):4828–4837

    Article  PubMed  CAS  Google Scholar 

  • Deep R (2006) Probability and statistics: with integrated software routines. Elsevier: Amsterdam.

    Google Scholar 

  • D’Elia TV, Cooper CR, Johnston CG (2007) Source tracking of Escherichia coli by 16S-23S intergenic spacer region denaturing gradient gel elctrophoresis (DGGE) of the rrnB ribosomal operon. Can J Microbiol 53(10):1174–1184

    Article  PubMed  CAS  Google Scholar 

  • Dick LK, Field KG (2004) Rapid estimation of numbers of fecal Bacteroidetes by use of a quantitative PCR assay for 16S rRNA genes. Appl Environ Microbiol 70(9):5695–5697

    Article  PubMed  CAS  Google Scholar 

  • Dick LK, Simonich MT, Field KG (2005a) Microplate subtractive hybridization to enrich for Bacteroidales genetic markers for fecal source identification. Appl Environ Microbiol 71(6):3179–3183

    Article  PubMed  CAS  Google Scholar 

  • Dick LK, Bernhard AE, Field KG et al (2005b) Host distribution of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Appl Environ Microbiol 71(6):3184–3191

    Article  PubMed  CAS  Google Scholar 

  • Dick LK, Stelzer EA, Stoeckel DM et al (2010) Relative decay of Bacteroidales microbial source tracking markers and cultivated Escherichia coli in freshwater microcosms. Appl Environ Microbiol 76(10):3255–3262

    Article  PubMed  CAS  Google Scholar 

  • Dorai-Raj S, O’Grady J, Colleran E (2009) Specificity and sensitivity evaluation of novel and existing Bacteroidales and Bifidobacteria-specific PCR assays on feces and sewage samples and their application for microbial source tracking in Ireland. Water Res 43(19):4980–4988

    Article  PubMed  CAS  Google Scholar 

  • Dunbar J, Barns SM, Ticknor LO et al (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68:3035–3045

    Article  PubMed  CAS  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  Google Scholar 

  • Esseili MA, Kassem II, Sigler V (2008) Optimization of DGGE community fingerprinting for characterizing Escherichia coli communities associated with fecal pollution. Water Res 42:4467–4476.

    Article  PubMed  CAS  Google Scholar 

  • Evison LM, James A (1975) Bifidobacterium as an indicator of faecal pollution in water. Prog Water Technol 7:57–66

    Google Scholar 

  • Farnleitner AH, Zibuschka F, Burtscher MM et al (2004) Eubacterial 16S-rDNA amplicon profiling: a rapid technique for comparison and differentiation of heterotrophic plate count communities from drinking water. Int J Food Microbiol 92:333–345

    Article  PubMed  CAS  Google Scholar 

  • Farnleitner AH, Wilhartitz I, Ryzinska G et al (2005) Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities. Environ Microbiol 7:1248–1259

    Article  PubMed  CAS  Google Scholar 

  • Farnleitner AH, Ryzinska-Paier G, Reischer GH et al (2010) Escherichia coli and enterococci are sensitive and reliable indicators for human, livestock and wildlife faecal ­pollution in alpine mountainous water resources. J Appl Microbiol 109:1599–1608

    Article  Google Scholar 

  • Feachem R (1975) An improved role for faecal coliform to faecal streptococci ratios in the differentiation between human and non-human pollution sources. Water Res 9:689–690

    Article  Google Scholar 

  • Field KG, Chern EC, Dick LK et al (2003) A comparative study of culture-independent, library-independent genotypic methods of fecal source tracking. J Water Health 1:181–194

    PubMed  Google Scholar 

  • Flekna G, Stefanic P, Hein I et al (2007) Insufficient differentiation of live and dead Campylobacter jejuni and Listeria monocytogenes cells by ethidium monoazide (EMA) compromises EMA/real-time PCR. Res Microbiol 158:405–412

    Article  PubMed  CAS  Google Scholar 

  • Fogarty LR, Voytek MA (2005) Comparison of Bacteroides-Prevotella 16S rRNA genetic markers for fecal samples from different animal species. Appl Environ Microbiol 71:5999–6007

    Article  PubMed  CAS  Google Scholar 

  • Fujioka R, Sian-Denton C, Borja M et al (1999) Soil: the environmental source of Escherichia coli and enterococci in Guam’s streams. J Appl Microbiol 85:83s–89s

    Article  Google Scholar 

  • Gawler AH, Beechere JE, Brandãoc J, Carroll NM, Falcãoc L, Gourmelon M, Masterson B, Nunes B, Portera J, Rincé A, Rodrigues R, Thorp M, Walters JM and Meijer WG. Validation of host-specific Bacteriodales 16S rRNA genes as markers to determine the origin of faecal pollution in Atlantic Rim countries of the European Union. Water Res 41(16):378–384

    Article  PubMed  CAS  Google Scholar 

  • Gedalanga PB, Olson BH (2009) Development of a quantitative PCR method to differentiate between viable and nonviable bacteria in environmental water samples. Appl Microbiol Biotechnol 82:587–596

    Article  PubMed  CAS  Google Scholar 

  • Geldreich EE, Best LC, Kenner BA et al (1968) Bacteriological aspects of stormwater pollution. J Water Pollut Con F 40:1861

    CAS  Google Scholar 

  • Geldreich EE, Kenner BA (1969) Concepts of fecal streptococci in stream pollution. J Water Pollut Con F 41:R336

    Google Scholar 

  • Geldreich EE (1976) Fecal coliform and fecal Streptococcus density relationships in waste discharges and receiving waters. Crit Rev Env Contr 6:349–369

    Article  Google Scholar 

  • Gilpin BJ, Gregor JE, Savill MG (2002) Identification of the source of faecal pollution in contaminated rivers. Water Sci Technol 46(3):9–15

    CAS  Google Scholar 

  • Gilpin BJ, James T, Savil MG et al (2003) The use of chemical and molecular microbial indicators for faecal source identification. Water Sci Technol 47(3):39–43

    PubMed  CAS  Google Scholar 

  • Gordon DM (2001) Geographical structure and host specificity in bacteria and the implications for tracing the source of coliform contamination. Microbiology 147:1079–1085

    PubMed  CAS  Google Scholar 

  • Gourmelon M, Caprais MP, Rince A et al (2007) Evaluation of two library-independent microbial source tracking methods to identify sources of fecal contamination in French estuaries. Appl Environ Microbiol 73(15):4857–4866

    Article  PubMed  CAS  Google Scholar 

  • Gourmelon M, Caprais MP, Le Mennec C, et al. (2010) Application of library-independent microbial source tracking methods for identifying the sources of faecal contamination in coastal areas. Water Sci Technol 61:1401–1409

    Article  PubMed  CAS  Google Scholar 

  • Griffith JF, Cao Y, Weisberg SB et al (2009) Evaluation of rapid methods and novel indicators for assessing microbiological beach water quality. Water Res 43(19):4900–4907

    Article  PubMed  CAS  Google Scholar 

  • Gyllenberg H, Niemela S, Sormunen T (1960) Survival of bifidobacteria in water as compared with that of coliform bacteria and Enterococci. Appl Microbiol 8:20–22

    PubMed  CAS  Google Scholar 

  • Hamilton MJ, Yan T, Sadowsky MJ (2006) Development of goose- and duck-specific DNA ­markers to determine sources of Escherichia coli in waterways. Appl Environ Microbiol 72(6):4012–4019

    Article  PubMed  CAS  Google Scholar 

  • Hammerum AM, Jensen LB (2002) Prevalence of esp, encoding the enterococcal surface protein, in Enterococcus faecalis and Enterococcus faecium isolates from hospital patients, poultry, and pigs in Denmark. J Clin Microbiol 40(11):4396

    Article  PubMed  CAS  Google Scholar 

  • Hartel PG, Rodgers K, McDonald JL et al (2008) Combining targeted sampling and fluorometry to identify human fecal contamination in a freshwater creek. J Water Health 6(1):105

    Article  PubMed  CAS  Google Scholar 

  • Harwood VJ, Delahoya NC, Ulrich RM et al (2004) Molecular confirmation of Enterococcus faecalis and E-faecium from clinical, faecal and environmental sources. Lett Appl Microbiol 38:476–482

    Article  PubMed  CAS  Google Scholar 

  • Harwood VJ, Brownell M, Wang S, Lepo J, Ellender RD, Ajidahun A, Hellein KN, Kennedy E, Ye X, Flood C (2009) Validation and field testing of library-independent microbial source tracking methods in the Gulf of Mexico. Water Res 43:4812–4819

    Article  PubMed  CAS  Google Scholar 

  • Haugland RA, Siefring SC, Dufour AP et al (2005) Comparison of Enterococcus measurements in freshwater at two recreational beaches by quantitative polymerase chain reaction and membrane filter culture analysis. Water Res 39:559–568

    Article  PubMed  CAS  Google Scholar 

  • Hill RT, Straube WL, Palmisano AC et al (1996) Distribution of sewage indicated by Clostridium perfringens at a deep-water disposal site after cessation of sewage disposal. Appl Environ Microbiol 62:1741–1746

    PubMed  CAS  Google Scholar 

  • Holdeman V, Cato ET, Moore WEC (1976) Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl Environ Microbiol 31:359–375

    PubMed  CAS  Google Scholar 

  • Houston, A.C. (1902) Second report of the Royal Commission on treating and disposing of sewage, London

    Google Scholar 

  • Ishii S, Sadowsky MJ (2008) Escherichia coli in the environment: Implications for water quality and human health. Microbes Environ 23:101–108

    Article  PubMed  Google Scholar 

  • Ishii S, Sadowsky MJ (2009) Applications of the rep-PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution. Environ Microbiol 11(4): 733–740

    Article  PubMed  CAS  Google Scholar 

  • ISO (2002) Water Quality. Detection and enumeration of Clostridium perfringens – Part 2: Method by membrane filtration (ISO/CD 6461-2). Geneva, Switzerland, International Organization of Standardization

    Google Scholar 

  • Jagals P, Grabow WOK, de Villiers JC (1995) Evaluation of indicators for assessment of human and animal faecal pollution of surface run-off. Water Sci Technol 31:235–241

    Google Scholar 

  • Jagals P, Grabow WOK (1996) An evaluation of sorbitol-fermenting bifidobacteria as specific indicators of human faecal pollution of environmental water. Water SA 22:235–238

    CAS  Google Scholar 

  • Jenkins MW, Tiwari S, Wuertz S et al (2009) Identifying human and livestock sources of fecal contamination in Kenya with host-specific Bacteroidales assays. Water Res 43(19):4956–4966

    Article  PubMed  CAS  Google Scholar 

  • Jeong JY, Park HD, Lee KH et al (2010) Quantitative analysis of human- and cow-specific 16S rRNA gene markers for assessment of fecal pollution in river waters by real-time PCR. J Microbiol Biotechn 20:245–253

    CAS  Google Scholar 

  • Jeter SN, McDermott CM, McLellan SL et al (2009) Bacteroidales diversity in ring-billed gulls (Laurus delawarensis) residing at lake Michigan beaches. Appl Environ Microbiol 75(6):1525–1533

    Article  PubMed  CAS  Google Scholar 

  • Jiang SC, Chu W, Gedalanga PB et al (2007) Microbial source tracking in a small southern California urban watershed indicates wild animals and growth as the source of fecal bacteria. Appl Environ Microbiol 76:927–934

    CAS  Google Scholar 

  • Johnson JR, O’Bryan TT, Stell AL et al (2000) Evidence of commonality between canine and human extraintestinal pathogenic Escherichia coli strains that express papG allele III. Infect Immun 68:3327–3336

    Article  PubMed  CAS  Google Scholar 

  • Kreader CA (1995) Design and evaluation of Bacteroides DNA probes for the specific detection of human fecal pollution. Appl Environ Microbiol 61:1171–1179

    PubMed  CAS  Google Scholar 

  • Khatib LA, Tsai YL, Olson BH (2002) A biomarker for the identification of cattle fecal pollution in water using the LTIIa toxin gene from enterotoxigenic Escherichia coli. Appl Microbiol Biotechnol 59:97–104

    Article  PubMed  CAS  Google Scholar 

  • Khatib LA, Tsai YL and Olson BH (2003) A biomarker for the identification of swine fecal pollution in water, using the STII toxin gene from enterotoxigenic Escherichia coli. Appl Microbiol Biotechnol 63:231–238

    Article  PubMed  CAS  Google Scholar 

  • Kildare BJ, Rajal V, Wuertz S et al (2006) Calleguas creek watershed quantitative microbial source tracking study. http://www.calleguas.com/ccwmp/DRAFT_CCW_MST_061406.pdf

  • Kildare BJ, Leutenegger CM, Wuertz S et al (2007) 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: a Bayesian approach. Water Res 41:3701–3715

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Pitts B, Yoon J et al (2008) Comparison of the antimicrobial effects of chlorine, silver ion, and tobramycin on biofilm. Antimicrob Agents Ch 52:14461453

    Article  CAS  Google Scholar 

  • King EL, Bachoon DS, Gates KW (2007) Rapid detection of human fecal contamination in estuarine environments by PCR targeting of Bifidobacterium adolescentis. J Microbiol Meth 68(1):76-81

    Article  CAS  Google Scholar 

  • Kirschner AK, Eiler A, Zechmeister TC et al (2002) Extremely productive microbial communities in shallow saline pools respond immediately to changing meteorological conditions. Environ Microbiol 4:546–555

    Article  PubMed  CAS  Google Scholar 

  • Klein and Houston (1898) Report on bacteriological evidence of presumably recent, and therefore dangerous, sewage pollution of elsewise potable waters. 27th Report Annual Report of the Local Government Board 1897-98, Supplement Report of Local Officer. 4:318–325

    Google Scholar 

  • Knee KL, Layton BA, Paytan A (2008) Sources of nutrients and fecal indicator bacteria to nearshore waters on the north shore of Kauai (Hawaii, USA). Estuar Coast 31:607–622

    Article  CAS  Google Scholar 

  • Kollanur, D., Reischer, G.H:, Sommer, R., Wehrspaun, C.,Stadler, H, Mach, R.L., Zerobin. W. and A. H. Farnleitner (2010) Quantitative Assessment of Faecal Pollution Sources in Alpine Spring Catchments as a Basis for Microbial Hazard- and Risk Assessment. Submitted to Water Science and Technology.

    Google Scholar 

  • Kreader CA (1998) Persistence of PCR-detectable Bacteroides distasonis from human feces in river water. Appl Environ Microbiol 64(10):4103–4105

    PubMed  CAS  Google Scholar 

  • Kuntz RL, Hartel PG, Rodgers K et al (2004) Presence of Enterococcus faecalis in broiler litter and wild bird feces for bacterial source tracking. Water Res 38:3551–3557

    Article  PubMed  CAS  Google Scholar 

  • Lamendella R, Santo Domingo JW, Oerther DB et al (2008) Bifidobacteria in feces and environmental waters. Appl Environ Microbiol 74(3):575–584

    Article  PubMed  CAS  Google Scholar 

  • Lamendella R, Santo Domingo JW, Oerther DB et al (2009) Evaluation of swine-specific PCR assays used for fecal source tracking and analysis of molecular diversity of swine-specific “Bacteroidales” populations. Appl Environ Microbiol 75(18):5787–5796

    Article  PubMed  CAS  Google Scholar 

  • Lawson PA, Collins MD, Foster G et al (2006) Catellicoccus marimammalium gen. nov., sp. nov., a novel gram-positive, catalase-negative, coccus-shaped bacterium from porpoise and grey seal. Int J Syst Evol Micr 56:429–432

    Article  CAS  Google Scholar 

  • Layton BA, McKay L, Sayler G et al (2006) Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol 72(6):4214–4224

    Article  PubMed  CAS  Google Scholar 

  • Layton BA, Walters SP, Boehm AB (2009) Distribution and diversity of the enterococcal surface protein (esp) gene in animal hosts and the Pacific coast environment. J Appl Microbiol 106:1521–1531

    Article  PubMed  CAS  Google Scholar 

  • Layton BA, Walters SP, Lam LH et al (2010) Enterococcus species distribution among human and animal hosts using multiplex PCR. J Appl Microbiol 109(2):539–547

    PubMed  CAS  Google Scholar 

  • Leclerc H, Devriese LA, Mossel DAA (1996) Taxonomical changes in intestinal (faecal) Enterococci and Streptococci: consequences on their use as indicators of faecal contamination in drinking water. J Appl Bacteriol 81:459–466

    PubMed  CAS  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Hamady M, Lozupone C et al (2008a) Evolution of mammals and their gut microbes. Science 320:1647–1651

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Lozupone CA, Hamady M et al (2008b) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Miller TL (1998) Phylogenetic analysis of Methanobrevibacter isolated from feces of humans and other animals. Archeol Microbiol 169:397–403

    Article  CAS  Google Scholar 

  • Long SC, Shafer E, Arango C et al (2003) Evaluation of three source tracking indicator organisms for watershed management. Water Supply 52:565–575

    Google Scholar 

  • Lu J, Santo Domingo JW, Shanks OC (2007) Identification of chicken-specific fecal microbial sequences using a metagenomic approach. Water Res 41:3561–3574

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Santo Domingo JW, Hill S et al (2008a) Phylogenetic diversity and molecular detection of bacteria in gull feces. Appl Environ Microbiol 74(13):3969–3976

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Santo Domingo JW (2008b) Turkey fecal microbial community structure and functional gene diversity revealed by 16S rRNA gene and metagenomic sequences. J Microbiol 46(5):469–477

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Santo Domingo JW, Edge TA et al (2009) Microbial diversity and host-specific sequences of Canada goose feces. Appl Environ Microbiol 75(18):5919–5926

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W, Schleifer KH (2000) How quantitative is quantitative PCR with respect to cell counts? Syst Appl Microbiol 23(4):556–562

    Article  PubMed  CAS  Google Scholar 

  • Lynch PA, Gilpin BJ, Savill MG et al (2002) The detection of Bifidobacterium adolescentis by colony hybridization as an indicator of human fecal pollution. J Appl Microbiol 92:526–533

    Article  PubMed  CAS  Google Scholar 

  • Mara DD, Oragui JI (1981) Occurrence of Rhodococcus coprophilus and associated Actinomycetes in feces, sewage, and freshwater. Appl Environ Microbiol 42:1037–1042

    PubMed  CAS  Google Scholar 

  • Mara DD, Oragui JI (1983) Sorbitol-fermenting bifidobacteria as specific indicators of human faecal pollution. J Appl Bacteriol 55:349–357

    Article  PubMed  CAS  Google Scholar 

  • Mara DD, Oragui J (1985) Bacteriological methods for distinguishing between human and animal faecal pollution of water: results of fieldwork in Nigeria and Zimbabwe. B World Health Organ 63:773–783

    CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE et al (2006) Genome sequencing in microfabricated high-density picolitre reactors (vol 437, pg 376, 2005). Nature 441:120–120

    Article  CAS  Google Scholar 

  • Matsuki T, Watanabe K, Tanaka R et al (2004) Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol 70:167–173

    Article  PubMed  CAS  Google Scholar 

  • McDonald JL, Hartel PG, Payne KA et al (2006) Identifying sources of fecal contamination inexpensively with targeted sampling and bacterial source tracking. J Environ Qual 35:889-897

    Article  PubMed  CAS  Google Scholar 

  • McFeters GA, Bissonne GK, Jezeski JJ et al (1974) Comparative survival of indicator bacteria and enteric pathogens in well water. Appl Microbiol 27:823–829

    PubMed  CAS  Google Scholar 

  • McLain JET, Ryu H, Abbaszadegan M et al (2009) Lack of specificity for PCR assays targeting human Bacteroides 16S rRNA gene: cross-amplification with fish feces. FEMS Microbiol Lett 299(1):38–43

    Article  PubMed  CAS  Google Scholar 

  • McLellan SL, Huse SM, Mueller-Spitz SR et al (2010) Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol 12:378–392

    Article  PubMed  CAS  Google Scholar 

  • McQuaig SM, Scott TM, Lukasik JO et al (2006) Detection of human-derived fecal pollution in environmental waters by use of a PCR-based human polyomavirus assay. Appl Environ Microbiol 72:7567–7574

    Article  PubMed  CAS  Google Scholar 

  • McQuaig SM, Scott TM, Harwood VJ et al (2009) Quantification of human polyomaviruses JC virus and BK virus by TaqMan quantitative PCR and comparison to other water quality indicators in water and fecal samples. Appl Environ Microbiol 75(11):3379–3388

    Article  PubMed  CAS  Google Scholar 

  • Meays CL, Broersma K, Mazumder A et al (2004) Source tracking fecal bacteria in water: a critical review of current methods. J Environ Manage 73:71–79

    Article  PubMed  Google Scholar 

  • Mieszkin S, Yala JF, Gourmelon M et al (2009) Phylogenetic analysis of Bacteroidales 16S rRNA gene sequences from human and animal effluents and assessment of ruminant faecal pollution by real-time PCR. J Appl Microbiol 108(3):974–984

    Article  PubMed  CAS  Google Scholar 

  • Mieszkin S, Furet JP, Gourmelon M et al (2010) Estimation of pig fecal contamination in a river catchment by real-time PCR using two pig-specific Bacteroidales 16S rRNA genetic markers. Appl Environ Microbiol 75(10):3045–3054

    Article  CAS  Google Scholar 

  • Mills DK, Entry JA, Mathee K et al (2007) Assessing microbial community diversity using amp icon length heterogeneity polymerase chain reaction. Molecular-Based Approaches to Soil Microbiology Symposium 71(2): 572–578

    CAS  Google Scholar 

  • Miura T, Masago Y, Omura T et al (2009) Detection of bacteria and enteric viruses from river and estuarine sediment. J Water Environ Technol. 7(4):307–316

    Article  Google Scholar 

  • Morrison TB, Weis JJ, Wittwer CT (1998) Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. BioTechniques 24(6):954–958

    PubMed  CAS  Google Scholar 

  • Morrison CR, Bachoon DS, Gates KW (2008) Quantification of enterococci and bifidobacteria in Georgia estuaries using conventional and molecular methods. Water Res 42(14): 4001–4009

    Article  PubMed  CAS  Google Scholar 

  • Mushi DW, Byamukama D, Kivaisi KA et al (2010) Sorbitol-fermenting Bifidobacteria are indicators of very recent human faecal pollution in streams and groundwater habitats in urban tropical lowlands. J Water Health 8(3):466–478

    Article  PubMed  Google Scholar 

  • Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322

    Article  PubMed  CAS  Google Scholar 

  • Nebra Y, Bonjoch X, Blanch AR (2003) Use of Bifidobacterium dentium as an indicator of the origin of fecal water pollution. Appl Environ Microbiol 69:2651–2656

    Article  PubMed  CAS  Google Scholar 

  • Nieman J, Brion GM (2003) Novel bacterial ratio for predicting faecal age. Water Sci Technol 47:45–49

    PubMed  CAS  Google Scholar 

  • Nocker A, Camper A K (2006) Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl Environ Microbiol 72:1997–2004

    Article  PubMed  CAS  Google Scholar 

  • Nocker A, Cheung C, Camper AK (2006) Comparison of propidium monozide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Meth 67:310–320

    Article  CAS  Google Scholar 

  • Nocker A, Sossa-Fernandez P, Camper A K et al (2007a) Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol 73:5111–5117

    Article  PubMed  CAS  Google Scholar 

  • Nocker A, Sossa KE, Camper AK (2007b) Molecular monitoring of disinfection efficacy using propidium monoazide in combination with quantitative PCR. J Microbiol Meth 70: 252–260

    Article  CAS  Google Scholar 

  • Nocker A, Camper AK (2009) Novel approaches toward preferential detection of viable cells using nucleic acid amplification techniques. FEMS Microbiol Lett 291:137–142

    Article  PubMed  CAS  Google Scholar 

  • Nogva H, Dromtorp S, Rudi K et al (2003) Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5′-nuclease PCR. BioTechniques 34(4):804–813

    PubMed  CAS  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  • Okabe S, Okayama N, Ito T et al (2007a) Quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater. Appl Environ Microbiol 74:890–901

    CAS  Google Scholar 

  • Okabe S, Shimazu Y (2007b) Persistence of host-specific Bacteroides-Prevotella 16S rRNA genetic markers in environmental waters: effects of temperature and salinity. Appl Microbiol Biot 76:935–944

    Article  CAS  Google Scholar 

  • Opel KL, Chung D, McCord BR (2010) A study of PCR inhibition mechanisms using real time PCR. J Forensic Sci 55(1):25–33

    Article  PubMed  CAS  Google Scholar 

  • Oshiro RK, Olson BH (1997) Occurrence of STh toxin gene in wastewater. In: Kay D, Fricher C (ed), Coliforms and E coli: problem or solution? The Royal Society of Chemistry, Cambridge. pp 255–259

    Google Scholar 

  • Ottoson JR (2009) Bifidobacterial survival in surface water and implications for microbial source tracking. Can J Microbiol 55(6):642–647

    Article  PubMed  CAS  Google Scholar 

  • Pan, Y, Breidt F (2007) Enumeration of viable Listeria monocytogenes cells by real-time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells. Appl Environ Microbiol 73:8028–8031

    Article  PubMed  CAS  Google Scholar 

  • Paster BJ, Dewhirst FE, Olsen I et al (1994) Phylogeny of Bacteroides, Prevotella and Porphyromonas spp. and related bacteria. J Bacteriol 176(3):725–732

    PubMed  CAS  Google Scholar 

  • Pourcher AM, Devriese LA, Hernandez JF et al (1991) Enumeration by a miniaturized method of Escherichia-Coli, Streptococcus bovis and enterococci as indicators of the origin of fecal pollution of waters. J Appl Bacteriol 70:525–530

    Article  PubMed  CAS  Google Scholar 

  • Provence DL, Curtiss R (1994) Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Escherichia coli strain. Infect Immun 62:1369–1380

    PubMed  CAS  Google Scholar 

  • Rajal VB, McSwain BS, Wuertz S et al (2007) Validation of hollow fiber ultrafiltration and real time PCR using bacteriophage PP7 as surrogate for the quantification of viruses from water samples. Water Res 41(7):1411–1422

    Article  PubMed  CAS  Google Scholar 

  • Ram JL, Ritchie RP, Selegean JP et al (2004) Sequence-based source tracking of Escherichia coli based on genetic diversity of beta-glucuronidase. J Environ Qual 33:1024–1032

    Article  PubMed  CAS  Google Scholar 

  • Rawsthorne H, Dock CN, Jaykus LA (2009) PCR-based method using propidium monoazide to distinguish viable from nonviable Bacillus subtilis spores. Appl Environ Microbiol 75: 2936–2939

    Article  PubMed  CAS  Google Scholar 

  • Reischer GH, Kasper DC, Farnleitner AD et al (2006) Quantitative PCR method for sensitive detection of ruminant fecal pollution in freshwater and evaluation of this method in alpine karstic regions. Appl Environ Microbiol 72:5610–5614

    Article  PubMed  CAS  Google Scholar 

  • Reischer GH, Kasper DC, Mach RL et al (2007) A quantitative real-time PCR assay for the highly sensitive and specific detection of human faecal influence in spring water from a large alpine catchment area. Lett Appl Microbiol 44(4):351–356

    Article  PubMed  CAS  Google Scholar 

  • Reischer GH, Haider JM, Farnleitner AH et al (2008) Quantitative microbial faecal source tracking with sampling guided by hydrological catchment dynamics. Environ Microbiol 10(10): 2598–2608

    Article  PubMed  CAS  Google Scholar 

  • Reischer GH, Haider JM, Farnleitner AH et al (2009) A global assessment of the source specificity, sensitivity and geographical stability of Bacteroides qPCR assays for microbial source tracking. Proceedings of the 15th International Symposium on Health-Related Water Microbiology, 31 May–5 June 2009 Naxos, Greece

    Google Scholar 

  • Reischer GH, Kollanur D, Vierheilig J et al (2011) Hypothesis-driven approach for the identification of fecal pollution sources in water resources. Environ Sci Technol 45(9):4038–4045

    Google Scholar 

  • Resnick IG, Levin MA (1981a) Assessment of bifidobacteria as indicators of human fecal ­pollution. Appl Environ Microbiol 42:433–438

    PubMed  CAS  Google Scholar 

  • Resnick IG, Levin MA (1981b) Quantitative procedure for enumeration of bifidobacteria. Appl Environ Microbiol 42:427–432

    PubMed  CAS  Google Scholar 

  • Rhodes MW, Kator H (1999) Sorbitol-fermenting bifidobacteria as indicators of diffuse human faecal pollution in estuarine watersheds. J Appl Microbiol 87:528–535

    Article  PubMed  CAS  Google Scholar 

  • Richter DD, Markewitz D (1995) How deep is soil – soil, the zone of the earths crust that is biologically-active, is much deeper than has been thought by many ecologists. Bioscience 45:600–609

    Article  Google Scholar 

  • Roll BM, Fujioka RS (1997) Sources of faecal indicator bacteria in a brackish, tropical stream and their impact on recreational water quality. Water Sci Technol 35(11):179–186

    Article  CAS  Google Scholar 

  • Rosario K, Symonds EM, Breitbart M et al (2009) Pepper mild mottle virus as an indicator of fecal pollution. Appl Environ Microbiol 75(22):7261–7267

    Article  PubMed  CAS  Google Scholar 

  • Roslev P, Bastholm S, Iversen N (2008) Relationship between fecal indicators in sediment and recreational waters in a Danish estuary. Water Air Soil Poll 194:13–21

    Article  CAS  Google Scholar 

  • Rowbotham TJ, Cross T (1977) Ecology of Rhodococcus coprophilus and associated Actinomycetes in fresh water and agricultural habitats. J Gen Microbiol 100:231–240

    Google Scholar 

  • Rudi K, Moen B, Holck AL et al (2005) Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl Environ Microbiol 71:1018–1024

    Article  PubMed  CAS  Google Scholar 

  • Sadowsky MJ, Call DR, Santo Domingo JW (2007) The future of microbial source tracking studies. In: Santo Domingo JW, Sadowsky MJ (eds) Microbial source tracking. Washington, DC: ASM Press, pp. 235–277

    Google Scholar 

  • Santoro AE, Boehm AB (2007) Frequent occurrence of the human-specific Bacteroides fecal marker at an open coast marine beach: relationship to waves, tides and traditional indicators. Environ Microbiol. doi:10.1111/j.1462-2920.2007.01319.x

    PubMed  Google Scholar 

  • Saunders AM, Kristiansen A, Schramm A et al (2009) Detection and persistence of fecal Bacteroidales as water quality indicators in unchlorinated drinking water. Syst Appl Microbiol 32(5):362–370

    Article  PubMed  CAS  Google Scholar 

  • Savill MG, Murray SR, Gilpin BJ et al (2001) Application of polymerase chain reaction (PCR) and TaqManTM PCR techniques to the detection and identification of Rhodococcus coprophilus in faecal samples. J Microbiol Meth 47:355–368

    Article  CAS  Google Scholar 

  • Schriewer A, Miller WA, Byrne BA et al (2010) Bacteroidales as a predictor of pathogens in surface waters of the central California coast. Appl Environ Microbiol 76:5802–5814

    Article  PubMed  CAS  Google Scholar 

  • Scott TM, Jenkins TM, Rose JB et al (2005) Potential use of a host associated molecular marker in Enterococcus faecium as an index of human fecal pollution. Environ Sci Technol 39:283–287

    Article  PubMed  CAS  Google Scholar 

  • Scott TM, Harwood VJ, Ahmed W et al (2009) Comment on “environmental occurrence of the enterococcal surface protein (esp) gene is an unreliable indicator of human fecal contamination”. Environ Sci Technol 43:6434–6435

    Article  PubMed  CAS  Google Scholar 

  • Seurinck S, Defoirdt T, Sciliano S et al (2005) Detection and quantification of the human-specific HF183 Bacteroides 16S rRNA genetic marker with real-time PCR for assessment of human faecal pollution in freshwater. Environ Microbiol 7(2):249–259

    Article  PubMed  CAS  Google Scholar 

  • Shanks OC, Santo Domingo JW, Graham JE et al (2006a) Competitive metagenomic DNA hybridization identifies host-specific microbial genetic markers in cow fecal samples. Appl Environ Microbiol 72:4054-4060

    Article  PubMed  CAS  Google Scholar 

  • Shanks OC, Nietch C, Field KG et al (2006b) Basin-wide analysis of the dynamics of fecal contamination and fecal source identification in Tillamook Bay, Oregon. Appl Environ Microbiol 72(8):5537–5546

    Article  PubMed  CAS  Google Scholar 

  • Shanks OC, Santo Domingo JW, Graham JE et al (2007) Identification of bacterial DNA markers for the detection of human fecal pollution in water. Appl Environ Microbiol 73:2416–2422

    Article  PubMed  CAS  Google Scholar 

  • Shanks OC, Atikovic E, Haugland RA et al (2008) Quantitative PCR for detection and enumeration of genetic markers of bovine fecal pollution. Appl Environ Microbiol 74:745–752

    Article  PubMed  CAS  Google Scholar 

  • Shanks OC, Kelty CA, Haugland RA et al (2009) Quantitative PCR for genetic markers of human fecal pollution. Appl Environ Microbiol 75(17):5507–5513

    Article  PubMed  CAS  Google Scholar 

  • Shanks OC, White K, Haugland RA (2010) Performance assessment PCR-based assays targeting Bacteroidales genetic markers of bovine fecal pollution. Appl Environ Microbiol 76(5):1359–1366

    Article  PubMed  CAS  Google Scholar 

  • Siefring S, Varma M, Haugland RA (2008) Improved real-time PCR assays for the detection of fecal indicator bacteria in surface waters with different instrument and reagent systems. J Water Health 6(2):225

    Article  PubMed  CAS  Google Scholar 

  • Silkie SS, Nelson KL (2009) Concentrations of host-specific and generic fecal markers measured by quantitative PCR in raw sewage and fresh animal feces. Water Res 43(19):4860–4871

    Article  PubMed  CAS  Google Scholar 

  • Simpson JM, Santo Domingo JW, Reasoner DJ (2004) Assessment of equine fecal contamination: the search for alternative bacterial source-tracking targets. FEMS Microbiol Ecol 47(1):65–75

    Article  PubMed  CAS  Google Scholar 

  • Sirikanchana K, Wang D, Bombardelli FA et al. Microbial source tracking using Bacteroidales and quantification of bacterial indicators and human pathogens in a major estuary. Submitted

    Google Scholar 

  • Skanavis C, Yanko WA (2001) Clostridium perfringens as a potential indicator for the presence of sewage solids in marine sediments. Mar Pollut Bull 42:31–35

    Article  PubMed  CAS  Google Scholar 

  • Soejima T, Iida K, Yoshida S et al (2007) Photoactivated ethidium monoazide directly cleaves bacterial DNA and is applied to PCR for discrimination of live and dead bacteria. Microbiol Immunol 51:763–775

    PubMed  CAS  Google Scholar 

  • Sorensen DL, Eberl SG, Dicksa RA (1989) Clostridium perfringens as a point-source indicator in non-point polluted streams. Water Res 23:191–197

    Article  CAS  Google Scholar 

  • Soule M, Kuhn E, Call DR et al (2006) Using DNA microarrays to identify library-independent markers for bacterial source tracking. Appl Environ Microbiol 72(3):1843–1851

    Article  PubMed  CAS  Google Scholar 

  • Stapleton CM, Kay D, Wyer MD, et al. (2009) Evaluating the operational utility of a Bacteroidales quantitative PCR-based MST approach in determining the source of faecal indicator organisms at a UK bathing water. Water Res 43:4888–4899

    Article  PubMed  CAS  Google Scholar 

  • Stewart MH, Olson B (1996) Bacterial resistance to potable water disinfectants. In: Hurst CJ (ed) Modeling disease transmission and its prevention by disinfection. Cambridge: Cambridge University Press, pp 140–192

    Google Scholar 

  • Stoeckel DM, Stelzer EA, Dick LK (2009) Evaluation of two spike-and-recovery controls for assessment of extraction efficiency in microbial source tracking studies. Water Res 43(19): 4820–4827

    Article  PubMed  CAS  Google Scholar 

  • Stricker AR, Wilhartitz I, Mach RL et al (2008) Development of a scorpion probe-based real-time PCR for the sensitive quantification of Bacteroides sp. ribosomal DNA from human and cattle origin and evaluation in spring water matrices. Microbiol Res 163(2):140–147

    Article  PubMed  CAS  Google Scholar 

  • Suau A, Bonnet R, Sutren M et al (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807

    PubMed  CAS  Google Scholar 

  • Tallon P, Magajna B, Lofranco C et al (2005) Microbial indicators of faecal contamination in water: A current perspective. Water Air Soil Poll 166:139–166

    Article  CAS  Google Scholar 

  • Tsai YL, Le JY, Olson BH (2003) Magnetic bead hybridization to detect enterotoxigenic Escherichia coli strains associated with cattle in environmental water sources. Can J Microbiol 49:391–398

    Article  PubMed  CAS  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  • Ufnar JA, Wang SY, Ellender RD et al (2006) Detection of the nifH gene of Methanobrevibacter smithii: a potential tool to identify sewage pollution in recreational waters. J Appl Microbiol 101:44–52

    Article  PubMed  CAS  Google Scholar 

  • Ufnar JA, Ufnar DF, Ellender RD et al (2007a) Development of a swine-specific fecal pollution marker based on host differences in Methanogen mcrA genes. Appl Environ Microbiol 73(16): 5209–5217

    Article  PubMed  CAS  Google Scholar 

  • Ufnar JA, Wang SY, Ellender RD et al (2007b) Methanobrevibacter ruminantium as an indicator of domesticated-ruminant fecal pollution in surface waters. Appl Environ Microbiol, 73(21): 7118–7121

    Article  PubMed  CAS  Google Scholar 

  • Vesper S, McKinstry C, Vesper A et at (2008) Quantifying fungal viability in air and water samples using quantitative PCR after treatment with propidium monoazide (PMA). J Microbiol Meth 72:180–184

    Article  CAS  Google Scholar 

  • Wade T, Calderon RL, Dufour AP (2006) Rapidly measured indicators of recreational water quality are predictive of swimming-associated gastrointestinal illness. Environ Health Persp 114(1):24–28

    Article  Google Scholar 

  • Wagner AO, Malin C, Illmer P et al (2008) Removal of free extracellular DNA from environmental samples by ethidium monoazide and propidium monoazide. Appl Environ Microbiol 74:2537–2539

    Article  PubMed  CAS  Google Scholar 

  • Walters SP, Field KG (2006) Persistence and growth of fecal Bacteroidales assessed by bromodeoxyuridine immunocapture. Appl Environ Microbiol 72(7):4532–4539

    Article  PubMed  CAS  Google Scholar 

  • Walters SP, Yamahara KM, Boehm AB (2009) Persistence of nucleic acid markers of health-relevant organisms in seawater microcosms: implications for their use in assessing risk in recreational waters. Water Res 43(19):4929–4939

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Silkie SS, Nelson K et al (2010) Estimating true human and animal host source contribution in quantitative microbial source tracking using the Monte Carlo method. Water Res 44(16):4760–4775

    Article  PubMed  CAS  Google Scholar 

  • Ward JW, Reed TM, Fryar AE et al (2009) Using the AC/TC ratio to evaluate fecal inputs in a karst groundwater basin. Environ Eng Geosci 15:57–65

    Article  Google Scholar 

  • Weisburg WG, Barns SM, Lane DJ et al (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

    PubMed  CAS  Google Scholar 

  • Wheeler AL, Hartel PG, Godfrey DG et al (2002) Potential of Enterococcus faecalis as a human fecal indicator for microbial source tracking. J Environ Qual 31:1286–1293

    Article  PubMed  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. P Natl Acad Sci USA 95:6578–6583

    Article  CAS  Google Scholar 

  • Whitman RL, Przybyla-Kelly K, Shively DA et al (2007) Incidence of the enterococcal surface protein (esp) gene in human and animal fecal sources. Environ Sci Technol 41:6090–6095

    Article  PubMed  CAS  Google Scholar 

  • Wilhartitz I, Mach RL, Teira E et al (2007) Prokaryotic community analysis with CARD-FISH in comparison with FISH in ultra-oligotrophic ground- and drinking water. J Appl Microbiol 103:871–881

    Article  PubMed  CAS  Google Scholar 

  • Wittwer CT, Herrman MG, Moss AA (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques 22(1):130

    PubMed  CAS  Google Scholar 

  • Wong M, Kumar L, Rose JB et al (2009) Evaluation of public health risks at recreational beaches in Lake Michigan via detection of enteric viruses and a human-specific bacteriological marker. Water Res 43 (4):1137–1149

    Article  PubMed  CAS  Google Scholar 

  • Wuertz S, Bombardelli F, Sirikanchana K et al (2009) Quantitative pathogen detection & microbial source tracking combined with modeling the fate and transport of Bacteroidales in San Pablo Bay. CICEET report: http://ciceet.unh.edu/news/releases/fall09_reports/pdf/wuertz06_fr_fall06.pdf

  • Xu J, Bjursell MK, Gordon GI et al (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299:2074–2076

    Article  PubMed  CAS  Google Scholar 

  • Yampara-Iquise H, Zheng G, Carson CA et al (2008) Use of a Bacteroides thetaiotaomicron-specific alfa-1-6, mannanase quantitative PCR to detect human faecal pollution in water.J Appl Microbiol 105:1686–1693

    Article  PubMed  CAS  Google Scholar 

  • Zheng G, Yampara-Iquise H, Carson CA et al (2009) Development of Faecalibacterium 16S rRNA gene marker for identification of human faeces. J Appl Microbiol 106:634–641

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was sponsored in part by California Department of Transportation task order 23 of 43A01684 and Water Environment Research Foundation grant PATH2R08 to SW. The Austrian part of the work was supported by the Austrian Science Fund (FWF) projects #P22309-B20 and DK plus #W1219-N22 (Vienna Doctoral Programme on Water Resource Systems) granted to A.H.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Wuertz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wuertz, S., Wang, D., Reischer, G.H., Farnleitner, A.H. (2011). Library-Independent Bacterial Source Tracking Methods. In: Hagedorn, C., Blanch, A., Harwood, V. (eds) Microbial Source Tracking: Methods, Applications, and Case Studies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9386-1_4

Download citation

Publish with us

Policies and ethics