Skip to main content

Abstract

This chapter summarizes the rationale for using microbial source tracking (MST) methods at beach sites and coastal water bodies (Sect. 20.1), as MST methods are especially useful for evaluating waters impacted by nonpoint sources of pollution. This chapter also describes the most common traditional and alternative MST markers used at beach sites (Sect. 20.2). Two case studies are presented (Sect. 20.3) that describe the use of both biological/chemical MST methods and physical MST methods for identifying sources of microbes at two marine beach sites in USA, one located on the west coast (California) and the other located on the east coast (Florida). The chapter closes with discussion and recommendations concerning the utility and application of MST tools at beach sites impacted by nonpoint-source pollution (Sect. 20.4). Although this chapter focuses on marine beaches, an incredible wealth of MST data has been gathered at freshwater beaches (Byappanahalli et al. 2006; Harwood et al. 2005; Jenkins et al. 2005; Scott et al. 2002; Stapleton et al. 2009; Whitman and Nevers 2003; Whitman et al. 2004), and a comprehensive review of beach studies merits the inclusion of MST work within freshwater systems. The use of MST in freshwater systems is further discussed in Chaps. 18, 19, and 21.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 18th Edition, Washington: American Public Health Association; 1992., p. 9–66

    Google Scholar 

  • Abdelzaher AM, Solo-Gabriele HM, Palmer CJ, and Scott TM (2009) Simultaneous concentration of enterococci and coliphage from marine waters using a dual layer filtration system. J. Environ. Qual. 38: 2468–2473

    Article  PubMed  CAS  Google Scholar 

  • Abdelzaher AM, Solo-Gabriele HM, Wright ME, and Palmer CJ (2008) Sequential concentration of bacteria and viruses from marine waters using a dual membrane system. J. Environ. Qual. 37: 1648–1655

    Article  PubMed  CAS  Google Scholar 

  • Abdelzaher A, Wright M, Ortega C, Solo-Gabriele H, Miller G, Elmir S, Newman X, Shih P, Bonilla JA, Bonilla TD, Palmer CJ, Scott T, Lukasik J, Harwood VJ, McQuaig S, Sinigalliano C, Gidley M, Plano L, Zhu X, Wang JD, Fleming L (2010) Presence of pathogens and indicator microbes at a non-point source subtropical recreational marine beach. Appl. Environ. Microbiol. 76(3): 724–732

    Article  PubMed  CAS  Google Scholar 

  • Ahmed W, Powell D, Goonetilleke A, Gardner T (2008) Detection and source identification of faecal pollution in non-sewered catchment by means of host-specific molecular markers. Water Sci. Technol. 58(3): 579–586

    Article  PubMed  CAS  Google Scholar 

  • Abdelzaher AM, Wright ME, Ortega C, Hasan AR, Shibata T, Solo-Gabriele HM, Kish J, Withum K, He G, Elmir SM, Bonilla JA, Bonilla TD, Palmer CJ, Scott TM, Lukasik J, Harwood VJ, McQuaig S, Sinigalliano CD, Gidley ML, Wanless D, Plano LRW, Garza AC, Zhu X, Stewart JR, Dickerson Jr JW, Yampara-Iquise H, Carson C, Fleisher JM, Fleming LE, (201X) Daily Measures of Microbes and Human Health at a Non-point Source Marine Beach. Journal of Water and Health. In press

    Google Scholar 

  • Ahmed W, Goonetilleke A, Powell D, Chauhan K, Gardner T (2009) Comparison of molecular markers to detect fresh sewage in environmental waters. Water Res. 43(19): 4908–4917

    Article  PubMed  CAS  Google Scholar 

  • Avelar KES, Moraes SR, Pinto, LJF, de Souza WDG, Domingues RMCP, de Souza Ferreira MC (1998) Influence of stress conditions on Bacteroides fragilis survival and protein profiles. Zentralbl. Bakteriol. 287: 399–409

    PubMed  CAS  Google Scholar 

  • Bernhard, AE, Field KG (2000a) Identification of nonpoint sources of fecal pollution in coastal waters by using hostspecific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl. Environ. Microbiol. 66: 1587–1594

    Article  PubMed  CAS  Google Scholar 

  • Bernhard AE, Field KG (2000b) A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides prevotella genes encoding 16S rRNA. Appl. Environ. Microbiol. 66: 4571–4574

    Article  PubMed  CAS  Google Scholar 

  • Betancourt W Q, Fujioka RS (2006) Bacteroides spp. as reliable marker of sewage contamination in Hawaii’s environmental waters using molecular techniques. Water Sci. Technol. 54: 101–107

    PubMed  CAS  Google Scholar 

  • Boehm AB, Fuhrman JA, Mrse RD, Grant SB (2003) Tiered approach for identification of a human fecal pollution source at a recreational beach: case study at Avalon Bay, Catalina Island, California. Environ. Sci. Technol. 37: 673–680

    Article  PubMed  CAS  Google Scholar 

  • Boehm AB, Grant SB, Kim J-H, Mowbray SL, McGee CD, Clark CD, Foley DM, Wellman DE (2002a) Decadal and shorter period variability of surf zone water quality at Huntington Beach, California. Environ. Sci. Technol. 36: 3885–3892

    Article  PubMed  CAS  Google Scholar 

  • Boehm AB, Sanders BF, and Winant CD (2002b) Cross-shelf transport at Huntington Beach -Implications for the fate of sewage discharged through an offshore ocean outfall. Environmental Science & Technology. 36: 1899–1906

    Article  CAS  Google Scholar 

  • Boehm AB, Shellenbarger GG, Paytan A (2004) Groundwater Discharge: A potential association with fecal indicator bacteria in the surf zone. Environ. Sci. Technol. 38: 3558–3566

    Article  PubMed  CAS  Google Scholar 

  • Boehm AB, Weisberg SB (2005) Tidal forcing of enterococci at marine recreational beaches at fortnightly and semidiurnal frequencies. Environ. Sci. Technol. 39: 5575–5583

    Article  PubMed  CAS  Google Scholar 

  • Boehm AB, Keymer DP, Shellenbarger GG (2005) An analytical model of enterococci inactivation, grazing, and transport in the surf zone of a marine beach. Water Res. 39: 3565–3578

    Article  PubMed  CAS  Google Scholar 

  • Boehm AB, Yamahara KM, Love DC, Peterson BM, McNeill K, Nelson KL (2009a) Covariation and photoinactivation of traditional and novel indicator organisms and human viruses at a sewage-impacted marine beach. Environ. Sci. Technol., 43: 8046–8052

    Article  PubMed  CAS  Google Scholar 

  • Boehm AB, Ashbolt NJ, Colford JM Jr, Dunbar LE, Fleming LE, Gold MA, Hansel JA, Hunter PR, Ichida AM, McGee CD, Soller JA, Weisberg SB (2009b) A sea change ahead for recreational water quality criteria. J. Water Health. 7(1): 9–20

    Article  PubMed  Google Scholar 

  • Bonilla TD, Nowosielski K, Esiobu N, McCorquodale DS, Rogerson A (2006) Species assemblages of Enterococcus indicate potential sources of fecal bacteria at a south Florida recreational beach Source. Marine Pollution Bulletin. 52(7): 807–810

    Article  PubMed  CAS  Google Scholar 

  • Bonilla TD, Nowosielski K, Cuvelier M, Hartz A, Green M, Esiobu N, McCorquodale DS, Fleisher JM, Rogerson A (2007) Prevalence and distribution of fecal indicator organisms in South Florida beach sand and preliminary assessment of health effects associated with beach sand exposure. Marine Pollution Bulletin. 54: 1472–1482

    Article  PubMed  CAS  Google Scholar 

  • Bonjoch X, Balleste E, Blanch AR (2004) Multiplex PCR with 16S rRNA gene-targeted primers of Bifidobacterium spp. to identify sources of fecal pollution. Appl. Environ. Microbiol. 70: 3171–3175

    Article  PubMed  CAS  Google Scholar 

  • Borrego JJ, Morinigo MA, de Vicente A, Cornax R, Romero P (1987) Coliphages as an indicator of faecal pollution in water. Its relationship with indicator and pathogenic microorganisms. Water Res. 21: 1473–1480

    Article  CAS  Google Scholar 

  • Borrego J, Cornax R, Morinigo MA, Martinez-Manzanares E, Romero P (1990) Coliphages as an indicator of faecal pollution in water, Their survival and productive infectivity in natural aquatic environments. Water Res. 24: 111–116

    Article  Google Scholar 

  • Bruins MJ, Juffer P, Wolfhagen MJ, Ruijs GJ (2007). Salt tolerance of methicillin-resistant and methicillin-susceptible Staphylococcus aureus. J. Clin. Microbiol. 45: 682–683

    Article  PubMed  Google Scholar 

  • Byappanahalli MN, Whitman RL, Shively DA, Ting WT, Tseng CC, Nevers MB (2006) Seasonal persistence and population characteristics of Escherichia coli and enterococci in deep backshore sand of two freshwater beaches. J. Water Health. 4: 313–20

    PubMed  Google Scholar 

  • Cabelli V, Dufour A, Levin M, Habermann P (1975) The impact of pollution on marine bathing beaches: an epidemiological study. In: Middle Atlantic Continental Shelf and the New York Bight: Proceedings of the Symposium, American Society of Limnology and Oceanography, 3–5 November 1975, Waco, TX, USA

    Google Scholar 

  • Cabelli VJ, Dufour AP, Levin MA, McCabe LJ, Haberman PW (1979) Relationship of microbial indicators to health effects at marine bathing beaches. Am J. Public Health. 69: 690–696

    Article  PubMed  CAS  Google Scholar 

  • Cabelli VJ, Dufour AP, McCabe L, Levin MA (1982) Swimming-associated gastroenteritis and water quality. Am. J. Epidemiol. 115: 606–616

    PubMed  CAS  Google Scholar 

  • Cao Y, Griffith JF, Weisberg SB (2009) Evaluation of optical brightener photodecay characteristics for detection of human fecal contamination. Water Res. 43(8): 2273–2279

    Article  PubMed  CAS  Google Scholar 

  • Carillo M, Estrada E, Hazen TC (1985) Survival and enumeration of the fecal indicator Bifidobacterium adolescentis and E. coli in tropical rain forest watershed. Appl. Environ. Microbiol. 50: 468–476

    PubMed  CAS  Google Scholar 

  • Charoenca N, Fujioka R (1993) Assessment of staphylococcus bacteria in Hawaii marine recreational waters. Wat. Sci. Tech. 27(3–4): 283–289

    Google Scholar 

  • Chen Z, Pavelic P, Dillon P, Naidu R (2002) Determination of caffeine as a tracer of sewage effluent in natural waters by on-line solid-phase extraction and liquid chromatography with diode-array detection. Water Res. 36: 4830–4838

    Article  PubMed  CAS  Google Scholar 

  • Choi S, Chu W, Brown J, Becker S J, Harwood VJ, Jiang SC (2003) Application of enterococci antibiotic resistance patterns for contamination source identification at Huntington Beach, California. Marine Pollution Bulletin. 46: 748–755

    Article  PubMed  CAS  Google Scholar 

  • Chung H, Sobsey MD (1993) Comparative survival of indicator viruses and enteric viruses in seawater and sediments. Water Sci. Technol. 27: 425–428

    Google Scholar 

  • Colford JM Jr., Wade TJ, Schiff KC (2007) Water quality indicators and the risk of illness at beaches with nonpoint sources of fecal contamination. Epidemiology. 18(1): 27–35

    Article  PubMed  Google Scholar 

  • Cornax R, Morinigo MA, Balebona MC, Castro D, Borrego J (1991) Significance of several bacteriophage groups as indicators of sewage pollution in marine waters. Water Res. 25: 673–678

    Article  Google Scholar 

  • De Sieyes NR, Yamahara KM, Layton BA, Joyce EH, Boehm AB (2008) Submarine discharge of nutrient-enriched fresh groundwater at Stinson Beach, California is enhanced during neap tides. Limnology and Oceanography. 53: 1434–1445

    Article  Google Scholar 

  • Desmarais TR, Solo-Gabriele HM, Palmer CJ (2002) Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Appl. Environ. Microbiol. 68(3): 1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Dick LK, Bernhard AE, Brodeur TJ, Santo Domingo JW, Simpson JM, Walters SP, Field KG (2005) Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Appl. Environ. Microbiol. 71: 3184–3191

    Article  PubMed  CAS  Google Scholar 

  • Dick LK, Stelzer EA, Bertke EE, Fong DL, Stoeckel DM. 2010. Relative decay of Bacteroidales microbial source tracking markers and cultivated Escherichia coli in freshwater microcosms. Appl. Environ. Microbiol. 76(10): 3255–3262

    Article  PubMed  CAS  Google Scholar 

  • Dickerson JW Jr, Hagedorn C, Hassall A (2007) Detection and remediation of human-origin pollution at two public beaches in Virginia using multiple source tracking methods. Water Res. 41(16): 3758–3770

    Article  PubMed  CAS  Google Scholar 

  • Dutka BJ, Shaarawi AE, Martins MT (1987) North and south American studies on the potential of coliphage as a water quality indicator. Water Res. 21: 1127–1134

    Article  CAS  Google Scholar 

  • Elmir SM, Wright ME, Solo-Gabriele HM, Abdelzaher A, Fleming LE, Miller G, Rybolowik M, Shih M-T P, Pillai SP, Cooper J A, Quaye EA (2007) Quantitative evaluation of bacteria released by bathers in a marine water. Water Res. 41: 3–10

    Article  PubMed  CAS  Google Scholar 

  • Elmir SM, Shibata T, Solo-Gabriele HM, Sinigalliano CD, Gidley ML, Miller G, Plano L, Kish J, Withum K, Fleming L (2009) Quantitative evaluation of enterococci and Bacteroidales released by adults and toddlers in marine water. Water Res. 43: 4610–4616

    Article  PubMed  CAS  Google Scholar 

  • Facklam RR, Sahm DF, Texeira LM (1999) Enterococcus. In Manual of clinical microbiology. 7th edition. Edited by: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH. ASM press, Washington, DC, p. 297–305

    Google Scholar 

  • Feagins AR, Opriessnig T, Guenette DK, Halbur PG, Meng X-J (2007) Detection and characterization of infectious Hepatitis E virus from commercial pig livers sold in local grocery stores in the USA. J. Gen. Virol. 88: 912–917

    Article  PubMed  CAS  Google Scholar 

  • Ferguson DM, Moore DF, Getrich MA, Zhowandai MH (2005) Enumeration and speciation of enterococci found in marine and intertidal sediments and coastal water in southern California. Journal of Applied Microbiology. 99: 598–608

    Article  PubMed  CAS  Google Scholar 

  • Field KG, Bernhard AE, Brodeur TJ (2003) Molecular approaches to microbiological monitoring: fecal source detection. Environmental Monitoring and Assessment. 81: 313–326

    Article  PubMed  CAS  Google Scholar 

  • Fiksdal L, Maki JS, LaCroix SJ, Staley JT (1985) Survival and detection of Bacteroides spp., prospective indicator bacteria. Appl. Environ. Microbiol. 49: 148–150

    PubMed  CAS  Google Scholar 

  • Fleisher JM, Fleming LE, Solo-Gabriele HM, Kish JK, Sinigalliano CD, Plano LRW, Elmir SM, Wang JD, Withum K, Shibata T, Gidley ML, Abdelzaher A, He G, Ortega C, Zhu X, Wright M, Hollenbeck J, Backer LC (2010) The BEACHES study: health effects and exposures from non-point source microbial contaminants in subtropical recreational marine waters. International Journal of Epidemiology. 39(5): 1291–1298

    PubMed  CAS  Google Scholar 

  • Florida Department of Health (2009) Florida Healthy Beaches Program, Florida Dept. of Health. 6 Oct. 2008. http://esetappsdoh.doh.state.fl.us/irm00beachwater/default.aspx

  • Francy DS, Gifford AM, Darner RA (2003) Escherichia coli at Ohio bathing beaches—Distribution, sources, wastewater indicators, and predictive modeling, Water-Resources Investigations Report 02–4285. U.S. Geological Survey, Columbus, OH, 2003

    Google Scholar 

  • Fujioka RS, Roll K, Morens D (1999) A Pilot Epidemiological Study of Health Risks Associated with Swimming at Kuhio Beach. Hawaii Water Resources Research Center.

    Google Scholar 

  • Fujioka RS (2001) Monitoring coastal marine waters for spore-forming bacteria of faecal and soil origin to determine point from non-point source pollution. Water Sci Technol. 44: 181–188

    PubMed  CAS  Google Scholar 

  • Gauthier F, Archibald F (2001) The ecology of “fecal indicator” bacteria commonly found in pulp and paper mill water systems. Wat Res. 35: 2207–2218

    Article  CAS  Google Scholar 

  • Gerba, CP (2000) Assessment of enteric pathogen shedding by bathers during recreational activities and its impact on water quality. Quant. Microbiol. 2: 55–68

    Article  Google Scholar 

  • Given S, Pendleton LH, Boehm AB (2006) Regional public health cost estimates of contaminated coastal waters: a case study of gastroenteritis at Southern California beaches. Environ. Sci. Technol. 40: 4851–4858

    Article  PubMed  CAS  Google Scholar 

  • Grant SB, Sanders BF, Boehm AB, Redman JA, Kim JH, Mrse RD, and others (2001) Generation of enterococci bacteria in a coastal saltwater marsh and its impact on surf zone water quality. Environ. Sci. Technol. 35: 2407–2416

    Google Scholar 

  • Grant SB, Kim JH, Jones BH, Jenkins SA, Wasyl J, Cudaback C (2005) Surf zone entrainment, along-shore transport, and human health implications of pollution from tidal outlets. Journal of Geophysical Research 110: C10025, doi:10.1029/2004JC002401

    Article  Google Scholar 

  • Hartel PG, Hagedorn C, McDonald JL, Fisher JA, Saluta MA, Dickerson JW Jr, Gentit LC, Smith SL, Mantripragada NS, Ritter KJ, Belcher CN (2007) Exposing water samples to ultraviolet light improves fluorometry for detecting human fecal contamination. Water Res. 41(16): 3629–3642

    Article  PubMed  CAS  Google Scholar 

  • Hartel PG, Rodgers K, Moody GL, Hemmings SN, Fisher JA, McDonald JL, Belcher, CN (2008) Combining targeted sampling and fluorometry to identify human fecal contamination in a freshwater creek. J. Water Health. 6(1): 105–116

    Article  PubMed  CAS  Google Scholar 

  • Harwood V J, Delahoya NC, Ulrich RM, Kramer MF, Whitlock JE, Garey JR, Lim DV (2004) Molecular confirmation of Enterococcus faecalis and E. faecium from clinical, faecal and environmental sources. Lett. Appl. Microbiol. 38: 476–482

    Article  PubMed  CAS  Google Scholar 

  • Harwood VJ, Levine AD, Scott TM, Chivukula V, Lukasik J, Farrah SR, Rose JB (2005) Validity of the indicator organism paradigm for pathogen reduction in reclaimed water and public health protection. Appl. Environ. Microbiol. 71(6): 3163–3170

    Article  PubMed  CAS  Google Scholar 

  • Havelaar, AH, van Olhen M, Drost YC (1993) F-specific RNA coliphages are adequate model organisms for enteric viruses in fresh water. Appl. Environ. Microbiol. 59: 2956–2962

    PubMed  CAS  Google Scholar 

  • Havelaar AH, Pot-Hogeboom WM (1988) F-specific RNA-bacteriophages as model viruses in water hygiene: ecological aspects. Water Sci. Technol. 20: 399–407

    Google Scholar 

  • Hill VR, Polaczyk A, Hahn D, Jothikumar N, Cromeans T, Roberts J, Amburgey J (2005) Development of a rapid method for simultaneous recovery of diverse microbes in drinking water by ultrafiltration with sodium polyphosphate and surfactants. Appl. Environ. Microbiol. 71: 6878–6884

    Article  PubMed  CAS  Google Scholar 

  • Hill VR, Kahler A, Jothikumar N, Johnson T, Hahn D, Cromeans T (2007) Multi-state evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-L tap water samples. Appl. Environ. Microbiol. 73: 4218–4225

    Article  PubMed  CAS  Google Scholar 

  • Huijsdens XW, Linskens RK, Mak M, Meuwissen SG, Vandenbroucke-Grauls CM, Savelkoul PH.(2002) Quantification of bacteria adherent to gastrointestinal mucosa by real-Time PCR. J. Clin. Microbiol. 40(12): 4423–4427

    Article  PubMed  CAS  Google Scholar 

  • Hunter PR, Thompson RC (2005) The zoonotic transmission of Giardia and Cryptosporidium. Int J Parasitol. 35(11–12): 1181–1190

    Article  PubMed  Google Scholar 

  • Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stetzenbach LD (2002) Manual of Environmental Microbiology, second ed. ASM Press, Washington, DC.

    Google Scholar 

  • Jenkins T M, Scott TM, Morgan MR, Rose JB (2005) Occurrence of alternative fecal indicators and enteric viruses in Michigan rivers. J. Great Lakes Res. 31: 22–31

    Article  Google Scholar 

  • Jeong, Y, Sanders B F, McLaughlin K, Grant SB (2008) Treatment of dry weather urban runoff in tidal saltwater marshes: A longitudinal study of the Talbert Marsh in Southern California. Environ. Sci. Technol. 42: 3609–3614

    Article  PubMed  CAS  Google Scholar 

  • Kildare BJ, Leutenegger CM, McSwain BS, Bambic DG, Rajal VB, Wuertz S (2007) 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: A Bayesian approach. Water Res. 41: 3701–3715

    Article  PubMed  CAS  Google Scholar 

  • Kim, JH, Grant SB, McGee C D, Sanders BF, Largier JL (2004) Locating sources of surf zone pollution: A mass budget analysis of fecal indicator bacteria at Huntington Beach, California. Environ. Sci. Technol. 38: 2626–2636

    Article  PubMed  CAS  Google Scholar 

  • Knee KL, Gossett R, Boehm AB, Paytan A (2010) Caffeine and agricultural pesticide concentrations in surface water and groundwater on the north shore of Kaua’i (Hawai’i, USA). Mar. Poll. Bull. 60(8): 1376–1382

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A National Reconnaissance. Environ. Sci. Technol. 36(6): 1202–1211

    Article  PubMed  CAS  Google Scholar 

  • Kott Y, Roze N, Sperber S, Betzer N (1974) Bacteriophages as viral pollution indicators. Water Res. 8: 165–171

    Article  Google Scholar 

  • Kreader CA (1995) Design and evaluation of Bacteroides DNA probes for the specific detection of human fecal pollution. Appl. Environ. Microbiol. 61: 1171–1179

    PubMed  CAS  Google Scholar 

  • Lamendella R, Santo Domingo JW, Kelty C, Oerther DB (2008) Bifidobacteria in feces and environmental waters. Appl. Environ. Microbiol. 74: 575–584

    Article  PubMed  CAS  Google Scholar 

  • Lawson PA, Collins MD, Falsen E, Foster G (2006) Catellicoccus marimammalium gen. nov., sp. nov., a novel Gram-positive, catalase-negative, coccus-shaped bacterium from porpoise and grey seal. Int. J. Syst. Evol. Microbiol. 56(2): 429–432.

    Article  PubMed  CAS  Google Scholar 

  • Layton BA, Walters SP, Lam L, Boehm AB (2010) Enterococcus species distribution among human and animal hosts using multiplex PCR. Journal of Applied Microbiology. 109(2): 539–547

    PubMed  CAS  Google Scholar 

  • Leclerc H, Devriese LA, Mossel DAA ( 1996) Taxonomical changes in intestinal (faecal) enterococci and streptococci: consequences on their use as indicators of faecal contamination in drinking water. J. Appl. Bacteriol. 81: 459–466

    PubMed  CAS  Google Scholar 

  • Leeming R, Ball A, Ashbolt N, Nichols P (1996) Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters. Water Res. 30(12): 2893–2900

    Article  CAS  Google Scholar 

  • Leskinen SD, Brownell M, Lim DV, Harwood VJ (2010) Hollow-fiber ultrafiltration and PCR detection of human-associated genetic markers from various types of surface water in Florida. Appl. Environ. Microbiol. 76(12): 4116–4117

    Article  PubMed  CAS  Google Scholar 

  • Long SC, El-Khoury SS, Oudejans SJG, Sobsey MD, Vinjé J (2005) Assessment of sources and diversity of male-specific coliphages for source tracking. Environmental Engineering Science 22(3): 367–377 doi:10.1089/ees.2005.22.367

    Article  CAS  Google Scholar 

  • Lu J, Santo Domingo JW, Lamendella R, Edge T, Hill S (2008) Phylogenetic diversity and molecular detection of bacteria in gull feces. Appl. Environ. Microbiol., 74(13): 3969–3976

    Article  PubMed  CAS  Google Scholar 

  • Maier RM, Pepper IL, Gerba CP (2008) Environmental Microbiology. Second Edition. Academic Press, New York

    Google Scholar 

  • Matsuki T, Watanabe K, Fujimoto J, Miyamoto Y, Takada T, Matsumoto K, Oyaizu H, Tanaka R (2002) Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl. Environ. Microbiol. 68: 5445–5451

    Article  PubMed  CAS  Google Scholar 

  • Matsuki T, Watanabe K, Fujimoto J, Kado Y, Takada T, Matsumoto K, Tanaka R (2004) Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl. Environ. Microbiol. 70: 167–173

    Article  PubMed  CAS  Google Scholar 

  • Mika KB, Imamura G, Chang C, Conway V, Fernandez G, Griffith JF, Kampalath RA, Lee CM, Lin CC, Moreno R, Thompson S, Whitman RL and Jay JA (2009) Pilot- and bench-scale testing of faecal indicator bacteria survival in marine beach sand near point sources. Journal of Applied Microbiology. 107: 72–84

    Article  PubMed  CAS  Google Scholar 

  • Nebra Y, Bonjoch X, Blanch AR (2003) Use of Bifidobacterium dentium as an indicator of the origin of fecal water pollution. Appl. Environ. Microbiol. 69: 2651–2656

    Article  PubMed  CAS  Google Scholar 

  • Nevers MB, Whitman RL (2005) Nowcasting modeling of Escherichia coli concentrations at multiple urban beaches of southern Lake Michigan. Water Res. 39: 5250–5650

    Article  PubMed  CAS  Google Scholar 

  • Nevers MB, Whitman RL, Fric WA, Ge Z (2007) Interaction and influence of two creeks on E. coli concentrations of nearby beaches: Exploration of predictability and mechanisms. J. Environ. Qual. 36, 1338–1345

    Article  PubMed  CAS  Google Scholar 

  • Nevers MB, Whitman RL (2008) Coastal strategies to predict Escherichia coli concentrations for beaches along a 35 km stretch of southern Lake Michigan. Environ. Sci. Technol. 42(12): 4454–4460

    Article  PubMed  CAS  Google Scholar 

  • Nevers MN, Boehm AB (2010) Modeling Fate and Transport of Fecal Bacteria in Surface Water. In M. Sadowsky and R. Whitman (eds.) The Fecal Indicator Bacteria, ASM Press, Herndon, VA

    Google Scholar 

  • Noble R T, Griffith JF, Blackwood AD, Fuhrman JA, Gregory JB, Hernandez X, Liang X, Bera AA, Schiff K (2006) Multitiered approach using quantitative PCR to track sources of fecal pollution affecting Santa Monica Bay, California. Appl. Environ. Microbiol. 72: 1604–1612

    Article  PubMed  CAS  Google Scholar 

  • Noblet JA, Young DL, Zeng EY, and Ensari S (2004) Use of fecal steroids to infer the sources of fecal indicator bacteria in the lower Santa Ana River Watershed, California: Sewage is an unlikely source. Environ. Sci. Technol. 38: 6002–6008

    Article  PubMed  CAS  Google Scholar 

  • Olyphant, GA, Whitman, RL (2004) Element of a predictive models for determining beach closures in a real-time basis: The case of 63rd street beach Chicago. Environmental Monitoring and Assessment. 98: 175–190

    Article  PubMed  Google Scholar 

  • Paul JH, Jiang SC, Rose JB (1991) Concentration of viruses and dissolved DNA from aquatic environments by vortex flow filtration. Appl. Environ. Microbiol. 57: 2197–2204

    PubMed  CAS  Google Scholar 

  • Paul JH, Rose JB, Jiang SC, London P, Xhou X, Kellogg C (1996) Coliphage and indigenous phage in Mamala bay, Oahu, Hawaii Appl. Environ. Microbiol. 63: 133–138

    Google Scholar 

  • Payment P, Franco E (1993) Clostridium perfringens and somatic coliphages as indicators of the efficiency of drinking water treatment for viruses and protozoan cysts. Appl. Environ. Microbiol. 59: 2418–2424

    PubMed  CAS  Google Scholar 

  • Peeler KA, Opsahl SP, Chanton JP (2006) Tracking anthropogenic inputs using caffeine, indicator bacteria, and nutrients in rural freshwater and urban marine system. Environ. Sci. Technol. 40: 7616–7622

    Article  PubMed  CAS  Google Scholar 

  • Plano LRW, Garza AC, Shibata T, Elmir SM, Kish J, Sinigalliano CD, Gidley ML, Miller G, Withum K, Fleming LE, and Solo-Gabriele HM (2011) Shedding of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus from adult and pediatric bathers in marine waters. BMC Microbiology. 11(5): 1–10

    Google Scholar 

  • Plummer JD, Long SC (2007) Monitoring source water for microbial contamination: evaluation of water quality measures. Water Res. 41: 3716–3728

    Article  PubMed  CAS  Google Scholar 

  • Pourcher AM, Devriese LA, Hernandez JF, Delattre JM (1991) Enumeration by a miniaturized method of Escherichia coli, Streptococcus bovis, and enterococci as indicators of the origin of faecal pollution of waters. J. Appl. Bacteriol. 70(6): 525–530

    Article  PubMed  CAS  Google Scholar 

  • Public Law, 2000. Beaches Environmental Assessment and Coastal Health Act of 2000. Public Law 106-284-Oct. 10, 2000

    Google Scholar 

  • Rhodes MW, Kator H (1999) Sorbitol-fermenting bifidobacteria as indicators of diffuse human fecal pollution in estuarine watersheds. J. Appl. Microbiol. 87: 528–535

    Article  PubMed  CAS  Google Scholar 

  • Rozen Y, Belkin S (2001) Survival of enteric bacteria in seawater. FEMS Microbiology Reviews. 25: 513–529

    Article  PubMed  CAS  Google Scholar 

  • Santoro AE, Boehm AB (2007) Frequent occurrence of the human-specific Bacteroides fecal marker at an open coast marine beach: Relationship to waves, tides, and traditional indicators. Environmental Microbiology. 9: 2038–2049

    Article  PubMed  CAS  Google Scholar 

  • Scott TM, Rose JB, Jenkins TM, Farrah SR, Lukasik J (2002) Microbial source tracking: current methodology and future directions. Appl. Environ. Microbiol. 68: 5796–5803

    Article  PubMed  CAS  Google Scholar 

  • Scott TM, Jenkins TM, Lukasik J, Rose JB (2005) Potential use of a host associated molecular marker in Enterococcus faecium as an index of human pollution. Environ Sci. Technol. 39 (1): 283–287

    Article  PubMed  CAS  Google Scholar 

  • Seurinck S, Defoirdt T, Verstraete W, Siciliano SD (2005) Detection and quantification of the human-specific HF183 Bacteroides 16S rRNA genetic marker with real-time PCR for assessment of human faecal pollution in freshwater. Environ Microbiol. 7: 249–259

    Article  PubMed  CAS  Google Scholar 

  • Shah AH, Abdelzaher AM, Phillips M, Hernandez R, Solo-Gabriele HM, Kish J, Scorzetti G, Fell JW, Diaz MR, Scott TM, Lukasik J, Harwood VJ, McQuaig S, Sinigalliano CD, Gidley ML, Wanless D, Agar A, Lui J, Stewart JR, Plano LRW, Fleming LE (2011) Indicator microbes correlate with pathogenic bacteria, yeasts, and helminthes in sand at a subtropical recreational beach site. Journal of Applied Microbiology. 110: 1571–1583.

    Article  PubMed  CAS  Google Scholar 

  • Shanks OC, White K, Kelty CA, Hayes S, Sivaganesan M, Jenkins M, Varma M, Haugland RA (2010) Performance assessment PCR-based assays targeting bacteroidales genetic markers of bovine fecal pollution. Appl. Environ. Microbiol. 76(5): 1359–1366

    Article  PubMed  CAS  Google Scholar 

  • Shanks OC, Kelty CA, Sivaganesan M, Varma M, Haugland RA (2009) Quantitative PCR for genetic markers of human fecal pollution. Appl. Environ. Microbiol.75(17): 5507–5513

    Article  PubMed  CAS  Google Scholar 

  • Shibata T, Solo-Gabriele HM, Fleming L, Elmir S (2004) Monitoring marine recreational water quality using multiple microbial indicators in an urban tropical environment. Water Res. 38: 3119–3131

    Article  PubMed  CAS  Google Scholar 

  • Shibata T, Solo-Gabriele HM, Sinigalliano CD, Gidley ML, Plano LRW, Fleisher JM, Wang JD, Elmir SM, He G, Wright ME, Abdelzaher AM, Ortega C, Wanless D, Garza AC, Kish J, Scott T, Hollenbeck J, Backer LC, Fleming LE (2010) Evaluation of conventional and alternative monitoring methods for a recreational marine beach with non-point source of fecal contamination. Environmental Science & Technology. 44: 8175–8181

    Google Scholar 

  • Sinigalliano CD, Fleisher JM, Gidley ML, Solo-Gabriele HM, Shibata TM, Plano LRW, Elmir SM, Wanless D, Bartkowiak J, Boiteau R, Withum K, Abdelzaher A, He G, Ortega C, Zhu X, Wright M, Kish J, Hollenbeck J, Backer LC, Fleming LE (2010) Traditional and molecular analyses for fecal indicator bacteria in non-point source subtropical recreational marine waters. Water Res. 44(13): 3763–3772

    Article  PubMed  CAS  Google Scholar 

  • Solo-Gabriele H, Wolfert M, Desmarais T, Palmer C (2000) Sources of E. coli to a sub-tropical coastal environment. Appl. Environ. Microbiol. 66(1): 230–237

    Article  PubMed  CAS  Google Scholar 

  • Sorensen DL, Eberl SG, Dicksa RA (1989) Clostridium perfringens as a point source indicator in non-point polluted streams. Water Res. 23: 191–197

    Article  CAS  Google Scholar 

  • Stapleton C M, Kay D, Wyer MD, Davies C, Watkins J, Kay C, McDonald AT, Porter J, Gawler A (2009) Evaluating the operational utility of a Bacteroidales quantitative PCR-based MST approach in determining the source of faecal indicator organisms at a UK bathing water. Water Res. 43(19): 4888–4899

    Article  PubMed  CAS  Google Scholar 

  • Tang-Liu DD, Williams RL, Riegelman S (1983) Disposition of caffeine and its metabolites in man. J. Pharmacol. Exp. Ther. 224: 180–185

    PubMed  CAS  Google Scholar 

  • Tyrrell GJ, Turnbull L, Teixeira LM, Lefebvre J, Carvalho Mda G, Facklam RR, Lovgren M (2002) Enterococcus gilvus sp. nov. and Enterococcus pallens sp. nov. isolated from human clinical specimens. J. Clin. Microbiol. 40: 1140–1145

    Article  PubMed  Google Scholar 

  • U.S. Environmental Protection Agency (1976) Quality Criteria for Water. Office of Water and Hazardous Materials, Washington D.C. PB-263 943

    Google Scholar 

  • U.S. Environmental Protection Agency (1983) Health Effects Criteria for Marine Recreational Waters. Health Effects Research Laboratory, Research Triangle Park, NC. EPA-600/1-80-031

    Google Scholar 

  • U.S. Environmental Protection Agency (1986) Ambient Water Quality Criteria for Bacteria – 1986. Office of Water Regulations and Standards, Washington DC. EPA 440/5-84-002

    Google Scholar 

  • U.S. Environmental Protection Agency (1989) Drinking Water; National Primary Drinking Water Regulations; Total Coliforms (Inclusing Fecal Coliforms and E. coli); Final Rule. 40 CFR Parts 141 and 142, Federal Register (June 29, 1989), Vol. 54, No. 124: 27544–27568

    Google Scholar 

  • U.S. Environmental Protection Agency (2009a) Review of Zoonotic Pathogens in Ambient Waters. US Environmental Protection Agency, Office of Water, Washington DC. EPA 822-R-09-002

    Google Scholar 

  • U.S. Environmental Protection Agency (2009b) Review of Published Studies to Characterize Relative Risks from Different Sources of Fecal Contamination in Recreational Water. US Environmental Protection Agency, Office of Water, Washington DC. EPA 822-R-09-001

    Google Scholar 

  • Wade TJ, Pai N, Eisenberg JN, Colford JM Jr. (2003) Do U.S. Environmental Protection Agency water quality guidelines for recreational waters prevent gastrointestinal illness? A systematic review and meta-analysis. Environmental Health Perspectives. 111(8): 1102–119

    Article  PubMed  Google Scholar 

  • Wade TJ, Calderon RL, Sams E, Beach M, Brenner KP, Williams AH, Dufour AP (2006) Rapidly measured indicators of recreational water quality are predictive of swimming-associated gastrointestinal illness. Environ Health Perspect. 114: 24–28

    Article  PubMed  Google Scholar 

  • Wang JD, Solo-Gabriele HM, Abdelzaher AM, Fleming LE (2010) Estimation of enterococci input from bathers and animals on a recreational beach using camera images. Marine Pollution Bulletin. 60(8): 1270–1278

    Article  PubMed  CAS  Google Scholar 

  • Walters SP, Yamahara KM, Boehm AB. 2009. Persistence of nucleic acid markers of health-relevant organisms in seawater microcosms: Implications for their use in assessing risk in recreational waters. Water Res. 43: 4929–4939

    Article  PubMed  CAS  Google Scholar 

  • Weigel S, Kallenborn R, Hühnerfuss H (2004) Simultaneous solid-phase extraction of acidic, neutral and basic pharmaceuticals from aqueous samples at ambient (neutral) pH and their determination by gas chromatography-mass spectrometry. J. Chromatogr. A. 1023: 183–195

    Article  PubMed  CAS  Google Scholar 

  • Water Environment Research Foundation (2009) Report on the Expert Scientific Workshop on Critical Research and Science Needs for the Development of Recreational Water Quality Criteria for Inland Waters, Water Environment Research Foundation, Alexandria, VA

    Google Scholar 

  • Wheeler A, Hartel PG, Godfrey DG, Hill JL, Segars WI (2002) Potential of Enterococcus faecalis as a human fecal indicator for microbial source tracking. J. Environ. Qual. 31(4):1286–1293

    Article  PubMed  CAS  Google Scholar 

  • Whitman RL, Nevers MB (2003) Foreshore sand as a source of Escherichia coli in nearshore water of a Lake Michigan beach. Appl. Environ. Microbiol. 2003 69:5555–5562

    Article  PubMed  CAS  Google Scholar 

  • Whitman RL, Nevers MB, Korinek GC, Byappanahalli MN (2004) Solar and temporal effects on Escherichia coli concentration at a Lake Michigan swimming beach. Appl. Environ. Microbiol. 70: 4276–4285

    Article  PubMed  CAS  Google Scholar 

  • Wright ME, Solo-Gabriele HM, Abdelzaher AM, Elmir S, Fleming LE (2011) The inter-tidal zone is the geographic location of elevated concentrations of enterococci. Water Science & Technology. 63(3): 542–549

    Article  PubMed  CAS  Google Scholar 

  • Wright ME, Solo-Gabriele HM, Elmir S, Fleming LE (2009) Microbial load from animal feces at a recreational beach. Marine Pollution Bulletin. 58: 1649–1656

    Article  PubMed  CAS  Google Scholar 

  • Yamahara KM, Walters SP, and Boehm AB (2009) Growth of enterococci in unaltered, unseeded beach sands subjected to tidal wetting. Appl. Environ. Microbiol. 75: 1517–1524

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Wang JD, Solo-Gabriele HM, Fleming LE, Elmir S (2011) A microbial water quality model for recreational marine beaches, Water Research. 45: 2985–2995

    Google Scholar 

Download references

Acknowledgments

ABB acknowledges Dr. Stanley Grant for input on the Huntington Beach case study. ABB acknowledges support from NSF/NIEHS Pacific Research Center for Marine Biomedicine (OCE 0910491). HSG, CS, and TS acknowledge funding support through the National Science Foundation (NSF) and the National Institute of Environmental Health Sciences (NIEHS) Oceans and Human Health Center at the University of Miami Rosenstiel School (NSF 0CE0432368/0911373; NIEHS 1 P50 ES12736) and NSF REU in Oceans and Human Health, and the NSF SGER (NSF SGER 0743987) in Oceans and Human Health. CS acknowledges funding support for development of the canine Bacteroidales qPCR assay by the Northern Gulf Institute, a NOAA Cooperative Institute (NOAA’s Office of Ocean and Atmospheric Research, US Department of Commerce award NA06OAR4320264). CS also acknowledges logistics and materials support by the Source Molecular Corporation for the development of the gull Catellicoccus qPCR assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena M. Solo-Gabriele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Solo-Gabriele, H.M., Boehm, A.B., Scott, T.M., Sinigalliano, C.D. (2011). Beaches and Coastal Environments. In: Hagedorn, C., Blanch, A., Harwood, V. (eds) Microbial Source Tracking: Methods, Applications, and Case Studies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9386-1_20

Download citation

Publish with us

Policies and ethics