Skip to main content

Relating MST Results to Fecal Indicator Bacteria, Pathogens, and Standards

  • Chapter
  • First Online:

Abstract

The regulation of coastal, inland, and flowing waters through the assessment of fecal indicator bacteria (FIB) alone, while protective of public health, provides little information regarding contamination sources. The most effective protection of public health comes through the identification and mitigation or removal of the pollution source. Methods capable of assigning relative contributions to contamination from a variety of sources would be most beneficial to practitioners, as water-body health frequently suffers due to multiple inputs rather than a single, readily identifiable hazard (i.e., point source). The contribution of various potential sources to nonpoint source pollution, particularly in a comingled environment, is difficult to assess. Microbial source tracking (MST) offers the potential to distinguish between the multiple sources of catchment (watershed) fecal indicator sources to inform remediation strategies. Under ideal circumstances, FIB concentrations would relate to pathogen and MST marker survival, persistence, and ecology in aquatic habitats targeting source identification, attenuation, and thereby reduction of human health risk.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alverez J, Porwollik S, Laconcha I (2003). Detection of a Salmonella enterica serovar California strain spreading in Spanish feed mills and genetic characterization with DNA microarrays. Appl. Environ. Microbiol. 69: 7531–7534.

    Article  Google Scholar 

  • Anon (2000). Council of the European Communities. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Union L327, 1–72.

    Google Scholar 

  • Anon (2006). Directive 2006/7/EC of The European Parliament and of the Council of 15th February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC. Official Journal of the European Union L64 (4.3.2006), 37–51.

    Google Scholar 

  • Bartram J, Rees, G (Eds) (2000). Sanitary inspection and microbiological water quality, p. 113–167. In Monitoring Bathing Waters, a Practical Guide to the Design and Implementation of Assessments and Monitoring Programmes. Published on behalf of the USEPA, WHO, and Commission of European Communities. E & FN Spon Publishing, London, UK and New York, NY.

    Google Scholar 

  • Boehm AB, Fuhrman JA, Mrše RD et al (2003). Tiered approach for identification of a human fecal pollution source at a recreational beach: Case study at Avalon Bay, Catalina Island, California. Environ. Sci. Technol. 37(4): 673–680. doi: 10.1021/es025934x.

    Article  CAS  Google Scholar 

  • Carrillo M, Estrada E, Hazen T (1985). Survival and enumeration of the fecal indicators Bifidobacterium adolescentis and Escherichia coli in a tropical rain forest watershed. Appl. Environ. Microbiol. 50(2): 468–476.

    PubMed  CAS  Google Scholar 

  • Carroll SP, Dawes L, Hargreaves M et al (2009). Faecal pollution source identification in an urbanising catchment using antibiotic resistance profiling, discriminant analysis and partial least squares regression. Water Res. 43(5): 1237–1246.

    Article  PubMed  CAS  Google Scholar 

  • Chao KK, Chao CC, Chao WL (2003). Suitability of the traditional microbial indicators and their enumerating methods in the assessment of fecal pollution of subtropical freshwater environments. J. Microbiol. Immunol. Infect. 36(4): 288–93.

    PubMed  Google Scholar 

  • Chizhikov V, Wagner M, Ivshina A et al (2002). Detection and genotyping of human group A rotaviruses by oglionucleotide microarray hybridization. J. Clin. Microbiol. 40: 2398–2047.

    Article  PubMed  CAS  Google Scholar 

  • Chou CC, Lin YC, Su JJ (2004). Microbial indicators for differentiation of human- and pig-sourced fecal pollution. J. Environ. Sci. Health A 39: 1415–1421.

    Google Scholar 

  • Davies C, Long J, Donald M et al (1995). Survival of fecal microorganisms in marine and freshwater sediments. Appl. Environ. Microbiol. 61: 1888–1896.

    Article  PubMed  CAS  Google Scholar 

  • Desmarais TR, Solo-Gabriele HM, Palmer CJ (2002). Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Appl. Environ. Microbiol. 68(3): 1165–1172.

    Article  PubMed  CAS  Google Scholar 

  • Dutka B, Shaarawi A, Martins M (1987). North and South American studies on the potential of coliphage as a water quality indicator. Wat. Res. 21: 1127–1134.

    Article  PubMed  CAS  Google Scholar 

  • Duris JW, Haack SK, Fogarty LR (2009). Gene and antigen markers of shiga-toxin producing E. coli from Michigan and Indiana river water: occurrence and relation to recreational water quality criteria. J. Environ. Qual. 38: 1878–1886. doi:10.2134/jeq2008.0225.

    Article  PubMed  CAS  Google Scholar 

  • EA (2000). Environment Agency (EA): The microbiology of recreational and environmental waters 2000. S. C. O. Analysts, the Environment Agency, Bristol, United Kingdom.

    Google Scholar 

  • Edge TA, Hill S, Stinson G, Seto P et al (2007). Tracking sources of microbial pollution in recreational waters: experience from two Toronto beaches. Session 8.3, NOVATECH 2007: 1649–1656.

    Google Scholar 

  • Edge TA, Schaefer K (2005). Microbial source tracking in aquatic ecosystems: the state of the science and an assessment of needs. NWRI Scientific Assessment Report Series No. 7 and Linking Water Science to Policy Workshop Series Report. March 2005. Environment Canada.

    Google Scholar 

  • European Union (2006). Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006.

    Google Scholar 

  • Fey A, Eichler S, Flavier S et al (2004). Establishment of a real-time PCR-based approach for accurate quantification of bacterial RNA targets in water, using Salmonella as a model organism. Appl. Environ. Microbiol. 70: 3618–3623.

    Article  PubMed  CAS  Google Scholar 

  • Field K, Scott T (2008). Microbial Source Tracking. Michigan State University. Online: http://www.sourcemolecular.com/newsite/pdfs/Microbial%20Source%20Tracking%20White%20Paper.pdf.

  • Field C, Samaspour M (2007). Fecal source tracking, the indicator paradigm, and managing water quality. Water Res. 41: 3517–3538.

    Article  PubMed  CAS  Google Scholar 

  • Foley SL, Lynne AM, Nayak R (2009). Molecular typing methodologies for microbial source tracking and epidemiological investigations of Gram-negative bacterial foodborne pathogens. Infect. Genet. Evol. 9: 430–440.

    Article  PubMed  CAS  Google Scholar 

  • Fout GS, Martinson BC, Moyer MWN et al (2003). A multiplex reverse transcription-PCR method for detection of human enteric viruses in groundwater. Appl. Environ. Microbiol. 69: 3158–3164.

    Article  PubMed  CAS  Google Scholar 

  • Franck SM, Bosworth BT, Moon HW (1998). Multiplex PCR for enteropathogenic, attaching and effacing, and shiga-toxin-producing E. coli strains from calves. J. Clin. Microbiol. 36: 1795–1797.

    PubMed  CAS  Google Scholar 

  • Francy DS, Struffolino P, Brady AMG et al (2005). A spatial, multivariable approach for identifying proximate sources of Escherichia coli to Maumee Bay, Lake Erie, Ohio. USGS Open File Report 2005–1386. http://pubs.usgs.gov/of/2005/1386/pdf/OFR%202005–1386.pdf. Accessed 6 Dec 2009.

  • Fremaux BJ, Gritzfeld, Boa T, Yost KC (2009). Evaluation of host-specific Bacteroidales 16S rRNA gene markers as a complementary tool for detecting fecal pollution in a prairie watershed. Water Res. 43(19): 4838–4849.

    Article  PubMed  CAS  Google Scholar 

  • Fukushima M, Kakinuma K, Kawaguchi R (2002). Phylo genetic analysis of Salmonella, Shigella and E. coli strains on the basis of the gyrB gene sequence. J. Clin. Microbiol. 40: 2779–2785.

    Article  PubMed  CAS  Google Scholar 

  • Gawler AH, Beecher JE, Brandão J et al (2007). Validation of host-specific Bacteriodales 16S rRNA genes as markers to determine the origin of faecal pollution in Atlantic Rim countries of the European Union. Water Res. 41: 3780–3784.

    Article  PubMed  CAS  Google Scholar 

  • Giebel RA, Fredenberg W, Sandrin TR (2008). Characterization of environmental isolates of Enterococcus spp. by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Water Res. 42: 931–940.

    Article  PubMed  CAS  Google Scholar 

  • Great Lakes Regional Collaboration (2005). Great Lakes Regional Collaboration to protect and restore the Great Lakes. http://www.glrc.us, Accessed 7 Dec 2009.

  • Gregory JB, Litaker RW, Noble RT (2006). Rapid one-step quantitative reverse transcriptase PCR assay with competitive internal positive control for detection of enteroviruses in environmental samples. Appl. Environ. Microbiol. 72(6): 3960–3967.

    Article  PubMed  CAS  Google Scholar 

  • Griffith J, Weisberg SB (2006). Evaluation of rapid microbiological methods for measuring recreational water quality. Westminster, CA: Southern California Coastal Water Research Project.

    Google Scholar 

  • Guan S, Xu R, Chen S et al (2002). Development of a procedure for discriminating among E. coli isolates from animal and human sources. Appl. Environ. Microbiol. 68: 2690–2698.

    Article  PubMed  CAS  Google Scholar 

  • Guy RA, Payment P, Krull UJ, Horgen PA (2003). Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and sewage. Appl. Environ. Microbiol. 69(9): 5178–5185.

    Article  PubMed  CAS  Google Scholar 

  • Haack SK, Duris JW, Fogarty LR et al (2009). Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators. J. Environ. Qual. 38: 248–258. doi:10.2134/jeq2008.0173.

    Article  PubMed  CAS  Google Scholar 

  • Haramoto E, Katayama H, Ohgaki S (2004). Detection of noroviruses in tap water in Japan by means of a new method for concentrating enteric viruses in large volumes of freshwater. Appl. Environ. Microbiol. 70: 2154–2160.

    Article  PubMed  CAS  Google Scholar 

  • Haugland RA, Siefring SC, Wymer LJ et al (2005). Comparison of enterococcus measurements in freshwater at two recreational beaches by quantitative polymerase chain reaction and membrane filter culture analysis. Water Res. 39(4): 559–568.

    Article  PubMed  CAS  Google Scholar 

  • He JW, Jiang S (2005). Quantification of enterococci and human adenoviruses in environmental samples by real-time PCR. Appl. Environ. Microbiol. 71(5): 2250–2255.

    Article  PubMed  CAS  Google Scholar 

  • Health Canada (2009). Guidelines for Canadian recreational water quality (DRAFT). Online: http://www.consultations.hc-sc.gc.ca.

  • Hoebe CJPA, Vennema H, de Roda Husman AM, van Duynhoven YTHP (2004). Norovirus outbreak among primary schoolchildren who had played in a recreational water fountain. J. Infect. Dis. 189(4): 699–705.

    Article  PubMed  Google Scholar 

  • Horman A, Rimhanen-Finne R, Manula L et al (2004). Campylobacter spp., Giardia spp., Cryptosporidium spp., noroviruses, and indicator organisms in surface water in southwestern Finland, 2000–2001. Appl. Environ. Microbiol. 70: 87–95.

    Article  PubMed  Google Scholar 

  • Hsu WB, Wang JH, Chen PC et al (2007). Detecting low concentrations of Shigella sonnei in environmental water samples by PCR. FEMS Microbiol. Lett. 270(2): 291–298.

    Article  PubMed  CAS  Google Scholar 

  • Ibekwe AM, Watt PM, Grieve CM (2002). Multiplex fluorogenic real-time PCR for detection and quantification of Escherichia coli O157:H7 in dairy wastewater wetlands. Appl. Environ. Microbiol. 68: 4853–4862.

    Article  PubMed  CAS  Google Scholar 

  • Johnson DW, Pieniazek NJ, Griffin DW et al (1995). Development of a PCR protocol for sensitive detection of Cryptosporidium oocysts in water samples. Appl. Environ. Microbiol. 61(11): 3849–3855.

    PubMed  CAS  Google Scholar 

  • Johnson J, Stell, A (2001). PCR for specific detection of H7 flagellar variant of fliC among extraintestinal pathogenic Escherichia coli. J. Clin. Microbiol. 39: 3712–3717.

    PubMed  CAS  Google Scholar 

  • Kay D, Lee R, Wyer MD et al (2010). Experience from recreational waters. In: Safe management of shellfish and harvest waters. G. Rees, K. Pond, D. Kay, J. Bartram, J. Santo Domingo (Eds.) London, International Water Association and World Health Organization.

    Google Scholar 

  • Kay D, McDonald AT, Stapleton CM et al (2006a). The challenges of the water framework directive. Proceedings of the Institution of Civil Engineers, Water Management 159: 58–64.

    Google Scholar 

  • Kay D, Stapleton CM, Wyer MD et al (2006b). Total maximum daily loads (TMDL). The USEPA approach to managing faecal indicator fluxes to receiving waters: lessons for UK environmental regulation? L. Gairns, C. Crighton and B. E. Jeffrey (Eds.), Agriculture and the Environment VI; Managing Rural Diffuse Pollution. Proceedings of the SAC/SEPA Biennial Conference, Edinburgh, International Water Association, Scottish Agricultural College, Scottish Environmental Protection Agency.

    Google Scholar 

  • Kinzelman J, McLellan S (2009). Success of science-based best management practices in reducing swimming bans—a case study from Racine, Wisconsin, USA. Aquat. Ecosyst. Health Manage. 12(2): 187–196.

    Article  Google Scholar 

  • Kinzelman J, McLellan SL, Daniels et al (2004). Non-point source pollution: determination of replication versus persistence of Escherichia coli in surface water and sediments with correlation of levels to readily measurable environmental parameters. J. Water Health 2: 103–114.

    Google Scholar 

  • Kott Y, Roze N, Sperber S et al (1974). “Bacteriophages as viral pollution indicators,” Wat. Res. 8: 165–171.

    Google Scholar 

  • Kovatch C (2006). Beach Sanitary Survey. Presented at the US EPA National Beaches Conference, Niagara Falls, NY, 11 October 2006.

    Google Scholar 

  • Leung KT, Mackereth R, Tien YC et al (2004). A comparison of AFLP and ERIC-PCR analyses for discriminating Escherichia coli from cattle, pig and human sources. FEMS Microbiol. Ecol. 47: 111–119.

    Article  PubMed  CAS  Google Scholar 

  • Loge FJ, Thompson DE, Call DR (2002). PCR detection of specific pathogens in water: a risk based analysis. Environ Sci. Technol. 36: 2754–2759.

    Article  PubMed  CAS  Google Scholar 

  • Lubeck PS, Wolffs P, On SLW et al (2003). Toward an international standard for PCR-based detection of food-borne thermotolerant Campylobacters: assay development and analytical validation. Appl. Environ. Microbiol. 69: 5664–5669.

    Article  PubMed  CAS  Google Scholar 

  • Marsalek J, Rochfort Q (2003). Urban wet-weather flows: sources of fecal contamination impacting on recreational waters and threatening drinking-water sources. J. Toxicol. Environ. Health, Part A, 67: 1–13.

    Google Scholar 

  • Moriñigo M, Cornax R, Castro D et al (1990). Viability of Salmonella spp. and indicatormicroorganisms in seawater using membrane diffusion chambers. Antonie Leeuwenhoek 57(2): 109–117.

    Google Scholar 

  • Neto RC, Santos, JU, Franco RMB (2006). Evaluation of activated sludge treatment and the efficiency of the disinfection of Giardia species cysts and Cryptosporidium oocysts by UV at a sludge treatment plant in Campinas, south-east Brazil. Water Sci. Technol. 54(3): 89–94.

    Article  PubMed  Google Scholar 

  • Novga HK, Rudi K, Naterstad K et al (2000). Application of 5′-nuclease PCR for quantitative detection of Listeria monocytogenes in pure cultures, water, skim milk, and unpasteurized whole milk. Appl. Environ. Microbiol. 66: 4266–4271.

    Article  Google Scholar 

  • Panicker G, Myers ML, Bej AK (2004). Rapid detection of Vibrio vulnificus in shellfish and Gulf of Mexico water by real time PCR. Appl. Environ. Microbiol. 70: 498–507.

    Article  PubMed  CAS  Google Scholar 

  • Parveen S, Portier KM, Robinson K et al (1999). Discriminant analysis of ribotype profiles of Escherichia coli for differentiating human and nonhuman sources of fecal pollution. Appl. Environ. Microbiol. 65: 3142–3147.

    PubMed  CAS  Google Scholar 

  • Pillai S, Vega E (2007). Molecular detection and characterization tools. In: Microbial source tracking. J.Santo Domingo, M. Sadowsky (Eds.), P 65–91. Washington, DC, American Society for Microbiology Press.

    Article  PubMed  CAS  Google Scholar 

  • Plummer JD, Long, SC (2007). Monitoring source water for microbial contamination: Evaluation of water quality measures. Water Res. 41(16): 3716–3728.

    Article  PubMed  CAS  Google Scholar 

  • Pond KR, Rangdale R, Meijer, WG et al (2004). Workshop report: developing pollution source tracking for recreational and shellfish waters. Environmental Forensics, 5: 237–247.

    Article  Google Scholar 

  • Reischer GH, Haider JM, Sommer R et al (2008). Quantitative microbial faecal source tracking with sampling guided by hydrological catchment dynamics. Environ. Microbiol. 10(10): 2598–2608.

    Article  PubMed  CAS  Google Scholar 

  • Reischer GH, Kasper DC, Steinborn R et al (2007). A quantitative real-time PCR assay for the highly sensitive and specific detection of human faecal influence in spring water from a large alpine catchment area. Lett. Appl. Microbiol. 44(4): 351–356.

    Article  PubMed  CAS  Google Scholar 

  • Reischer GH, Kasper DC, Steinborn R et al (2006). Quantitative PCR method for sensitive detection of ruminant fecal pollution in freshwater and evaluation of this method in alpine karstic regions. Appl. Environ. Microbiol. 72(8): 5610–5614.

    Article  PubMed  CAS  Google Scholar 

  • Rockwell D (2006). US EPA 2006 beach sanitary survey pilot study final report (unpublished).

    Google Scholar 

  • Rockwell D, Wirick H (2008). An overview of the 2007 pilot sanitary surveys and GLRC coastal health goals. Presented at the Great Lakes Beach Association Annual Conference, Erie, PA, 15–17 September 2008.

    Google Scholar 

  • Santo Domingo JW, Bambic DG, Edge TA et al (2007). Quo vadis source tracking? Towards a strategic framework for environmental monitoring of fecal pollution. Water Res. 41: 3539–3552.

    Article  PubMed  CAS  Google Scholar 

  • Savitcheva O, Okabe S (2006). Alternative indicators of fecal pollution: relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. Water Res. 40(13): 2463–2476.

    Article  Google Scholar 

  • Scott TM, Rose JB, Jenkins TM et al (2002). Microbial source tracking: current methodology and future directions. Appl. Environ. Microbiol. 68(12): 5796–5803.

    Article  PubMed  CAS  Google Scholar 

  • Scott TM, Jenkins TM, Lukasik J, Rose JB (2005). Potential use of a host associated molecular marker in Enterococcus faecium as an index of human fecal pollution. Environ. Sci. Technol. 2005, 39: 283–287.

    Article  Google Scholar 

  • Shanks OC, Nietch C, Simonich M et al (2006). Basin-wide analysis of the dynamics of fecal contamination and fecal source identification in Tillamook Bay, Oregon. Appl. Environ. Microbiol. 72(8): 5537–5546.

    Article  CAS  Google Scholar 

  • Shibata T, Solo-Gabriele HM, Fleming LE, Elmir S (2008). Monitoring marine recreational water quality using multiple microbial indicators in an urban tropical environment. Water Res. 38(13): 3119–3131.

    Article  Google Scholar 

  • Siegrist TJ, Anderson PD, Huen WH et al (2007). Discrimination and characterization of environmental strains of Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). J. Microbiol. Methods 68: 554–562.

    Article  PubMed  CAS  Google Scholar 

  • Simpson JM, Santo Domingo JW, Reasoner DJ (2002). Microbial source tracking: state of the science. Environ. Sci. Technol. 24: 5279–5288.

    Article  Google Scholar 

  • Singh DV, Matte MH, Matte GR et al (2001). Molecular analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 strains: clonal relationships between clinical and environmental isolates. Appl. Environ. Microbiol. 67: 910–921.

    Article  PubMed  CAS  Google Scholar 

  • Sinton L, Hall C, Lynch P et al (2002). Sunlight inactivation of fecal indicator bacteria andbacteriophages from waste stabilization pond effluent in fresh and saline waters. Appl. Environ.Microbiol. 68: 3605–3613.

    Article  PubMed  CAS  Google Scholar 

  • Stapleton CM, Kay D, Wyer M et al (2009). Evaluating the operational utility of a Bacteriodales quantitative PCR-based MST approach in determining the source of faecal indicator organisms at a UK bathing water Wat. Res. 43(19): 4888–4899. doi:10.1016/j.watres.2009.09.015.

    CAS  Google Scholar 

  • Stender H, Broomer AJ, Perry-O’Keefe KOH et al (2001). Raid detection, identification, and enumeration of E. coli cells in municipal water by chemiluminescent in situ hybridization. Appl. Environ. Microbiol. 67: 142–147.

    Article  PubMed  CAS  Google Scholar 

  • Stewart JR, Gast RJ, Fujioka RS et al (2008). The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs. Environ. Health, 7(Suppl. 2):S3.

    Google Scholar 

  • Stoeckel D, Harwood V (2007). Performance, design, and analysis in microbial source tracking studies. Appl. Environ. Microbiol. 73: 2405–2415.

    Google Scholar 

  • Stoeckel DM (2005). Selection and application of microbial source tracking tools for water-quality investigations: U.S. Geological Survey Techniques and Methods Book 2, Chapter A3. http://pubs.usgs.gov/tm/2005/tm2a3/pdf/Book2_Collection%20of%20Environmental%20Data.pdf. Accessed 6 Dec 2009.

  • Strauss N, Von Schirnding YE, Genthe B et al (1995). The health effects of exposure through swimming in South African marine waters: an overview. Urban Health Newsl. 26: 37–42.

    PubMed  Google Scholar 

  • Suoninen WE (1998). Sanitary survey shellfish growing area 46–47 Brigantine to Spray Beach 1992–1997. New Jersey Department of Environmental Protection. Online: http://www.state.nj.us/dep/wms//bmw/Reports/area46–47.pdf.

  • Suresh SD, Vega E (2007). Molecular detection and characterization tools. In: Santo Domingo H and Sadowsky M (Eds) Microbial source tracking, emerging issues in food safety, ASM Press, Washington, DC.

    Google Scholar 

  • Tartera   C,  Jofre J (1987). Bacteriophages active against Bacteroides fragilis in sewage-­pollutedwaters, Appl. Environ. Microbiol. 53: 1632–1637.

    PubMed  CAS  Google Scholar 

  • Tessele F, Monteggia LO, Rubio J (2005). Treatment of municipal wastewater UASB reactor effluent by unconventional flotation and UV disinfection. Water Sci. Technol. 52(1–2): 315–322.

    PubMed  CAS  Google Scholar 

  • United States Environmental Protection Agency (US EPA) (2009). Review of published studies to characterize relative risks from different sources of fecal contamination in recreational water. EPA 822-R-09–001.

    Google Scholar 

  • US EPA (2008). Literature review of molecular methods for simultaneous detection of pathogens in water. US EPA Environmental Technology Council. EPA/600/R-07/128.

    Google Scholar 

  • US EPA (2007). Water quality standards handbook: second edition (revised). http://www.epa.gov/waterscience/standards/handbook/. Accessed 6 Dec 2009. EPA-823-B-94–005.

  • US EPA (2005a). Total maximum daily loads. US EPA, Washington DC. http://oaspub.epa.gov/waters/national_rept.control.

  • US EPA (2005b). Microbial source tracking guide document. Office of Research and Development, Washington, DC EPA-600/R-05/064. 131 pp.

    Google Scholar 

  • Volkhov D, Rasooly A, Chumakov K et al (2002). Identification of Listeria species by microarray-based assay. J. Clin. Microbiol. 40: 4720–4728.

    Article  Google Scholar 

  • Vora GJ, Meador CE, Stenger DA et al (2004). Nucleic acid amplification strategies for DNA microarray-based pathogen detection. Appl. Environ. Microbiol. 70: 3047–3054.

    Article  PubMed  CAS  Google Scholar 

  • Walters SP, Gannon VP, Field KG (2007). Detection of Bacteroidales fecal indicators and the zoonotic pathogens E. coli 0157:H7, Salmonella, and Campylobacter in river water. Environ. Sci. Technol. 41(6): 1856–1862.

    Article  PubMed  CAS  Google Scholar 

  • Wapnick CM, Harwood VJ, Singleton T, Morrison G, Staley C, Staley R (2009). Application of the bacteria decision-support tool in the Hillsborough River Watershed. Water Environment Federation TMDL Conference Aug 9–12, 2009, Minneapolis, MN. Online: http://208.88.129.72/Publications/page.aspx?id=5751

  • Wellinghausen N, Frost C, Maare R (2001). Detection of Legionellae in hospital water samples by quantitative real-time LightCycler PCR. Appl. Environ. Microbiol. 67: 3985–3993.

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (WHO) (2004). Cotruvo JA, Dufour A, Rees G, Bartram J, Carr R, Cliver DO, Craun GF, Fayer R, Gannon VPJ, ed. Waterborne zoonoses: identification, causes and control. World Health Organization (WHO). IWA Publishing: London, UK.

    Google Scholar 

  • WHO (1999). Health based monitoring of recreational waters: the feasibility of a new approach (the Annapolis Protocol). Geneva, WHO. (WHO/SDE/WSH/99.1).

    Google Scholar 

  • WHO (2003). Guidelines for safe recreational water environments Volume 1: Coastal and freshwaters. Geneva, Switzerland, World Health Organization.

    Google Scholar 

  • Xiao L, Singh A, Limor J et al (2001). Molecular characterization of Cryptosporidium oocysts in samples of raw water and wastewater. Appl. Environ. Microbiol. 67: 1097–1101.

    Article  PubMed  CAS  Google Scholar 

  • Zanetti F, De Luca G, Sacchetti R (2006). Microbe removal in secondary effluent by filtration. Ann. Microbiol. 56(4): 313–317.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Kinzelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kinzelman, J., Kay, D., Pond, K. (2011). Relating MST Results to Fecal Indicator Bacteria, Pathogens, and Standards. In: Hagedorn, C., Blanch, A., Harwood, V. (eds) Microbial Source Tracking: Methods, Applications, and Case Studies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9386-1_15

Download citation

Publish with us

Policies and ethics