Skip to main content

Interacting with Augmented Floor Surfaces

  • Chapter
  • First Online:

Abstract

This chapter reviews techniques and technologies for interaction via the feet with touch-sensitive floor surfaces that are augmented with multimodal (visual, auditory, and/or haptic) feedback. We discuss aspects of human-computer interaction with such interfaces, including potential applications in virtual and augmented reality for floor based user interfaces and immersive walking simulations. Several realizations of augmented floor surfaces are discussed, and we review one case example that has been extensively investigated by the authors, along with evaluations that have been reported in prior literature. Potential applications in the domains of human-computer interaction and virtual reality are also reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Addlesee MD, Jones AH, Livesey F, Samaria FS (1997) The ORL active floor. IEEE Pers Commun 4(5):35–51

    Article  Google Scholar 

  2. Agrawal P, Rauschert I, Inochanon K, Bolelli L, Fuhrmann S, Brewer I, Cai G, MacEachren A, Sharma R (2004) Multimodal interface platform for geographical information systems (GEOMIP) in crisis management. In: ICMI ’04: Proceedings of the 6th international conference on multimodal interfaces. ACM, New York, NY, USA, pp 339–340

    Google Scholar 

  3. Albinsson PA, Zhai S (2003) High precision touch screen interaction. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, pp 105–112

    Google Scholar 

  4. Augsten T, Kaefer K, Meusel R, Fetzer C, Kanitz D, Stoff T, Becker T, Holz C, Baudisch P (2010) Multitoe: high-precision interaction with back-projected floors based on high-resolution multi-touch input. In: Proceedings of the 23nd annual ACM symposium on user interface software and technology. ACM, pp 209–218

    Google Scholar 

  5. Begg RK, Palaniswami M, Owen B (2005) Support vector machines for automated gait classification. IEEE Trans Biomed Eng 52(5):828–838

    Google Scholar 

  6. Benko H, Wilson AD, Baudisch P (2006) Precise selection techniques for multi-touch screens. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, pp 1263–1272

    Google Scholar 

  7. Bicchi A, Salisbury JK, Brock DL (1993) Contact sensing from force measurements. Int J of Robot Res 12(3):249

    Article  Google Scholar 

  8. Bruder G, Steinicke F, Hinrichs KH (2009) Arch-explore: a natural user interface for immersive architectural walkthroughs. In: Proceedings of IEEE symposium on 3D user interfaces, 3DUI 2009. IEEE, pp 75–82

    Google Scholar 

  9. Chang S, Ham S, Kim S, Suh D, Kim H (2010) Ubi-floor: design and pilot implementation of an interactive floor system. In: Proceedings of 2nd international conference on intelligent human-machine systems and cybernetics (IHMSC), 2010, vol 2. IEEE, pp 290–293

    Google Scholar 

  10. Fassbender E, Richards D (2008) Using a dance pad to navigate through the virtual heritage environment of macquarie lighthouse, Sydney. In: Virtual systems and multimedia, Springer, pp 1–12

    Google Scholar 

  11. Fernström M, Griffith N (1998) Litefoot-auditory display of footwork. In: Proceeding of ICAD, vol 98

    Google Scholar 

  12. Gronboek K, Iversen OS, Kortbek KJ, Nielsen KR, Aagaard L (2007) Interactive floor support for kinesthetic interaction in children learning environments. Lect Notes Comput Sci 4663:361

    Article  Google Scholar 

  13. Headon R, Curwen R (2001) Recognizing movements from the ground reaction force. In: Proceedings of the workshop on perceptive user, interfaces

    Google Scholar 

  14. Headon R, Curwen R (2002) Movement awareness for ubiquitous game control. Pers Ubiquitous Comput 6(5):407–415

    Article  Google Scholar 

  15. Hoffmann ER (1991) A comparison of hand and foot movement times. Ergonomics 34(4):397

    Google Scholar 

  16. Hollerbach J (2008) Locomotion interfaces and rendering. In: Lin M, Otaduy M (eds) Haptic rendering: foundations, algorithms and applications. A K Peters, Ltd., 2008

    Google Scholar 

  17. Holzreiter SH, Köhle ME (1993) Assessment of gait patterns using neural networks. J Biomech 26(6):645–651

    Article  Google Scholar 

  18. Jacko JA, Sears A (2003) The human-computer interaction handbook: fundamentals, evolving technologies, and emerging applications. Lawrence Erlbaum Assoc Inc, Mahwah

    Google Scholar 

  19. LaViola JJ Jr, Feliz DA, Keefe DF, Zeleznik RC (2001) Hands-free multi-scale navigation in virtual environments. In: Proceedings of the 2001 symposium on interactive 3D graphics. ACM, New York, NY, USA, pp 9–15

    Google Scholar 

  20. MacEachren AM, Cai G, Sharma R, Rauschert I, Brewer I, Bolelli L, Shaparenko B, Fuhrmann S, Wang H (2005) Enabling collaborative geoinformation access and decision-making through a natural, multimodal interface. Int J Geogr Inf Sci 19(3):293–317

    Article  Google Scholar 

  21. MacKenzie IS (1992) Fitts’ law as a research and design tool in human-computer interaction. Hum Comput Interact 7(1):91–139

    Google Scholar 

  22. Mostayed A, Mynuddin M, Mazumder G, Kim S, Park S (2008) Abnormal gait detection using Discrete Fourier Transform. In: MUE, pp 36–40

    Google Scholar 

  23. Pakkanen T, Raisamo R (2004) Appropriateness of foot interaction for non-accurate spatial tasks. In: CHI ’04: CHI ’04 extended abstracts on human factors in computing systems. ACM, New York, NY, USA, pp 1123–1126

    Google Scholar 

  24. Paradiso J, Abler C, Hsiao KY, Reynolds M (1997) The magic carpet: physical sensing for immersive environments. In: ACM CHI extended abstracts. ACM, New York, NY, USA, pp 277–278

    Google Scholar 

  25. Pearson G, Weiser M (1986) Of moles and men: the design of foot controls for workstations. In: Proceedings of the ACM SIGCHI conference on human factors in computing systems. ACM, New York, NY, USA, pp 333–339

    Google Scholar 

  26. Perry J (1992) Gait analysis: normal and pathological function. SLACK Inc., Thorofare

    Google Scholar 

  27. Potter RL, Weldon LJ, Shneiderman B (1988) Improving the accuracy of touch screens: an experimental evaluation of three strategies. In: CHI ’88: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, New York, NY, USA, pp 27–32

    Google Scholar 

  28. Rangarajan S, Kidane A, Qian G, Rajko S, Birchfield D (2007) The design of a pressure sensing floor for movement-based human computer interaction. Smart Sensing and, Context, pp 46–61

    Google Scholar 

  29. Rauschert I, Agrawal P, Sharma R, Fuhrmann S, Brewer I, MacEachren A (2002) Designing a human-centered, multimodal gis interface to support emergency management. In: GIS ’02: Proceedings of the 10th ACM international symposium on advances in geographic information systems. ACM, New York, NY, USA, pp 119–124

    Google Scholar 

  30. Razzaque S, Kohn Z, Whitton MC (2001) Redirected walking. In: Proceedings of EUROGRAPHICS, pp 289–294

    Google Scholar 

  31. Richardson B, Leydon K, Fernstrom M, Paradiso JA (2004) Z-tiles: building blocks for modular, pressure-sensing floorspaces. In: CHI’04 extended abstracts on Human factors in computing systems. ACM, pp 1529–1532

    Google Scholar 

  32. Schmidt A, Strohbach M, van Laerhoven K, Friday A, Gellersen H-W (2002) Context acquisition based on load sensing. In: UbiComp ’02: Proceedings of the 4th international conference on Ubiquitous computing. Springer-Verlag, London, UK, pp 333–350

    Google Scholar 

  33. Sinclair J, Hingston P, Masek M (2007) Considerations for the design of exergames. In: Proceedings of the 5th international ACM conference on computer graphics and interactive techniques, Southeast Asia, p 295

    Google Scholar 

  34. Templeman JN, Denbrook PS, Sibert LE (1999) Virtual locomotion: walking in place through virtual environments. Presence 8(6):598–617

    Article  Google Scholar 

  35. Valkov D, Steinicke F, Bruder G, Hinrichs KH (2010) Traveling in 3d virtual environments with foot gestures and a multi-touch enabled WIM. In: Proceedings of virtual reality international conference (VRIC 2010), pp 171–180

    Google Scholar 

  36. Visell Y, Cooperstock JR (2010) Design of a vibrotactile display via a rigid surface. In: Proceedings of IEEE haptics symposium, 2010

    Google Scholar 

  37. Visell Y, Cooperstock J, Giordano BL, Franinovic K, Law A, McAdams S, Jathal K, Fontana F (2008) A vibrotactile device for display of virtual ground materials in walking. In: Proceedings of eurohaptics symposium 2008

    Google Scholar 

  38. Visell Y, Fontana F, Giordano BL, Nordahl R, Serafin S, Bresin R (2009) Sound design and perception in walking interactions. Int J Hum Comput Stud 67:(11)947–959

    Google Scholar 

  39. Visell Y, Smith S, Law A, Rajalingham R, Cooperstock JR (2010) Contact sensing and interaction techniques for a distributed, multimodal floor display. In: IEEE symposium on 3D user interfaces (3DUI), 2010. IEEE, pp 75–78

    Google Scholar 

  40. Visell Y, Law A, Ip J, Smith S, Cooperstock JR (2010) Interaction capture in immersive virtual environments via an intelligent floor surface. In: Proceedings of IEEE virtual reality 2010

    Google Scholar 

  41. Wauben LSGL, van Veelen MA, Gossot D, Goossens RHM (2006) Application of ergonomic guidelines during minimally invasive surgery: a questionnaire survey of 284 surgeons. Surg Endoscopy 20(8):1268–1274

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yon Visell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Visell, Y., Smith, S., Cooperstock, J.R. (2013). Interacting with Augmented Floor Surfaces. In: Steinicke, F., Visell, Y., Campos, J., Lécuyer, A. (eds) Human Walking in Virtual Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8432-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8432-6_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8431-9

  • Online ISBN: 978-1-4419-8432-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics