Skip to main content

Listeria Genomics

  • Chapter
  • First Online:
  • 1504 Accesses

Part of the book series: Food Microbiology and Food Safety ((FMFS))

Abstract

The opportunistic intracellular foodborne pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. This chapter provides an overview of progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism used by bacteria when growing in diverse environments, in particular in infected hosts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abram F, Starr E, Karatzas KA, Matlawska-Wasowska K, Boyd A, Wiedmann M, Boor KJ, Connally D, O’Byrne CP (2008a) Identification of components of the sigma B regulon in Listeria monocytogenes that contribute to acid and salt tolerance. Appl Environ Microbiol 74:6848–6858

    CAS  Google Scholar 

  • Abram F, Su WL, Wiedmann M, Boor KJ, Coote P, Botting C, Karatzas KA, O’Byrne CP (2008b) Proteomic analyses of a Listeria monocytogenes mutant lacking sigmaB identify new components of the sigmaB regulon and highlight a role for sigmaB in the utilization of glycerol. Appl Environ Microbiol 74:594–604

    CAS  Google Scholar 

  • Agoston R, Soni K, Jesudhasan PR, Russell WK, Mohacsi-Farkas C, Pillai SD (2009) Differential expression of proteins in Listeria monocytogenes under thermotolerance-inducing, heat shock, and prolonged heat shock conditions. Foodborne Pathog Dis 6:1133–1140

    Google Scholar 

  • Alvarez-Dominguez C, Vazquez-Boland JA, Carrasco-Marin E, Lopez-Mato P, Leyva-Cobian F (1997) Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the Listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect Immun 65:78–88

    CAS  Google Scholar 

  • Arous S, Buchrieser C, Folio P, Glaser P, Namane A, Hebraud M, Hechard Y (2004) Global analysis of gene expression in an rpoN mutant of Listeria monocytogenes. Microbiology 150:1581–1590

    CAS  Google Scholar 

  • Baumgartner M, Karst U, Gerstel B, Loessner M, Wehland J, Jansch L (2007) Inactivation of Lgt allows systematic characterization of lipoproteins from Listeria monocytogenes. J Bacteriol 189:313–324

    Google Scholar 

  • Bennett HJ, Pearce DM, Glenn S, Taylor CM, Kuhn M, Sonenshein AL, Andrew PW, Roberts IS (2007) Characterization of relA and codY mutants of Listeria monocytogenes: identification of the CodY regulon and its role in virulence. Mol Microbiol 63:1453–1467

    CAS  Google Scholar 

  • Bierne H, Cossart P (2007) Listeria monocytogenes surface proteins: from genome predictions to function. Microbiol Mol Biol Rev 71:377–397

    CAS  Google Scholar 

  • Bierne H, Garandeau C, Pucciarelli MG, Sabet C, Newton S, Garcia-del Portillo F, Cossart P, Charbit A (2004) Sortase B, a new class of sortase in Listeria monocytogenes. J Bacteriol 186:1972–1982

    CAS  Google Scholar 

  • Bierne H, Mazmanian SK, Trost M, Pucciarelli MG, Liu G, Dehoux P, Jansch L, Garcia-del Portillo F, Schneewind O, Cossart P, Consortium TELG (2002) Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Mol Microbiol 43:464–489

    Google Scholar 

  • Bonazzi M, Lecuit M, Cossart P (2009) Listeria monocytogenes internalin and E-cadherin: from structure to pathogenesis. Cell Microbiol 1:a003087

    Google Scholar 

  • Borucki MK, Kim SH, Call DR, Smole SC, Pagotto F (2004) Selective discrimination of Listeria monocytogenes epidemic strains by a mixed-genome DNA microarray compared to discrimination by pulsed-field gel electrophoresis, ribotyping, and multilocus sequence typing. J Clin Microbiol 42:5270–5276

    CAS  Google Scholar 

  • Borucki MK, Krug MJ, Muraoka WT, Call DR (2003) Discrimination among Listeria monocytogenes isolates using a mixed genome DNA microarray. Vet Microbiol 92:351–362

    CAS  Google Scholar 

  • Borucki MK, Reynolds J, Call DR, Ward TJ, Page B, Kadushin J (2005) Suspension microarray with dendrimer signal amplification allows direct and high-throughput subtyping of Listeria monocytogenes from genomic DNA. J Clin Microbiol 43:3255–3259

    CAS  Google Scholar 

  • Bowman JP, Bittencourt CR, Ross T (2008) Differential gene expression of Listeria monocytogenes during high hydrostatic pressure processing. Microbiology 154:462–475

    CAS  Google Scholar 

  • Bublitz M, Holland C, Sabet C, Reichelt J, Cossart P, Heinz DW, Bierne H, Schubert WD (2008) Crystal structure and standardized geometric analysis of InlJ, a Listerial virulence factor and leucine-rich repeat protein with a novel cysteine ladder. J Mol Biol 378:87–96

    CAS  Google Scholar 

  • Buchrieser C (2007) Biodiversity of the species Listeria monocytogenes and the genus Listeria. Microbes Infect 9:1147–1155

    CAS  Google Scholar 

  • Buchrieser C, Rusniok C, Kunst F, Cossart P, Glaser P (2003) Comparison of the genome sequences of Listeria monocytogenes and Listeria innocua: clues for evolution and pathogenicity. FEMS Immunol Med Microbiol 35:207–213

    CAS  Google Scholar 

  • Cabanes D, Dehoux P, Dussurget O, Frangeul L, Cossart P (2002) Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol 10:238–245

    CAS  Google Scholar 

  • Cabanes D, Dussurget O, Dehoux P, Cossart P (2004) Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mol Microbiol 51:1601–1614

    CAS  Google Scholar 

  • Cabanes D, Lecuit M, Cossart P (2008) Animal models of Listeria infection. Curr Protoc Microbiol (Chapter 9:Unit9B 1), 9B.1.1–9B.1.17

    Google Scholar 

  • Cabanes D, Sousa S, Cebria A, Lecuit M, Garcia-del Portillo F, Cossart P (2005) Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. Embo J 24:2827–2838

    CAS  Google Scholar 

  • Call DR, Borucki MK, Besser TE (2003a) Mixed-genome microarrays reveal multiple serotype and lineage-specific differences among strains of Listeria monocytogenes. J Clin Microbiol 41:632–639

    CAS  Google Scholar 

  • Call DR, Borucki MK, Loge FJ (2003b) Detection of bacterial pathogens in environmental samples using DNA microarrays. J Microbiol Methods 53:235–243

    CAS  Google Scholar 

  • Calvo E, Pucciarelli MG, Bierne H, Cossart P, Albar JP, Garcia-Del Portillo F (2005) Analysis of the Listeria cell wall proteome by two-dimensional nanoliquid chromatography coupled to mass spectrometry. Proteomics 5:433–443

    CAS  Google Scholar 

  • Camejo A, Buchrieser C, Couvé E, Carvalho F, Reis O, Ferreira P, Sousa S, Cossart P, Cabanes D (2009) In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection. PloS Pathogens 5:e1000449. doi:1000410.1001371/journal.ppat.1000449

    Google Scholar 

  • Chan YC, Raengpradub S, Boor KJ, Wiedmann M (2007) Microarray-based characterization of the Listeria monocytogenes cold regulon in log- and stationary-phase cells. Appl Environ Microbiol 73:6484–6498

    CAS  Google Scholar 

  • Chatterjee SS, Hossain H, Otten S, Kuenne C, Kuchmina K, Machata S, Domann E, Chakraborty T, Hain T (2006) Intracellular gene expression profile of Listeria monocytogenes. Infect Immun 74:1323–1338

    CAS  Google Scholar 

  • Cossart P (2007) Listeriology (1926–2007): the rise of a model pathogen. Microbes Infect 9(10):1143–1146

    CAS  Google Scholar 

  • Cossart P, Pizarro-Cerda J, Lecuit M (2003) Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends Cell Biol 13:23–31

    CAS  Google Scholar 

  • Cossart P, Sansonetti PJ (2004) Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304:242–248

    CAS  Google Scholar 

  • Cossart P, Toledo-Arana A (2008) Listeria monocytogenes, a unique model in infection biology: an overview. Microbes Infect 10:1041–1050

    CAS  Google Scholar 

  • Disson O, Grayo S, Huillet E, Nikitas G, Langa-Vives F, Dussurget O, Ragon M, Le Monnier A, Babinet C, Cossart P, Lecuit M (2008) Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455:1114–1118

    CAS  Google Scholar 

  • Domann E, Wehland J, Rohde M, Pistor S, Hartl M, Goebel W, Leimeister-Wachter M, Wuenscher M, Chakraborty T (1992) A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. Embo J 11:1981–1990

    CAS  Google Scholar 

  • Donaldson JR, Nanduri B, Burgess SC, Lawrence ML (2009) Comparative proteomic analysis of Listeria monocytogenes strains F2365 and EGD. Appl Environ Microbiol 75:366–373

    CAS  Google Scholar 

  • Doumith M, Cazalet C, Simoes N, Frangeul L, Jacquet C, Kunst F, Martin P, Cossart P, Glaser P, Buchrieser C (2004) New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect Immun 72:1072–1083

    CAS  Google Scholar 

  • Dramsi S, Bourdichon F, Cabanes D, Lecuit M, Fsihi H, Cossart P (2004) FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol Microbiol 53:639–649

    CAS  Google Scholar 

  • Duche O, Tremoulet F, Namane A, Labadie J (2002) A proteomic analysis of the salt stress response of Listeria monocytogenes. FEMS Microbiol Lett 215:183–188

    CAS  Google Scholar 

  • Dumas E, Desvaux M, Chambon C, Hebraud M (2009) Insight into the core and variant exoproteomes of Listeria monocytogenes species by comparative subproteomic analysis. Proteomics 9:3136–3155

    CAS  Google Scholar 

  • Dumas E, Meunier B, Berdague JL, Chambon C, Desvaux M, Hebraud M (2008) Comparative analysis of extracellular and intracellular proteomes of Listeria monocytogenes strains reveals a correlation between protein expression and serovar. Appl Environ Microbiol 74:7399–7409

    CAS  Google Scholar 

  • Dussurget O, Cabanes D, Dehoux P, Lecuit M, Buchrieser C, Glaser P, Cossart P (2002) Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45:1095–1106

    CAS  Google Scholar 

  • Dussurget O, Pizarro-Cerda J, Cossart P (2004) Molecular determinants of Listeria Monocytogenes virulence. Annu Rev Microbiol 58:587–610

    CAS  Google Scholar 

  • Folio P, Chavant P, Chafsey I, Belkorchia A, Chambon C, Hebraud M (2004) Two-dimensional electrophoresis database of Listeria monocytogenes EGDe proteome and proteomic analysis of mid-log and stationary growth phase cells. Proteomics 4:3187–3201

    CAS  Google Scholar 

  • Folsom JP, Frank JF (2007) Proteomic analysis of a hypochlorous acid-tolerant Listeria monocytogenes cultural variant exhibiting enhanced biofilm production. J Food Prot 70:1129–1136

    CAS  Google Scholar 

  • Giotis ES, Muthaiyan A, Blair IS, Wilkinson BJ, McDowell DA (2008) Genomic and proteomic analysis of the alkali-tolerance response (AlTR) in Listeria monocytogenes 10403S. BMC Microbiol 8:102

    Google Scholar 

  • Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couve E, de Daruvar A, Dehoux P, Domann E, Dominguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H, Portillo FG, Garrido P, Gautier L, Goebel W, Gomez-Lopez N, Hain T, Hauf J, Jackson D, Jones LM, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno E, Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Perez-Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, Vazquez-Boland JA, Voss H, Wehland J, Cossart P (2001) Comparative genomics of Listeria species. Science 294:849–852

    CAS  Google Scholar 

  • Graves LM, Helsel LO, Steigerwalt AG, Morey RE, Daneshvar MI, Roof SE, Orsi RH, Fortes ED, Milillo SR, den Bakker HC, Wiedmann M, Swaminathan B and Sauders BD (2010) Listeria marthii sp. Nov., isolated from the natural environment, finger lakes national forest. Int J Syst Evol Microbiol 60(Pt 6):1280–1288

    CAS  Google Scholar 

  • Guilbaud M, Chafsey I, Pilet MF, Leroi F, Prevost H, Hebraud M, Dousset X (2008) Response of Listeria monocytogenes to liquid smoke. J Appl Microbiol 104:1744–1753

    CAS  Google Scholar 

  • Hain T, Chatterjee SS, Ghai R, Kuenne CT, Billion A, Steinweg C, Domann E, Karst U, Jansch L, Wehland J, Eisenreich W, Bacher A, Joseph B, Schar J, Kreft J, Klumpp J, Loessner MJ, Dorscht J, Neuhaus K, Fuchs TM, Scherer S, Doumith M, Jacquet C, Martin P, Cossart P, Rusniock C, Glaser P, Buchrieser C, Goebel W, Chakraborty T (2007) Pathogenomics of Listeria spp. Int J Med Microbiol 297:541–557

    CAS  Google Scholar 

  • Hain T, Hossain H, Chatterjee SS, Machata S, Volk U, Wagner S, Brors B, Haas S, Kuenne CT, Billion A, Otten S, Pane-Farre J, Engelmann S, Chakraborty T (2008) Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e sigmaB regulon. BMC Microbiol 8:20

    Google Scholar 

  • Hain T, Steinweg C, Kuenne CT, Billion A, Ghai R, Chatterjee SS, Domann E, Karst U, Goesmann A, Bekel T, Bartels D, Kaiser O, Meyer F, Puhler A, Weisshaar B, Wehland J, Liang C, Dandekar T, Lampidis R, Kreft J, Goebel W, Chakraborty T (2006) Whole-genome sequence of Listeria welshimeri reveals common steps in genome reduction with Listeria innocua as compared to Listeria monocytogenes. J Bacteriol 188:7405–7415

    CAS  Google Scholar 

  • Hefford MA, D’Aoust S, Cyr TD, Austin JW, Sanders G, Kheradpir E, Kalmokoff ML (2005) Proteomic and microscopic analysis of biofilms formed by Listeria monocytogenes 568. Can J Microbiol 51:197–208

    CAS  Google Scholar 

  • Helloin E, Jansch L, Phan-Thanh L (2003) Carbon starvation survival of Listeria monocytogenes in planktonic state and in biofilm: a proteomic study. Proteomics 3:2052–2064

    CAS  Google Scholar 

  • Hou XL, Jiang HL, Cao QY, Zhao LY, Chang BJ, Chen Z (2008) Using oligonucleotide suspension arrays for laboratory identification of bacteria responsible for bacteremia. J Zhejiang Univ Sci B 9:291–298

    CAS  Google Scholar 

  • Hu Y, Oliver HF, Raengpradub S, Palmer ME, Orsi RH, Wiedmann M, Boor KJ (2007a) Transcriptomic and phenotypic analyses suggest a network between the transcriptional regulators HrcA and sigmaB in Listeria monocytogenes. Appl Environ Microbiol 73:7981–7991

    CAS  Google Scholar 

  • Hu Y, Raengpradub S, Schwab U, Loss C, Orsi RH, Wiedmann M, Boor KJ (2007b) Phenotypic and transcriptomic analyses demonstrate interactions between the transcriptional regulators CtsR and Sigma B in Listeria monocytogenes. Appl Environ Microbiol 73:7967–7980

    CAS  Google Scholar 

  • Jeffers GT, Bruce JL, McDonough PL, Scarlett J, Boor KJ, Wiedmann M (2001) Comparative genetic characterization of Listeria monocytogenes isolates from human and animal listeriosis cases. Microbiology 147:1095–1104

    CAS  Google Scholar 

  • Jin LQ, Li JW, Wang SQ, Chao FH, Wang XW, Yuan ZQ (2005) Detection and identification of intestinal pathogenic bacteria by hybridization to oligonucleotide microarrays. World J Gastroenterol 11:7615–7619

    CAS  Google Scholar 

  • Joseph B, Mertins S, Stoll R, Schar J, Umesha KR, Luo Q, Muller-Altrock S, Goebel W (2008) Glycerol metabolism and PrfA activity in Listeria monocytogenes. J Bacteriol 190:5412–5430

    CAS  Google Scholar 

  • Joseph B, Przybilla K, Stuhler C, Schauer K, Slaghuis J, Fuchs TM, Goebel W (2006) Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. J Bacteriol 188:556–568

    CAS  Google Scholar 

  • Kocks C, Gouin E, Tabouret M, Berche P, Ohayon H, Cossart P (1992) Listeria monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68:521–531

    CAS  Google Scholar 

  • Leclercq A, Clermont D, Bizet C, Grimont PA, Le Fleche-Mateos A, Roche SM, Buchrieser C, Cadet-Daniel V, Le Monnier A, Lecuit M and Allerberger F (2009) Listeria rocourtiae sp. Nov. Int J Syst Evol Microbiol 60(Pt 9):2210–2214

    Google Scholar 

  • Lecuit M (2007) Human listeriosis and animal models. Microbes Infect 9:1216–1225

    CAS  Google Scholar 

  • Lin MC, Huang AH, Tsen HY, Wong HC, Chang TC (2005) Use of oligonucleotide array for identification of six foodborne pathogens and Pseudomonas aeruginosa grown on selective media. J Food Prot 68:2278–2286

    CAS  Google Scholar 

  • Liu Y, Ream A (2008) Gene expression profiling of Listeria monocytogenes strain F2365 in UHT skim milk. Appl Environ Microbiol 74:6859–6866

    CAS  Google Scholar 

  • Mandin P, Fsihi H, Dussurget O, Vergassola M, Milohanic E, Toledo-Arana A, Lasa I, Johansson J, Cossart P (2005) VirR, a response regulator critical for Listeria monocytogenes virulence. Mol Microbiol 57:1367–1380

    CAS  Google Scholar 

  • Mbandi E, Phinney BS, Whitten D, Shelef LA (2007) Protein variations in Listeria monocytogenes exposed to sodium lactate, sodium diacetate, and their combination. J Food Prot 70:58–64

    CAS  Google Scholar 

  • McGann P, Raengpradub S, Ivanek R, Wiedmann M, Boor KJ (2008) Differential regulation of Listeria monocytogenes internalin and internalin-like genes by sigmaB and PrfA as revealed by subgenomic microarray analyses. Foodborne Pathog Dis 5:417–435

    CAS  Google Scholar 

  • Mengaud J, Ohayon H, Gounon P, Mège RM, Cossart P (1996) E-cadherin is the receptor for internalin, a surface protein required for entry of Listeria monocytogenes into epithelial cells. Cell 84:923–932

    CAS  Google Scholar 

  • Milillo SR, Badamo JM, Wiedmann M (2009) Contributions to selected phenotypic characteristics of large species- and lineage-specific genomic regions in Listeria monocytogenes. Food Microbiol 26:212–223

    CAS  Google Scholar 

  • Milohanic E, Glaser P, Coppee JY, Frangeul L, Vega Y, Vazquez-Boland JA, Kunst F, Cossart P, Buchrieser C (2003) Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol 47:1613–1625

    CAS  Google Scholar 

  • Milohanic E, Jonquieres R, Cossart P, Berche P, Gaillard JL (2001) The autolysin ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor. Mol Microbiol 39:1212–1224

    CAS  Google Scholar 

  • Mujahid S, Pechan T, Wang C (2008) Protein expression by Listeria monocytogenes grown on a RTE-meat matrix. Int J Food Microbiol 128:203–211

    CAS  Google Scholar 

  • Murray EGD, Webb RA, Swann MBR (1926) A disease of rabbits characterized by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus bacterium monocytogenes (n.sp.). J Pathol Bacteriol 29:407–439

    Google Scholar 

  • Nelson KE, Fouts DE, Mongodin EF, Ravel J, DeBoy RT, Kolonay JF, Rasko DA, Angiuoli SV, Gill SR, Paulsen IT, Peterson J, White O, Nelson WC, Nierman W, Beanan MJ, Brinkac LM, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Haft DH, Selengut J, Van Aken S, Khouri H, Fedorova N, Forberger H, Tran B, Kathariou S, Wonderling LD, Uhlich GA, Bayles DO, Luchansky JB, Fraser CM (2004) Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res 32:2386–2395

    CAS  Google Scholar 

  • Ollinger J, Wiedmann M, Boor KJ (2008) SigmaB- and PrfA-dependent transcription of genes previously classified as putative constituents of the Listeria monocytogenes PrfA regulon. Foodborne Pathog Dis 5:281–293

    CAS  Google Scholar 

  • Pandiripally VK, Westbrook DG, Sunki GR, Bhunia AK (1999) Surface protein p104 is involved in adhesion of Listeria monocytogenes to human intestinal cell line, Caco-2. J Med Microbiol 48:117–124

    CAS  Google Scholar 

  • Phan-Thanh L, Mahouin F (1999) A proteomic approach to study the acid response in Listeria monocytogenes. Electrophoresis 20:2214–2224

    CAS  Google Scholar 

  • Pilgrim S, Kolb-Maurer A, Gentschev I, Goebel W, Kuhn M (2003) Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility. Infect Immun 71:3473–3484

    CAS  Google Scholar 

  • Pizarro-Cerda J, Cossart P (2006) Bacterial adhesion and entry into host cells. Cell 124:715–727

    CAS  Google Scholar 

  • Pucciarelli MG, Calvo E, Sabet C, Bierne H, Cossart P, Garcia-Del Portillo F (2005) Identification of substrates of the Listeria monocytogenes sortases A and B by a non-gel proteomic analysis. Proteomics 5:4808–4817

    CAS  Google Scholar 

  • Raengpradub S, Wiedmann M, Boor KJ (2008) Comparative analysis of the sigma B-dependent stress responses in Listeria monocytogenes and Listeria innocua strains exposed to selected stress conditions. Appl Environ Microbiol 74:158–171

    CAS  Google Scholar 

  • Ragon M, Wirth T, Hollandt F, Lavenir R, Lecuit M, Le Monnier A, Brisse S (2008) A new perspective on Listeria monocytogenes evolution. PLoS Pathog 4:e1000146

    Google Scholar 

  • Ramnath M, Rechinger KB, Jansch L, Hastings JW, Knochel S, Gravesen A (2003) Development of a Listeria monocytogenes EGDe partial proteome reference map and comparison with the protein profiles of food isolates. Appl Environ Microbiol 69:3368–3376

    CAS  Google Scholar 

  • Sabet C, Lecuit M, Cabanes D, Cossart P, Bierne H (2005) The LPXTG protein InlJ, a new internalin involved in Listeria monocytogenes virulence. Infect Immun 73:6912–6922

    CAS  Google Scholar 

  • Sabet C, Toledo-Arana A, Personnic N, Lecuit M, Dubrac S, Poupel O, Gouin E, Nahori MA, Cossart P, Bierne H (2008) The Listeria monocytogenes virulence factor InlJ is specifically expressed in vivo and behaves as an adhesin. Infect Immun 76:1368–1378

    CAS  Google Scholar 

  • Schaumburg J, Diekmann O, Hagendorff P, Bergmann S, Rohde M, Hammerschmidt S, Jansch L, Wehland J, Karst U (2004) The cell wall subproteome of Listeria monocytogenes. Proteomics 4:2991–3006

    CAS  Google Scholar 

  • Schlech WF 3rd, Lavigne PM, Bortolussi RA, Allen AC, Haldane EV, Wort AJ, Hightower AW, Johnson SE, King SH, Nicholls ES, Broome CV (1983) Epidemic listeriosis – evidence for transmission by food. N Engl J Med 308:203–206

    Google Scholar 

  • Schmid MW, Ng EY, Lampidis R, Emmerth M, Walcher M, Kreft J, Goebel W, Wagner M, Schleifer KH (2005) Evolutionary history of the genus Listeria and its virulence genes. Syst Appl Microbiol 28(1):1–18

    Google Scholar 

  • Schneewind O, Model P, Fischetti VA (1992) Sorting of protein A to the staphylococcal cell wall. Cell 70:267–281

    CAS  Google Scholar 

  • Schnupf P, Portnoy DA (2007) Listeriolysin O: a phagosome-specific lysin. Microbes Infect 9:1176–1187

    CAS  Google Scholar 

  • Scortti M, Monzo HJ, Lacharme-Lora L, Lewis DA, Vazquez-Boland JA (2007) The PrfA virulence regulon. Microbes Infect 9:1196–1207

    CAS  Google Scholar 

  • Sergeev N, Distler M, Courtney S, Al-Khaldi SF, Volokhov D, Chizhikov V, Rasooly A (2004) Multipathogen oligonucleotide microarray for environmental and biodefense applications. Biosens Bioelectron 20:684–698

    CAS  Google Scholar 

  • Seveau S, Pizarro-Cerda J, Cossart P (2007) Molecular mechanisms exploited by Listeria monocytogenes during host cell invasion. Microbes Infect 9:1167–1175

    CAS  Google Scholar 

  • Severino P, Dussurget O, Vencio RZ, Dumas E, Garrido P, Padilla G, Piveteau P, Lemaitre JP, Kunst F, Glaser P, Buchrieser C (2007) Comparative transcriptome analysis of Listeria monocytogenes strains of the two major lineages reveals differences in virulence, cell wall, and stress response. Appl Environ Microbiol 73:6078–6088

    CAS  Google Scholar 

  • Shen A, Higgins DE (2006) The MogR transcriptional repressor regulates nonhierarchal expression of flagellar motility genes and virulence in Listeria monocytogenes. PLoS Pathog 2:e30

    CAS  Google Scholar 

  • Steinweg C, Kuenne CT, Billion A, Mraheil MA, Domann E, Ghai R, Barbuddhe SB, Kärst U, Goesmann A, Pühler A, Weisshaar B, Wehland J, Lampidis R, Kreft J, Goebel W, Chakraborty T, Hain T (2010) Complete genome sequence of Listeria seeligeri, a nonpathogenic member of the genus Listeria. J Bacteriol 192(5):1473–1474

    Google Scholar 

  • Suarez M, Gonzalez-Zorn B, Vega Y, Chico-Calero I, Vazquez-Boland JA (2001) A role for ActA in epithelial cell invasion by Listeria monocytogenes. Cell Microbiol 3:853–864

    CAS  Google Scholar 

  • Swaminathan B, Gerner-Smidt P (2007) The epidemiology of human listeriosis. Microbes Infect 9:1236–1243

    Google Scholar 

  • Thedieck K, Hain T, Mohamed W, Tindall BJ, Nimtz M, Chakraborty T, Wehland J, Jansch L (2006) The MprF protein is required for lysinylation of phospholipids in Listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenes. Mol Microbiol 62:1325–1339

    CAS  Google Scholar 

  • Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, Barthelemy M, Vergassola M, Nahori MA, Soubigou G, Regnault B, Coppee JY, Lecuit M, Johansson J, Cossart P (2009) The Listeria transcriptional landscape from saprophytism to virulence. Nature 459:950–956

    CAS  Google Scholar 

  • Tremoulet F, Duche O, Namane A, Martinie B, Labadie JC (2002) Comparison of protein patterns of Listeria monocytogenes grown in biofilm or in planktonic mode by proteomic analysis. FEMS Microbiol Lett 210:25–31

    CAS  Google Scholar 

  • Trost M, Wehmhoner D, Karst U, Dieterich G, Wehland J, Jansch L (2005) Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species. Proteomics 5:1544–1557

    CAS  Google Scholar 

  • Vazquez-Boland JA, Kocks C, Dramsi S, Ohayon H, Geoffroy C, Mengaud J, Cossart P (1992) Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect Immun 60:219–230

    CAS  Google Scholar 

  • van der Veen S, Hain T, Wouters JA, Hossain H, de Vos WM, Abee T, Chakraborty T, Wells-Bennik MH (2007) The heat-shock response of Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis, and the SOS response. Microbiology 153:3593–3607

    Google Scholar 

  • Volokhov D, Rasooly A, Chumakov K, Chizhikov V (2002) Identification of Listeria species by microarray-based assay. J Clin Microbiol 40:4720–4728

    CAS  Google Scholar 

  • Wang L, Lin M (2008) A novel cell wall-anchored peptidoglycan hydrolase (autolysin), IspC, essential for Listeria monocytogenes virulence: genetic and proteomic analysis. Microbiology 154:1900–1913

    CAS  Google Scholar 

  • Weeks M, Lupfer MB (2004) Complicating race: the relationship between prejudice, race, and social class categorizations. Pers Soc Psychol Bull 30:972–984

    Google Scholar 

  • Williams T, Joseph B, Beier D, Goebel W, Kuhn M (2005) Response regulator DegU of Listeria monocytogenes regulates the expression of flagella-specific genes. FEMS Microbiol Lett 252:287–298

    CAS  Google Scholar 

  • You Y, Fu C, Zeng X, Fang D, Yan X, Sun B, Xiao D, Zhang J (2008) A novel DNA microarray for rapid diagnosis of enteropathogenic bacteria in stool specimens of patients with diarrhea. J Microbiol Methods 75:566–571

    CAS  Google Scholar 

  • Zhang C, Zhang M, Ju J, Nietfeldt J, Wise J, Terry PM, Olson M, Kachman SD, Wiedmann M, Samadpour M, Benson AK (2003) Genome diversification in phylogenetic lineages I and II of Listeria monocytogenes: identification of segments unique to lineage II populations. J Bacteriol 185:5573–5584

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Cabanes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Cabanes, D., Sousa, S., Cossart, P. (2011). Listeria Genomics. In: Wiedmann, M., Zhang, W. (eds) Genomics of Foodborne Bacterial Pathogens. Food Microbiology and Food Safety. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7686-4_6

Download citation

Publish with us

Policies and ethics