Skip to main content

Working with Actin: Methodological Approaches for the Study of Actin in Neurons

  • Chapter
  • First Online:
Neurobiology of Actin

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 5))

Abstract

Throughout the life of an organism, the cytoskeleton plays fundamental roles in many physiological processes. An important component of the cytoskeleton is actin, in both filamentous (F-actin) and globular form (G-actin). In the nervous system, actin functions in many processes from neuronal determination to synapse formation. Actin is dynamic, continuously transiting between polymer and monomer with the aid of myriad actin-associated proteins. Filamentous actin can produce several secondary structures within the cell, including filopodia, lamellipodia, veils , and dendritic spines. Actin can also be manipulated with a number of peptide toxins that stabilize or destabilize the actin cytoskeleton in specific ways. This chapter will discuss several techniques for studying actin in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bubb MR, Senderowicz AM, Sausville EA, Duncan KL, Korn ED (1994) Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J Biol Chem 269:14869–14871.

    CAS  PubMed  Google Scholar 

  • Bubb MR, Spector I, Beyer BB, Fosen KM (2000) Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J Biol Chem 275:5163–5170.

    Article  CAS  PubMed  Google Scholar 

  • Calabrese B, Wilson MS, Halpain S (2006) Development and regulation of dendritic spine synapses. Physiology (Bethesda) 21:38–47.

    CAS  Google Scholar 

  • Choidas A, Jungbluth A, Sechi A, Murphy J, Ullrich A, Marriott G (1998) The suitability and application of a GFP–actin fusion protein for long-term imaging of the organization and dynamics of the cytoskeleton in mammalian cells. Eur J Cell Biol 77:81–90.

    CAS  PubMed  Google Scholar 

  • Cramer LP (1999) Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide. Curr Biol 9:1095–1105.

    Article  CAS  PubMed  Google Scholar 

  • Dent EW, Kalil K (2001) Axon branching requires interactions between dynamic microtubules and actin filaments. J Neurosci 21:9757–9769.

    CAS  PubMed  Google Scholar 

  • Dent EW, Kalil K (2003) Dynamic imaging of neuronal cytoskeleton. Methods Enzymol 361:390–407.

    Article  CAS  PubMed  Google Scholar 

  • Dent EW, Kwiatkowski AV, Mebane LM, Philippar U, Barzik M, Rubinson DA, Gupton SL, Van Veen JE, Furman C, Zhang J, Alberts AS, Mori S, Gertler FB (2007) Filopodia are required for cortical neurite initiation. Nat Cell Biol 9:1347–1359.

    Article  CAS  PubMed  Google Scholar 

  • Fischer M, Kaech S, Knutti D, Matus A (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20:847–854.

    Article  CAS  PubMed  Google Scholar 

  • Gallo G, Yee HF Jr, Letourneau PC (2002) Actin turnover is required to prevent axon retraction driven by endogenous actomyosin contractility. J Cell Biol 158:1219–1228.

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Viesselmann C, Nam S, Merriam E, Dent EW (2008) Activity-dependent dynamic microtubule invasion of dendritic spines. J Neurosci 28:13094–13105.

    Article  CAS  PubMed  Google Scholar 

  • Inoue S, Inoue T (2002) Direct-view high-speed confocal scanner: the CSU-10. Methods Cell Biol 70:87–127.

    Article  PubMed  Google Scholar 

  • Janas J, Skowronski J, Van Aelst L (2006) Lentiviral delivery of RNAi in hippocampal neurons. Methods Enzymol 406:593–605.

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Hammar K, Smith PJ, Oldenbourg R (1999) Arrangement of radial actin bundles in the growth cone of Aplysia bag cell neurons shows the immediate past history of filopodial behavior. Proc Natl Acad Sci USA 96:7928–7931.

    Article  CAS  PubMed  Google Scholar 

  • Lebrand C, Dent EW, Strasser GA, Lanier LM, Krause M, Svitkina TM, Borisy GG, Gertler FB (2004) Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron 42:37–49.

    Article  CAS  PubMed  Google Scholar 

  • Leung KM, van Horck FP, Lin AC, Allison R, Standart N, Holt CE (2006) Asymmetrical beta-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat Neurosci 9:1247–1256.

    Article  CAS  PubMed  Google Scholar 

  • Lewis AK, Bridgman PC (1992) Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity. J Cell Biol 119:1219–1243.

    Article  CAS  PubMed  Google Scholar 

  • Mongiu AK, Weitzke EL, Chaga OY, Borisy GG (2007) Kinetic–structural analysis of neuronal growth cone veil motility. J Cell Sci 120:1113–1125.

    Article  CAS  PubMed  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465.

    Article  CAS  PubMed  Google Scholar 

  • Rochlin MW, Dailey ME, Bridgman PC (1999) Polymerizing microtubules activate site-directed F-actin assembly in nerve growth cones. Mol Biol Cell 10:2309–2327.

    CAS  PubMed  Google Scholar 

  • Salmon ED, Shaw SL, Waters J, Waterman-Storer CM, Maddox PS, Yeh E, Bloom K (2003) A high-resolution multimode digital microscope system. Methods Cell Biol 72:185–216.

    Article  CAS  PubMed  Google Scholar 

  • Schaefer AW, Kabir N, Forscher P (2002) Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J Cell Biol 158:139–152.

    Article  CAS  PubMed  Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572.

    Article  CAS  PubMed  Google Scholar 

  • Spector I, Braet F, Shochet NR, Bubb MR (1999) New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microsc Res Tech 47:18–37.

    Article  CAS  PubMed  Google Scholar 

  • Star EN, Kwiatkowski DJ, Murthy VN (2002) Rapid turnover of actin in dendritic spines and its regulation by activity. Nat Neurosci 5:239–246.

    Article  CAS  PubMed  Google Scholar 

  • Strasser GA, Rahim NA, VanderWaal KE, Gertler FB, Lanier LM (2004) Arp2/3 is a negative regulator of growth cone translocation. Neuron 43:81–94.

    Article  CAS  PubMed  Google Scholar 

  • Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima S, Vasiliev JM, Borisy GG (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160:409–421.

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Sasaki Y, Wen Z, Bassell GJ, Zheng JQ (2006) An essential role for beta-actin mRNA localization and translation in Ca2+-dependent growth cone guidance. Nat Neurosci 9:1265–1273.

    Article  CAS  PubMed  Google Scholar 

  • Yuste R, Bonhoeffer T (2004) Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5:24–34.

    Article  CAS  PubMed  Google Scholar 

  • Zhang XF, Schaefer AW, Burnette DT, Schoonderwoert VT, Forscher P (2003) Rho-dependent contractile responses in the neuronal growth cone are independent of classical peripheral retrograde actin flow. Neuron 40:931–944.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik W. Dent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dent, E.W. (2011). Working with Actin: Methodological Approaches for the Study of Actin in Neurons. In: Gallo, G., Lanier, L. (eds) Neurobiology of Actin. Advances in Neurobiology, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7368-9_6

Download citation

Publish with us

Policies and ethics