Skip to main content

Microtubule–Actin Interactions During Neuronal Development

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 5))

Abstract

Neuronal development involves many morphological changes and events that are intimately dependent upon microtubules. These include neuronal migration, axonal and dendritic differentiation, growth, and branching, the navigation of the axon to its target, and the retraction of overgrown axons. Within the various compartments of developing neurons, microtubules take on a variety of different lengths and configurations, and undergo behaviors such as dynamic assembly and disassembly, stabilization, and transport. A growing body of evidence suggests that the microtubule behaviors that underlie neuronal morphogenesis may be regulated in part by interactions of the microtubules with the actin cytoskeleton. The purpose of this chapter is to provide an overview of some of these microtubule–actin interactions and to discuss how these interactions may be important during the development of the neuron. The chapter includes discussions on signaling pathways, molecular motor proteins, classical and non-classical microtubule-associated proteins, and +TIPS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad FJ, Hughey J, Wittmann T, Hyman A, Greaser M, Baas PW (2000) Motor proteins regulate force interactions between microtubules and microfilaments in the axon. Nat Cell Biol 2:276–280.

    Article  PubMed  CAS  Google Scholar 

  • Akhmanova A, Hoogenraad CC, Drabek K, Stepanova T, Dortland B, Verkerk T, Vermeulen W, Burgering BM, De Zeeuw CI, Grosveld F, Galjart N (2001) Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 104:923–935.

    Article  PubMed  CAS  Google Scholar 

  • Andra K, Nikolic B, Stocher M, Drenckhahn D, Wiche G (1998) Not just scaffolding: plectin regulates actin dynamics in cultured cells. Genes Dev 12:3442–3451.

    Article  PubMed  CAS  Google Scholar 

  • Aoki K, Nakamura T, Matsuda M (2004) Spatio-temporal regulation of Rac1 and Cdc42 activity during nerve growth factor-induced neurite outgrowth in PC12 cells. J Biol Chem 279:713–719.

    Article  PubMed  CAS  Google Scholar 

  • Baas PW, Black MM, Banker GA (1989) Changes in microtubule polarity orientation during the development of hippocampal neurons in culture. J Cell Biol 109:3085–3094.

    Article  PubMed  CAS  Google Scholar 

  • Bearer EL, Reese TS (1999) Association of actin filaments with axonal microtubule tracts. J Neurocytol 28:85–98.

    Article  PubMed  CAS  Google Scholar 

  • Bernier G, De Repentigny Y, Mathieu M, David S, Kothary R (1998) Dystonin is an essential component of the Schwann cell cytoskeleton at the time of myelination. Development 125:2135–2148.

    PubMed  CAS  Google Scholar 

  • Bosc C, Andrieux A, Job D (2003) STOP proteins. Biochemistry 42:12125–12132.

    Article  PubMed  CAS  Google Scholar 

  • Bradke F, Dotti CG (1999) The role of local actin instability in axon formation. Science 19:1931–1934.

    Article  Google Scholar 

  • Brown ME, Bridgman PC (2004) Myosin function in nervous and sensory systems. J Neurobiol 58:118–130.

    Article  PubMed  CAS  Google Scholar 

  • Buck KB, Zheng JQ (2002) Growth cone turning induced by direct local modification of microtubule dynamics. J Neurosci 22:9358–9367.

    PubMed  CAS  Google Scholar 

  • Challacombe JF, Snow DM, Letourneau PC (1996) Actin filament bundles are required for microtubule reorientation during growth cone turning to avoid an inhibitory guidance cue. J Cell Sci 109(Pt 8):2031–2040.

    PubMed  CAS  Google Scholar 

  • Chen YD, Chalovich JM (1992) A mosaic multiple-binding model for the binding of caldesmon and myosin subfragment-1 to actin. Biophys J 63:1063–1070.

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Kanai Y, Cowan NJ, Hirokawa N (1992) Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature 360:674–677.

    Article  PubMed  CAS  Google Scholar 

  • Chung WJ, Kindler S, Seidenbecher C, Garner CC (1996) MAP2a, an alternatively spliced variant of microtubule-associated protein 2. J Neurochem 66:1273–1281.

    Article  PubMed  CAS  Google Scholar 

  • Cross D, Vial C, Maccioni RB (1993) A tau-like protein interacts with stress fibers and microtubules in human and rodent cultured cell lines. J Cell Sci 105(Pt 1):51–60.

    PubMed  CAS  Google Scholar 

  • Cueille N, Blanc CT, Popa-Nita S, Kasas S, Catsicas S, Dietler G, Riederer BM (2007) Characterization of MAP1B heavy chain interaction with actin. Brain Res Bull 71:610–618.

    Article  PubMed  CAS  Google Scholar 

  • Dalpe G, Leclerc N, Vallee A, Messer A, Mathieu M, De Repentigny Y, Kothary R (1998) Dystonin is essential for maintaining neuronal cytoskeleton organization. Mol Cell Neurosci 10:243–257.

    Article  CAS  Google Scholar 

  • Dalpe G, Mathieu M, Comtois A, Zhu E, Wasiak S, De Repentigny Y, Leclerc N, Kothary R (1999) Dystonin-deficient mice exhibit an intrinsic muscle weakness and an instability of skeletal muscle cytoarchitecture. Dev Biol 210:367–380.

    Article  PubMed  CAS  Google Scholar 

  • Dehmelt L, Smart FM, Ozer RS, Halpain S (2003) The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation. J Neurosci 23:9479–9490.

    PubMed  CAS  Google Scholar 

  • Del Rio JA, Gonzalez-Billault C, Urena JM, Jimenez EM, Barallobre MJ, Pascual M, Pujadas L, Simo S, La Torre A, Wandosell F, Avila J, Soriano E (2004) MAP1B is required for Netrin 1 signaling in neuronal migration and axonal guidance. Curr Biol 14:840–850.

    Article  PubMed  CAS  Google Scholar 

  • Dent EW, Callaway JL, Szebenyi G, Baas PW, Kalil K (1999) Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches. J Neurosci 19:8894–8908.

    PubMed  CAS  Google Scholar 

  • Dent EW, Gertler FB (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40:209–227.

    Article  PubMed  CAS  Google Scholar 

  • DiTella M, Feiguin F, Morfini G, Caceres A (1994) Microfilament-associated growth cone component depends upon Tau for its intracellular localization. Cell Motil Cytoskeleton 29:117–130.

    Article  PubMed  CAS  Google Scholar 

  • Dillman JF III, Dabney LP, Karki S, Paschal BM, Holzbaur EL, Pfister KK (1996b) Functional analysis of dynactin and cytoplasmic dynein in slow axonal transport. J Neurosci 16:6742–6752.

    PubMed  CAS  Google Scholar 

  • Dillman JF III, Dabney LP, Pfister KK (1996a) Cytoplasmic dynein is associated with slow axonal transport. Proc Natl Acad Sci USA 93:141–144.

    Article  PubMed  CAS  Google Scholar 

  • Ding J, Valle A, Allen E, Wang W, Nardine T, Zhang Y, Peng L, Yang Y (2006) Microtubule-associated protein 8 contains two microtubule binding sites. Biochem Biophys Res Commun 339:172–179.

    Article  PubMed  CAS  Google Scholar 

  • Dowling J, Yang Y, Wollmann R, Reichardt LF, Fuchs E (1997) Developmental expression of BPAG1-n: insights into the spastic ataxia and gross neurologic degeneration in dystonia musculorum mice. Dev Biol 187:131–142.

    Article  PubMed  CAS  Google Scholar 

  • Drabek K, van Ham M, Stepanova T, Draegestein K, van Horssen R, Sayas CL, Akhmanova A, Ten Hagen T, Smits R, Fodde R, Grosveld F, Galjart N (2006) Role of CLASP2 in microtubule stabilization and the regulation of persistent motility. Curr Biol 16:2259–2264.

    Article  PubMed  CAS  Google Scholar 

  • Eckley DM, Schroer TA (2003) Interactions between the evolutionarily conserved, actin-related protein, Arp11, actin, and Arp1. Mol Biol Cell 14:2645–2654.

    Article  PubMed  CAS  Google Scholar 

  • Esposito A, Dohm CP, Kermer P, Bahr M, Wouters FS (2007) Alpha-synuclein and its disease-related mutants interact differentially with the microtubule protein tau and associate with the actin cytoskeleton. Neurobiol Dis 26:521–531.

    Article  PubMed  CAS  Google Scholar 

  • Forscher P, Smith SJ (1988) Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol 107:1505–1516.

    Article  PubMed  CAS  Google Scholar 

  • Fukata M, Nakagawa M, Kaibuchi K (2003) Roles of Rho-family GTPases in cell polarisation and directional migration. Curr Opin Cell Biol 15:590–597.

    Article  PubMed  CAS  Google Scholar 

  • Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT, Feany MB (2007) Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol 9:139–148.

    Article  PubMed  CAS  Google Scholar 

  • Gallo G (2004) Myosin II activity is required for severing-induced axon retraction in vitro. Exp Neurol 189:112–121.

    Article  PubMed  CAS  Google Scholar 

  • Gallo G (2006) RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction. J Cell Sci 119:3413–3423.

    Article  PubMed  CAS  Google Scholar 

  • Gallo G, Yee HF Jr, Letourneau PC (2002) Actin turnover is required to prevent axon retraction driven by endogenous actomyosin contractility. J Cell Biol 158:1219–1228.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Billault C, Avila J, Caceres A (2001) Evidence for the role of MAP1B in axon formation. Mol Biol Cell 12:2087–2098.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Billault C, Del Rio JA, Urena JM, Jimenez-Mateos EM, Barallobre MJ, Pascual M, Pujadas L, Simo S, Torre AL, Gavin R, Wandosell F, Soriano E, Avila J (2005) A role of MAP1B in Reelin-dependent neuronal migration. Cereb Cortex 15:1134–1145.

    Article  PubMed  Google Scholar 

  • Gordon-Weeks PR (2004) Microtubules and growth cone function. J Neurobiol 58:70–83.

    Article  PubMed  CAS  Google Scholar 

  • Grabham PW, Seale GE, Bennecib M, Goldberg DJ, Vallee RB (2007) Cytoplasmic dynein and LIS1 are required for microtubule advance during growth cone remodeling and fast axonal outgrowth. J Neurosci 27:5823–5834.

    Article  PubMed  CAS  Google Scholar 

  • Hasaka TP, Myers KA, Baas PW (2004) Role of actin filaments in the axonal transport of microtubules. J Neurosci 24:11291–11301.

    Article  PubMed  CAS  Google Scholar 

  • He Y, Francis F, Myers KA, Yu W, Black MM, Baas PW (2005) Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments. J Cell Biol 168:697–703.

    Article  PubMed  CAS  Google Scholar 

  • Heidemann SR, Landers JM, Hamborg MA (1981) Polarity orientation of axonal microtubules. J Cell Biol 91:661–665.

    Article  PubMed  CAS  Google Scholar 

  • Henriquez JP, Cross D, Vial C, Maccioni RB (1995) Subpopulations of tau interact with microtubules and actin filaments in various cell types. Cell Biochem Funct 13:239–250.

    Article  PubMed  CAS  Google Scholar 

  • Higginbotham HR, Gleeson JG (2007) The centrosome in neuronal development. Trends Neurosci 30:276–283.

    Article  PubMed  CAS  Google Scholar 

  • Huisman SM, Segal M (2005) Cortical capture of microtubules and spindle polarity in budding yeast – where’s the catch? J Cell Sci 118:463–471.

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Mateos EM, Wandosell F, Reiner O, Avila J, Gonzalez-Billault C (2005) Binding of microtubule-associated protein 1B to LIS1 affects the interaction between dynein and LIS1. Biochem J 389:333–341.

    Article  PubMed  CAS  Google Scholar 

  • Kabir N, Schaefer AW, Nakhost A, Sossin WS, Forscher P (2001) Protein kinase C activation promotes microtubule advance in neuronal growth cones by increasing average microtubule growth lifetimes. J Cell Biol 152:1033–1044.

    Article  PubMed  CAS  Google Scholar 

  • Kaverina I, Krylyshkina O, Small JV (2002) Regulation of substrate adhesion dynamics during cell motility. Int J Biochem Cell Biol 34:746–761.

    Article  PubMed  CAS  Google Scholar 

  • Kempf M, Clement A, Faissner A, Lee G, Brandt R (1996) Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J Neurosci 16:5583–5592.

    PubMed  CAS  Google Scholar 

  • Kholmanskikh SS, Koeller HB, Wynshaw-Boris A, Gomez T, Letourneau PC, Ross ME (2006) Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility. Nat Neurosci 9:50–57.

    Article  PubMed  CAS  Google Scholar 

  • Kirschner MW, Mitchison T (1986) Microtubule dynamics. Nature 324:621.

    Article  PubMed  CAS  Google Scholar 

  • Kodama A, Karakesisoglou I, Wong E, Vaezi A, Fuchs E (2003) ACF7: an essential integrator of microtubule dynamics. Cell 115:343–354.

    Article  PubMed  CAS  Google Scholar 

  • Komarova Y, Lansbergen G, Galjart N, Grosveld F, Borisy GG, Akhmanova A (2005) EB1 and EB3 control CLIP dissociation from the ends of growing microtubules. Mol Biol Cell 16:5334–5345.

    Article  PubMed  CAS  Google Scholar 

  • Kwei SL, Clement A, Faissner A, Brandt R (1998) Differential interactions of MAP2, tau and MAP5 during axogenesis in culture. Neuroreport 9:1035–1040.

    Article  PubMed  CAS  Google Scholar 

  • Lansbergen G, Grigoriev I, Mimori-Kiyosue Y, Ohtsuka T, Higa S, Kitajima I, Demmers J, Galjart N, Houtsmuller AB, Grosveld F, Akhmanova A (2006) CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5beta. Dev Cell 11:21–32.

    Article  PubMed  CAS  Google Scholar 

  • Lansbergen G, Komarova Y, Modesti M, Wyman C, Hoogenraad CC, Goodson HV, Lemaitre RP, Drechsel DN, van Munster E, Gadella TW Jr, Grosveld F, Galjart N, Borisy GG, Akhmanova A (2004) Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization. J Cell Biol 166:1003–1014.

    Article  PubMed  CAS  Google Scholar 

  • Leclerc N, Baas PW, Garner CC, Kosik KS (1996) Juvenile and mature MAP2 isoforms induce distinct patterns of process outgrowth. Mol Biol Cell 7:443–455.

    PubMed  CAS  Google Scholar 

  • Lee H, Engel U, Rusch J, Scherrer S, Sheard K, Van Vactor D (2004) The microtubule plus end tracking protein Orbit/MAST/CLASP acts downstream of the tyrosine kinase Abl in mediating axon guidance. Neuron 42:913–926.

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kolodziej PA (2002) Short Stop provides an essential link between F-actin and microtubules during axon extension. Development 129:1195–1204.

    Article  PubMed  CAS  Google Scholar 

  • Lin CH, Forscher P (1993) Cytoskeletal remodeling during growth cone–target interactions. J Cell Biol 121:1369–1383.

    Article  PubMed  CAS  Google Scholar 

  • McCartney BM, McEwen DG, Grevengoed E, Maddox P, Bejsovec A, Peifer M (2001) Drosophila APC2 and Armadillo participate in tethering mitotic spindles to cortical actin. Nat Cell Biol 3:933–938.

    Article  PubMed  CAS  Google Scholar 

  • Mimori-Kiyosue Y, Shiina N, Tsukita S (2000) The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr Biol 10:865–868.

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay R, Kumar S, Hoh JH (2004) Molecular mechanisms for organizing the neuronal cytoskeleton. Bioessays 26:1017–1025.

    Article  PubMed  CAS  Google Scholar 

  • Myers KA, He Y, Hasaka TP, Baas PW (2006a) Microtubule transport in the axon: re-thinking a potential role for the actin cytoskeleton. Neuroscientist 12:107–118.

    Article  PubMed  CAS  Google Scholar 

  • Myers KA, Tint I, Nadar CV, He Y, Black MM, Baas PW (2006b) Antagonistic forces generated by cytoplasmic dynein and myosin-II during growth cone turning and axonal retraction. Traffic 7:1333–1351.

    Article  PubMed  CAS  Google Scholar 

  • Noiges R, Eichinger R, Kutschera W, Fischer I, Nemeth Z, Wiche G, Propst F (2002) Microtubule-associated protein 1A (MAP1A) and MAP1B: light chains determine distinct functional properties. J Neurosci 22:2106–2114.

    PubMed  CAS  Google Scholar 

  • O’Connell CB, Wang YL (2000) Mammalian spindle orientation and position respond to changes in cell shape in a dynein-dependent fashion. Mol Biol Cell 11:1765–1774.

    PubMed  Google Scholar 

  • Pecreaux J, Roper JC, Kruse K, Julicher F, Hyman AA, Grill SW, Howard J (2006) Spindle oscillations during asymmetric cell division require a threshold number of active cortical force generators. Curr Biol 16:2111–2122.

    Article  PubMed  CAS  Google Scholar 

  • Perez F, Diamantopoulos GS, Stalder R, Kreis TE (1999) CLIP-170 highlights growing microtubule ends in vivo. Cell 96:517–527.

    Article  PubMed  CAS  Google Scholar 

  • Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev Biol 265:23–32.

    Article  PubMed  CAS  Google Scholar 

  • Rochlin MW, Dailey ME, Bridgman PC (1999) Polymerizing microtubules activate site-directed F-actin assembly in nerve growth cones. Mol Biol Cell 10:2309–2327.

    PubMed  CAS  Google Scholar 

  • Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM (2003) Conserved microtubule–actin interactions in cell movement and morphogenesis. Nat Cell Biol 5:599–609.

    Article  PubMed  CAS  Google Scholar 

  • Roger B, Al-Bassam J, Dehmelt L, Milligan RA, Halpain S (2004) MAP2c, but not tau, binds and bundles F-actin via its microtubule binding domain. Curr Biol 14:363–371.

    Article  PubMed  CAS  Google Scholar 

  • Roper K, Brown NH (2003) Maintaining epithelial integrity: a function for gigantic spectraplakin isoforms in adherens junctions. J Cell Biol 162:1305–1315.

    Article  PubMed  CAS  Google Scholar 

  • Roper K, Gregory SL, Brown NH (2002) The ‘spectraplakins’: cytoskeletal giants with characteristics of both spectrin and plakin families. J Cell Sci 115:4215–4225.

    Article  PubMed  CAS  Google Scholar 

  • Sarner S, Kozma R, Ahmed S, Lim L (2000) Phosphatidylinositol 3-kinase, Cdc42, and Rac1 act downstream of Ras in integrin-dependent neurite outgrowth in N1E-115 neuroblastoma cells. Mol Cell Biol 20:158–172.

    Article  PubMed  CAS  Google Scholar 

  • Sato-Yoshitake R, Shiomura Y, Miyasaka H, Hirokawa N (1989) Microtubule-associated protein 1B: molecular structure, localization, and phosphorylation-dependent expression in developing neurons. Neuron 3:229–238.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer AW, Kabir N, Forscher P (2002) Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J Cell Biol 158:139–152.

    Article  PubMed  CAS  Google Scholar 

  • Schubert V, Dotti CG (2007) Transmitting on actin: synaptic control of dendritic architecture. J Cell Sci 120:205–212.

    Article  PubMed  CAS  Google Scholar 

  • Schuyler SC, Pellman D (2001) Microtubule “plus-end-tracking proteins”: the end is just the beginning. Cell 105:421–424.

    Article  PubMed  CAS  Google Scholar 

  • Sharma VM, Litersky JM, Bhaskar K, Lee G (2007) Tau impacts on growth-factor-stimulated actin remodeling. J Cell Sci 120:748–757.

    Article  PubMed  CAS  Google Scholar 

  • Shiomura Y, Hirokawa N (1987) The molecular structure of microtubule-associated protein 1A (MAP1A) in vivo and in vitro. An immunoelectron microscopy and quick-freeze, deep-etch study. J Neurosci 7:1461–1469.

    PubMed  CAS  Google Scholar 

  • Suter DM, Schaefer AW, Forscher P (2004) Microtubule dynamics are necessary for SRC family kinase-dependent growth cone steering. Curr Biol 14:1194–1199.

    Article  PubMed  CAS  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208.

    PubMed  CAS  Google Scholar 

  • Tanaka E, Kirschner MW (1995) The role of microtubules in growth cone turning at substrate boundaries. J Cell Biol 128:127–137.

    Article  PubMed  CAS  Google Scholar 

  • Teng J, Takei Y, Harada A, Nakata T, Chen J, Hirokawa N (2001) Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol 155:65–76.

    Article  PubMed  CAS  Google Scholar 

  • Tigyi G, Fischer DJ, Sebok A, Marshall F, Dyer DL, Miledi R (1996) Lysophosphatidic acid-induced neurite retraction in PC12 cells: neurite-protective effects of cyclic AMP signaling. J Neurochem 66:549–558.

    Article  PubMed  CAS  Google Scholar 

  • Tirnauer JS, Bierer BE (2000) EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J Cell Biol 149:761–766.

    Article  PubMed  CAS  Google Scholar 

  • Tsai LH, Gleeson JG (2005) Nucleokinesis in neuronal migration. Neuron 46:383–388.

    Article  PubMed  CAS  Google Scholar 

  • Valetti C, Wetzel DM, Schrader M, Hasbani MJ, Gill SR, Kreis TE, Schroer TA (1999) Role of dynactin in endocytic traffic: effects of dynamitin overexpression and colocalization with CLIP-170. Mol Biol Cell 10:4107–4120.

    PubMed  CAS  Google Scholar 

  • Vallee RB, Williams JC, Varma D, Barnhart LE (2004) Dynein: an ancient motor protein involved in multiple modes of transport. J Neurobiol 58:189–200.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan KT (2005) Microtubule plus ends, motors, and traffic of Golgi membranes. Biochim Biophys Acta 1744:316–324.

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Brown A (2002) Rapid movement of microtubules in axons. Curr Biol 12:1496–1501.

    Article  PubMed  CAS  Google Scholar 

  • Watabe-Uchida M, Govek EE, Van Aelst L (2006) Regulators of Rho GTPases in neuronal development. J Neurosci 26:10633–10635.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Noritake J, Kaibuchi K (2005) Roles of IQGAP1 in cell polarization and migration. Novartis Found Symp 269:92–101, discussion 101–105, 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Welte MA (2004) Bidirectional transport along microtubules. Curr Biol 14:R525–R537.

    Article  PubMed  CAS  Google Scholar 

  • Wittmann T, Bokoch GM, Waterman-Storer CM (2003) Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J Cell Biol 161:845–851.

    Article  PubMed  CAS  Google Scholar 

  • Wittmann T, Waterman-Storer CM (2005) Spatial regulation of CLASP affinity for microtubules by Rac1 and GSK3beta in migrating epithelial cells. J Cell Biol 169:929–939.

    Article  PubMed  CAS  Google Scholar 

  • Yamada KM, Spooner BS, Wessells NK (1971) Ultrastructure and function of growth cones and axons of cultured nerve cells. J Cell Biol 49:614–635.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, Tsutsumi C, Kojima H, Oiwa K, Hiraoka Y (2001) Dynamic behavior of microtubules during dynein-dependent nuclear migrations of meiotic prophase in fission yeast. Mol Biol Cell 12:3933–3946.

    PubMed  CAS  Google Scholar 

  • Young KG, Pinheiro B, Kothary R (2006) A Bpag1 isoform involved in cytoskeletal organization surrounding the nucleus. Exp Cell Res 312:121–134.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Li S, Fischer R, Xiang X (2003) Accumulation of cytoplasmic dynein and dynactin at microtubule plus ends in Aspergillus nidulans is kinesin dependent. Mol Biol Cell 14:1479–1488.

    Article  PubMed  CAS  Google Scholar 

  • Zhou FQ, Cohan CS (2004) How actin filaments and microtubules steer growth cones to their targets. J Neurobiol 58:84–91.

    Article  PubMed  CAS  Google Scholar 

  • Zhou FQ, Waterman-Storer CM, Cohan CS (2002) Focal loss of actin bundles causes microtubule redistribution and growth cone turning. J Cell Biol 157:839–849.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work in the Baas Laboratory is supported by grants from the National Institutes of Health, the Alzheimer’s Association, and the Craig H. Neilsen Foundation. Kenneth Myers is supported by a pre-doctoral NRSA from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Baas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Myers, K.A., Baas, P.W. (2011). Microtubule–Actin Interactions During Neuronal Development. In: Gallo, G., Lanier, L. (eds) Neurobiology of Actin. Advances in Neurobiology, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7368-9_5

Download citation

Publish with us

Policies and ethics