Skip to main content

Allosteric Disulfide Bonds

  • Chapter
  • First Online:

Part of the book series: Protein Reviews ((PRON,volume 14))

Abstract

Protein disulfide bonds link cysteine residues in the polypeptide chain. The bonds contribute, sometimes crucially, to protein stability and function and are strongly conserved through the evolution of species. By analyzing the conservation of all structurally validated disulfide bonds across 29 completely sequenced eukaryotic genomes, we found that disulfide-bonded cysteines are even more conserved than tryptophan – the most conserved amino acid. Moreover, the rate of acquisition of disulfide bonds shows a strong positive correlation with organism complexity, which probably reflects the requirement for more sophistication in protein function in complex species. The majority of disulfide bonds perform a structural role by stabilizing the mature protein. Some disulfide bonds perform a functional role in the mature protein and can be divided into catalytic or allosteric disulfides. Catalytic disulfides/dithiols transfer electrons between proteins, while the allosteric bonds control the function of the protein in which they reside when they break and/or form. There are currently a dozen or so examples of allosteric disulfide bonds. The features of these bonds and their involvement in the respective proteins’ function are discussed. A common aspect of 11 of the 12 allosteric bonds discussed herein is that they link β-strands or β-loops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

β2GPI:

β2-glycoprotein I

Csk:

Carboxyl-terminal Src kinase

ERp5:

Endoplasmic reticulum protein 5

GFP:

Green fluorescent protein

HIV:

Human immunodeficiency virus

MHCI:

Major histocompatibility complex class I

NK:

Natural killer

PDI:

Protein disulfide isomerase

TG2:

Transglutaminase 2

VWC:

von Willebrand factor type C domains

VWF:

von Willebrand factor

References

  • Abreu JG, Coffinier C, Larraín J, Oelgeschläger M, De Robertis EM (2002) Chordin-like cr domains and the regulation of evolutionarily conserved extracellular signalling systems. Gene 287:39–47

    Google Scholar 

  • Ahamed J, Versteeg HH, Kerver M, Chen VM, Mueller BM, Hogg PJ, Ruf W (2006) Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc Natl Acad Sci USA 103(38):13932–13937

    Article  PubMed  CAS  Google Scholar 

  • Auwerx J, Isacsson O, Soderlund J, Balzarini J, Johansson M, Lundberg M (2009) Human glutaredoxin-1 catalyzes the reduction of hiv-1 gp120 and cd4 disulfides and its inhibition reduces hiv-1 replication. Int J Biochem Cell Biol 41(6):1269–1275

    Article  PubMed  CAS  Google Scholar 

  • Azimi I, Matthias LJ, Center RJ, Wong JW, Hogg PJ (2010) Disulfide bond that constrains the hiv-1 gp120 v3 domain is cleaved by thioredoxin. J Biol Chem 285(51):40072–40080

    Article  PubMed  CAS  Google Scholar 

  • Bach RR (2006) Tissue factor encryption. Arterioscler Thromb Vasc Biol 26(3):456–461

    Article  PubMed  CAS  Google Scholar 

  • Barbouche R, Miquelis R, Jones IM, Fenouillet E (2003) Protein-disulfide isomerase-mediated reduction of two disulfide bonds of hiv envelope glycoprotein 120 occurs post-cxcr4 binding and is required for fusion. J Biol Chem 278(5):3131–3136

    Article  PubMed  CAS  Google Scholar 

  • Begg GE, Carrington L, Stokes PH, Matthews JM, Wouters MA, Husain A, Lorand L, Iismaa SE, Graham RM (2006) Mechanism of allosteric regulation of transglutaminase 2 by gtp. Proc Natl Acad Sci USA 103(52):19683–19688

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  PubMed  CAS  Google Scholar 

  • Berndt C, Lillig CH, Holmgren A (2008) Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim Biophys Acta 1783(4):641–650

    Article  PubMed  CAS  Google Scholar 

  • Billington J, Hickling TP, Munro GH, Halai C, Chung R, Dodson GG, Daniels RS (2007) Stability of a receptor-binding active human immunodeficiency virus type 1 recombinant gp140 trimer conferred by intermonomer disulfide bonding of the v3 loop: Differential effects of protein disulfide isomerase on cd4 and coreceptor binding. J Virol 81(9):4604–4614

    Article  PubMed  CAS  Google Scholar 

  • Bouma B, de Groot PG, van den Elsen JM, Ravelli RB, Schouten A, Simmelink MJ, Derksen RH, Kroon J, Gros P (1999) Adhesion mechanism of human beta(2)-glycoprotein i to phospholipids based on its crystal structure. EMBO J 18(19):5166–5174

    Article  PubMed  CAS  Google Scholar 

  • Bourgeois R, Mercier J, Paquette-Brooks I, Cohen EA (2006) Association between disruption of cd4 receptor dimerization and increased human immunodeficiency virus type 1 entry. Retrovirology 3:31

    Article  PubMed  Google Scholar 

  • Brooks DJ, Fresco JR (2002) Increased frequency of cysteine, tyrosine, and phenylalanine residues since the last universal ancestor. Mol Cell Proteomics 1(2):125–131

    Article  PubMed  CAS  Google Scholar 

  • Brooks DJ, Fresco JR, Lesk AM, Singh M (2002) Evolution of amino acid frequencies in proteins over deep time: Inferred order of introduction of amino acids into the genetic code. Mol Biol Evol 19(10):1645–1655

    PubMed  CAS  Google Scholar 

  • Brooks DJ, Fresco JR, Singh M (2004) A novel method for estimating ancestral amino acid ­composition and its application to proteins of the last universal ancestor. Bioinformatics 20(14):2251–2257

    Article  PubMed  CAS  Google Scholar 

  • Carroll SB (2001) Chance and necessity: The evolution of morphological complexity and diversity. Nature 409(6823):1102–1109

    Article  PubMed  CAS  Google Scholar 

  • Chen VM, Ahamed J, Versteeg HH, Berndt MC, Ruf W, Hogg PJ (2006) Evidence for activation of tissue factor by an allosteric disulfide bond. Biochemistry 45(39):12020–12028

    Article  PubMed  CAS  Google Scholar 

  • Chen VM, Hogg PJ (2006) Allosteric disulfide bonds in thrombosis and thrombolysis. J Thromb Haemost 4(12):2533–2541

    Article  PubMed  CAS  Google Scholar 

  • Cho J, Furie BC, Coughlin SR, Furie B (2008) A critical role for extracellular protein disulfide isomerase during thrombus formation in mice. J Clin Invest 118(3):1123–1131

    PubMed  CAS  Google Scholar 

  • Choi H, Aboulfatova K, Pownall HJ, Cook R, Dong JF (2007) Shear-induced disulfide bond formation regulates adhesion activity of von willebrand factor. J Biol Chem 282(49):35604–35611

    Article  PubMed  CAS  Google Scholar 

  • Chung SI, Folk JE (1970) Mechanism of the inactivation of guinea pig liver transglutaminase by tetrathionate. J Biol Chem 245(4):681–689

    PubMed  CAS  Google Scholar 

  • Collet JF, Riemer J, Bader MW, Bardwell JC (2002) Reconstitution of a disulfide isomerization system. J Biol Chem 277(30):26886–26892

    Article  PubMed  CAS  Google Scholar 

  • Connellan JM, Folk JE (1969) Mechanism of the inactivation of guinea pig liver transglutaminase by 5,5’-dithiobis-(2-nitrobenzoic acid). J Biol Chem 244(12):3173–3181

    PubMed  CAS  Google Scholar 

  • Einfeld D (1996) Maturation and assembly of retroviral glycoproteins. Curr Top Microbiol Immunol 214:133–176

    PubMed  CAS  Google Scholar 

  • Essex DW (2008) Redox control of platelet function. Antioxidants & redox signaling 11(5):1191–1225

    Google Scholar 

  • Fernandes PA, Ramos MJ (2004) Theoretical insights into the mechanism for thiol/disulfide exchange. Chemistry (Weinheim an der Bergstrasse, Germany) 10 (1):257–266

    Google Scholar 

  • Fischer A, Montal M (2007) Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J Biol Chem 282(40):29604–29611

    Article  PubMed  CAS  Google Scholar 

  • Furie B, Furie BC (2008) Mechanisms of thrombus formation. N Engl J Med 359(9):938–949

    Article  PubMed  CAS  Google Scholar 

  • Fyhrquist F, Saijonmaa O (2008) Renin-angiotensin system revisited. J Intern Med 264(3):224–236

    Article  PubMed  CAS  Google Scholar 

  • Gallina A, Hanley TM, Mandel R, Trahey M, Broder CC, Viglianti GA, Ryser HJ (2002) Inhibitors of protein-disulfide isomerase prevent cleavage of disulfide bonds in receptor-bound glycoprotein 120 and prevent hiv-1 entry. J Biol Chem 277(52):50579–50588

    Article  PubMed  CAS  Google Scholar 

  • Gallo SA, Finnegan CM, Viard M, Raviv Y, Dimitrov A, Rawat SS, Puri A, Durell S, Blumenthal R (2003) The hiv env-mediated fusion reaction. Biochim Biophys Acta 1614(1):36–50

    Article  PubMed  CAS  Google Scholar 

  • Garrett TP, Wang J, Yan Y, Liu J, Harrison SC (1993) Refinement and analysis of the structure of the first two domains of human cd4. J Mol Biol 234(3):763–778

    Article  PubMed  CAS  Google Scholar 

  • Giannakopoulos B, Passam F, Ioannou Y, Krilis SA (2009) How we diagnose the antiphospholipid syndrome. Blood 113(5):985–994

    Article  PubMed  CAS  Google Scholar 

  • Gonnet GH, Cohen MA, Benner SA (1992) Exhaustive matching of the entire protein sequence database. Science 256(5062):1443–1445

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez S, Groh V, Spies T (2006) Immunobiology of human nkg2d and its ligands. Curr Top Microbiol Immunol 298:121–138

    Article  PubMed  CAS  Google Scholar 

  • Gopalan G, He Z, Balmer Y, Romano P, Gupta R, Heroux A, Buchanan BB, Swaminathan K, Luan S (2004) Structural analysis uncovers a role for redox in regulating fkbp13, an immunophilin of the chloroplast thylakoid lumen. Proc Natl Acad Sci USA 101(38):13945–13950

    Article  PubMed  CAS  Google Scholar 

  • Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: Nature’s biological glues. Biochem J 368(Pt 2):377–396

    Article  PubMed  CAS  Google Scholar 

  • Grimshaw JP, Stirnimann CU, Brozzo MS, Malojcic G, Grutter MG, Capitani G, Glockshuber R (2008) Dsbl and dsbi form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenic escherichia coli. J Mol Biol 380(4):667–680

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T (1996) Cell stress-regulated human major histocompatibility complex class i gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA 93(22):12445–12450

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T (1999) Broad tumor-associated expression and recognition by tumor-derived gamma delta t cells of mica and micb. Proc Natl Acad Sci USA 96(12):6879–6884

    Article  PubMed  CAS  Google Scholar 

  • Hedges SB, Dudley J, Kumar S (2006) Timetree: A public knowledge-base of divergence times among organisms. Bioinformatics 22(23):2971–2972

    Article  PubMed  CAS  Google Scholar 

  • Hogg PJ (2003) Disulfide bonds as switches for protein function. Trends Biochem Sci 28(4):210–214

    Article  PubMed  CAS  Google Scholar 

  • Hogg PJ (2009) Contribution of allosteric disulfide bonds to regulation of hemostasis. J Thromb Haemost 7(Suppl 1):13–16

    Article  PubMed  CAS  Google Scholar 

  • Huang CC, Stricher F, Martin L, Decker JM, Majeed S, Barthe P, Hendrickson WA, Robinson J, Roumestand C, Sodroski J, Wyatt R, Shaw GM, Vita C, Kwong PD (2005) Scorpion-toxin mimics of cd4 in complex with human immunodeficiency virus gp120 crystal structures, molecular mimicry, and neutralization breadth. Structure 13(5):755–768

    Article  PubMed  CAS  Google Scholar 

  • Hubbard TJ, Murzin AG, Brenner SE, Chothia C (1997) Scop: A structural classification of proteins database. Nucleic Acids Res 25(1):236–239

    Article  PubMed  CAS  Google Scholar 

  • Hurvitz JR, Suwairi WM, Van Hul W, El-Shanti H, Superti-Furga A, Roudier J, Holderbaum D, Pauli RM, Herd JK, Van Hul EV, Rezai-Delui H, Legius E, Le Merrer M, Al-Alami J, Bahabri SA, Warman ML (1999) Mutations in the ccn gene family member wisp3 cause progressive pseudorheumatoid dysplasia. Nat Genet 23(1):94–98

    Article  PubMed  CAS  Google Scholar 

  • Ioannou Y, Zhang J-Y, Passam FH, Rahgozar S, Qi JC, Giannakopoulos B, Yu MQP, Yu DM, Hogg PJ, Krilis SA (2010) Naturally occurring free thiols within ß2-glycoprotein i in vivo: Nitrosylation, redox modification by endothelial cells and regulation of oxidative stress induced cell injury. Blood:in press

    Google Scholar 

  • Jacob-Dubuisson F, Pinkner J, Xu Z, Striker R, Padmanhaban A, Hultgren SJ (1994) Papd chaperone function in pilus biogenesis depends on oxidant and chaperone-like activities of dsba. Proc Natl Acad Sci USA 91(24):11552–11556

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8(3):275–282

    PubMed  CAS  Google Scholar 

  • Jordan IK, Kondrashov FA, Adzhubei IA, Wolf YI, Koonin EV, Kondrashov AS, Sunyaev S (2005) A universal trend of amino acid gain and loss in protein evolution. Nature 433(7026):633–638

    Article  PubMed  CAS  Google Scholar 

  • Kaiser BK, Yim D, Chow IT, Gonzalez S, Dai Z, Mann HH, Strong RK, Groh V, Spies T (2007) Disulphide-isomerase-enabled shedding of tumour-associated nkg2d ligands. Nature 447(7143):482–486

    Article  PubMed  CAS  Google Scholar 

  • Klipcan L, Safro M (2004) Amino acid biogenesis, evolution of the genetic code and aminoacyl-trna synthetases. J Theor Biol 228(3):389–396

    Article  PubMed  CAS  Google Scholar 

  • Krause G, Lundstrom J, Barea JL, Pueyo de la Cuesta C, Holmgren A (1991) Mimicking the active site of protein disulfide-isomerase by substitution of proline 34 in escherichia coli thioredoxin. J Biol Chem 266(15):9494–9500

    PubMed  CAS  Google Scholar 

  • Kreisberg R, Buchner V, Arad D (1995) Paired natural cysteine mutation mapping: Aid to constraining models of protein tertiary structure. Protein Sci 4(11):2405–2410

    Article  PubMed  CAS  Google Scholar 

  • Lai TS, Liu Y, Tucker T, Daniel KR, Sane DC, Toone E, Burke JR, Strittmatter WJ, Greenberg CS (2008) Identification of chemical inhibitors to human tissue transglutaminase by screening existing drug libraries. Chem Biol 15(9):969–978

    Article  PubMed  CAS  Google Scholar 

  • Le DT, Rapaport SI, Rao LV (1992) Relations between factor viia binding and expression of factor viia/tissue factor catalytic activity on cell surfaces. J Biol Chem 267(22):15447–15454

    PubMed  CAS  Google Scholar 

  • Lester WA, Guilliatt AM, Enayat MS, Rose P, Hill FG (2007) The r2464c missense mutation in the von willebrand factor gene causes a novel abnormality of multimer electrophoretic mobility and falls into the subgroup of type 2 von willebrand disease “unclassified”. Thromb Haemost 97(1):159–160

    PubMed  CAS  Google Scholar 

  • Li P, Morris DL, Willcox BE, Steinle A, Spies T, Strong RK (2001) Complex structure of the activating immunoreceptor nkg2d and its mhc class i-like ligand mica. Nat Immunol 2(5):443–451

    PubMed  CAS  Google Scholar 

  • Li P, Willie ST, Bauer S, Morris DL, Spies T, Strong RK (1999) Crystal structure of the mhc class i homolog mic-a, a gammadelta t cell ligand. Immunity 10(5):577–584

    Article  PubMed  CAS  Google Scholar 

  • Liang HP, Hogg PJ (2008) Critical importance of the cell system when studying tissue factor ­de-encryption. Blood 112 (3):912–913; author reply 913

    Google Scholar 

  • Liu J, Bartesaghi A, Borgnia MJ, Sapiro G, Subramaniam S (2008) Molecular architecture of native hiv-1 gp120 trimers. Nature 455(7209):109–113

    Article  PubMed  CAS  Google Scholar 

  • Lundstrom J, Holmgren A (1993) Determination of the reduction-oxidation potential of the thioredoxin-like domains of protein disulfide-isomerase from the equilibrium with glutathione and thioredoxin. Biochemistry 32(26):6649–6655

    Article  PubMed  CAS  Google Scholar 

  • Maekawa A, Schmidt B, de St F, Groth B, Sanejouand YH, Hogg PJ (2006) Evidence for a domain-swapped cd4 dimer as the coreceptor for binding to class ii mhc. J Immunol 176(11):6873–6878

    PubMed  CAS  Google Scholar 

  • Malojcic G, Owen RL, Grimshaw JP, Brozzo MS, Dreher-Teo H, Glockshuber R (2008) A structural and biochemical basis for paps-independent sulfuryl transfer by aryl sulfotransferase from uropathogenic escherichia coli. Proc Natl Acad Sci USA 105(49):19217–19222

    Article  PubMed  CAS  Google Scholar 

  • Markovic I, Stantchev TS, Fields KH, Tiffany LJ, Tomic M, Weiss CD, Broder CC, Strebel K, Clouse KA (2004) Thiol/disulfide exchange is a prerequisite for cxcr4-tropic hiv-1 envelope-mediated t-cell fusion during viral entry. Blood 103(5):1586–1594

    Article  PubMed  CAS  Google Scholar 

  • Matthias LJ, Azimi I, Tabrett CA, Hogg PJ (2010) Reduced monomeric cd4 is the preferred receptor for hiv. J Biol Chem 285(52):40793–40799

    Article  PubMed  CAS  Google Scholar 

  • Matthias LJ, Yam PT, Jiang XM, Vandegraaff N, Li P, Poumbourios P, Donoghue N, Hogg PJ (2002) Disulfide exchange in domain 2 of cd4 is required for entry of hiv-1. Nat Immunol 3(8):727–732

    PubMed  CAS  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117(3046):528–529

    Article  PubMed  CAS  Google Scholar 

  • Miller SL (1987) Which organic compounds could have occurred on the prebiotic earth? Cold Spring Harb Symp Quant Biol 52:17–27

    PubMed  CAS  Google Scholar 

  • Mills JE, Whitford PC, Shaffer J, Onuchic JN, Adams JA, Jennings PA (2007) A novel disulfide bond in the sh2 domain of the c-terminal src kinase controls catalytic activity. J Mol Biol 365(5):1460–1468

    Article  PubMed  CAS  Google Scholar 

  • Miyakis S, Giannakopoulos B, Krilis SA (2004) Beta 2 glycoprotein i–function in health and disease. Thromb Res 114(5–6):335–346

    Article  PubMed  CAS  Google Scholar 

  • Montal M (2010) Botulinum neurotoxin: A marvel of protein design. Annu Rev Biochem 79:591–617

    Google Scholar 

  • Muller YA, Ultsch MH, de Vos AM (1996) The crystal structure of the extracellular domain of human tissue factor refined to 1.7 a resolution. J Mol Biol 256(1):144–159

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) Scop: A structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(4):536–540

    PubMed  CAS  Google Scholar 

  • Ogawa A, Takayama Y, Sakai H, Chong KT, Takeuchi S, Nakagawa A, Nada S, Okada M, Tsukihara T (2002) Structure of the carboxyl-terminal src kinase, csk. J Biol Chem 277(17):14351–14354

    Article  PubMed  CAS  Google Scholar 

  • Ostergaard H, Henriksen A, Hansen FG, Winther JR (2001) Shedding light on disulfide bond formation: Engineering a redox switch in green fluorescent protein. EMBO J 20(21):5853–5862

    Article  PubMed  CAS  Google Scholar 

  • Ou W, Silver J (2006) Role of protein disulfide isomerase and other thiol-reactive proteins in hiv-1 envelope protein-mediated fusion. Virology 350(2):406–417

    Article  PubMed  CAS  Google Scholar 

  • Passam FH, Rahgozar S, Qi M, Raftery MJ, Wong JWH, Tanaka K, Ioannou Y, Zhang JY, Gemmell R, Qi JC, Giannakopoulos B, Hughes WE, Hogg PJ, Krilis SA (2010a) Redox control of β2gpi-von willebrand factor interaction by thioredoxin-1. J Thromb Haemost 8(8):1754–1762

    Google Scholar 

  • Passam FH, Rahgozar S, Qi M, Raftery MJ, Wong JWH, Tanaka K, Ioannou Y, Zhang JY, Gemmell R, Qi JC, Hughes WE, Hogg PJ, Krilis SA (2010b) Beta 2 glycoprotein i is a substrate of thiol oxidoreductases. Blood 116(11):1995–1997

    Google Scholar 

  • Pendurthi UR, Ghosh S, Mandal SK, Rao LV (2007) Tissue factor activation: Is disulfide bond switching a regulatory mechanism? Blood 110(12):3900–3908

    Article  PubMed  CAS  Google Scholar 

  • Persson E (2008) Protein disulfide isomerase has no stimulatory chaperone effect on factor x activation by factor viia-soluble tissue factor. Thrombosis Res 123(1):171–176

    Article  CAS  Google Scholar 

  • Piatek R, Zalewska B, Kolaj O, Ferens M, Nowicki B, Kur J (2005) Molecular aspects of biogenesis of escherichia coli dr fimbriae: Characterization of drab-drae complexes. Infect Immun 73(1):135–145

    Article  PubMed  CAS  Google Scholar 

  • Pinkas DM, Strop P, Brunger AT, Khosla C (2007) Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 5(12):e327

    Article  PubMed  Google Scholar 

  • Ploplis VA, Edgington TS, Fair DS (1987) Initiation of the extrinsic pathway of coagulation. Association of factor viia with a cell line expressing tissue factor. J Biol Chem 262(20):9503–9508

    PubMed  CAS  Google Scholar 

  • Reinhardt C, von Bruhl ML, Manukyan D, Grahl L, Lorenz M, Altmann B, Dlugai S, Hess S, Konrad I, Orschiedt L, Mackman N, Ruddock L, Massberg S, Engelmann B (2008) Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation. J Clin Invest 118(3):1110–1122

    PubMed  CAS  Google Scholar 

  • Richardson J, Richardson D (1989) Prediction of protein structure and the principles of protein conformation. Plenum Press, New York

    Google Scholar 

  • Rozhkova A, Glockshuber R (2008) Thermodynamic aspects of dsbd-mediated electron transport. J Mol Biol 380(5):783–788

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein R, Fiser A (2008) Predicting disulfide bond connectivity in proteins by correlated mutations analysis. Bioinformatics 24(4):498–504

    Article  PubMed  CAS  Google Scholar 

  • Ryser HJ, Levy EM, Mandel R, DiSciullo GJ (1994) Inhibition of human immunodeficiency virus infection by agents that interfere with thiol-disulfide interchange upon virus-receptor interaction. Proc Natl Acad Sci USA 91(10):4559–4563

    Article  PubMed  CAS  Google Scholar 

  • Sakai T, Lund-Hansen T, Paborsky L, Pedersen AH, Kisiel W (1989) Binding of human factors vii and viia to a human bladder carcinoma cell line (j82). Implications for the initiation of the extrinsic pathway of blood coagulation. J Biol Chem 264(17):9980–9988

    PubMed  CAS  Google Scholar 

  • Sanejouand YH (2004) Domain swapping of cd4 upon dimerization. Proteins 57(1):205–212

    Article  PubMed  CAS  Google Scholar 

  • Sauer FG, Pinkner JS, Waksman G, Hultgren SJ (2002) Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation. Cell 111(4):543–551

    Article  PubMed  CAS  Google Scholar 

  • Schmidt B, Ho L, Hogg PJ (2006) Allosteric disulfide bonds. Biochemistry 45(24):7429–7433

    Article  PubMed  CAS  Google Scholar 

  • Schmidt B, Hogg PJ (2007) Search for allosteric disulfide bonds in nmr structures. BMC Struct Biol 7:49

    Article  PubMed  Google Scholar 

  • Schwarzenbacher R, Zeth K, Diederichs K, Gries A, Kostner GM, Laggner P, Prassl R (1999) Crystal structure of human beta2-glycoprotein i: Implications for phospholipid binding and the antiphospholipid syndrome. EMBO J 18(22):6228–6239

    Article  PubMed  CAS  Google Scholar 

  • Schwertassek U, Balmer Y, Gutscher M, Weingarten L, Preuss M, Engelhard J, Winkler M, Dick TP (2007) Selective redox regulation of cytokine receptor signaling by extracellular thioredoxin-1. EMBO J 26(13):3086–3097

    Article  PubMed  CAS  Google Scholar 

  • Siegel M, Khosla C (2007) Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacol Ther 115(2):232–245

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan S, Eswaramoorthy S (2000) Structural analysis of the catalytic and binding sites of clostridium botulinum neurotoxin b. Nat Struct Biol 7(8):693–699

    Article  PubMed  CAS  Google Scholar 

  • Thornton JM (1981) Disulphide bridges in globular proteins. J Mol Biol 151(2):261–287

    Article  PubMed  CAS  Google Scholar 

  • Versteeg HH, Ruf W (2007) Tissue factor coagulant function is enhanced by protein-disulfide isomerase independent of oxidoreductase activity. J Biol Chem 282(35):25416–25424

    Article  PubMed  CAS  Google Scholar 

  • Wiita AP, Perez-Jimenez R, Walther KA, Grater F, Berne BJ, Holmgren A, Sanchez-Ruiz JM, Fernandez JM (2007) Probing the chemistry of thioredoxin catalysis with force. Nature 450(7166):124–127

    Article  PubMed  CAS  Google Scholar 

  • Wong JWH, Ho SYW, Hogg PJ (2011) Disulfide bond acquisition through eukaryotic protein evolution. Mol Biol Evol 28(1):327–334

    Google Scholar 

  • Wouters MA, Lau KK, Hogg PJ (2004) Cross-strand disulphides in cell entry proteins: Poised to act. Bioessays 26(1):73–79

    Article  PubMed  CAS  Google Scholar 

  • Zav’yalov VP, Chernovskaya TV, Chapman DA, Karlyshev AV, MacIntyre S, Zavialov AV, Vasiliev AM, Denesyuk AI, Zav’yalova GA, Dudich IV, Korpela T, Abramov VM (1997) Influence of the conserved disulphide bond, exposed to the putative binding pocket, on the structure and function of the immunoglobulin-like molecular chaperone caf1m of yersinia pestis. Biochem J 324(Pt 2):571–578

    PubMed  Google Scholar 

  • Zhang J (2007) Disulfide-bond reshuffling in the evolution of an ape placental ribonuclease. Mol Biol Evol 24(2):505–512

    Article  PubMed  Google Scholar 

  • Zhang JL, Huang Y, Qiu LY, Nickel J, Sebald W (2007) Von willebrand factor type c domain-containing proteins regulate bone morphogenetic protein signaling through different recognition mechanisms. J Biol Chem 282(27):20002–20014

    Article  PubMed  CAS  Google Scholar 

  • Zhang JL, Qiu LY, Kotzsch A, Weidauer S, Patterson L, Hammerschmidt M, Sebald W, Mueller TD (2008) Crystal structure analysis reveals how the chordin family member crossveinless 2 blocks bmp-2 receptor binding. Developmental Cell 14(5):739–750

    Article  PubMed  CAS  Google Scholar 

  • Zhou A, Carrell RW, Murphy MP, Wei Z, Yan Y, Stanley PL, Stein PE, Broughton Pipkin F, Read RJ (2010) A redox switch in angiotensinogen modulates angiotensin release. Nature 468(7320):108–111

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Hogg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wong, J.W.H., Hogg, P.J. (2011). Allosteric Disulfide Bonds. In: Chang, R., Ventura, S. (eds) Folding of Disulfide Proteins. Protein Reviews, vol 14. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7273-6_8

Download citation

Publish with us

Policies and ethics