Skip to main content

Thrombopoietin Factors

  • Chapter
  • First Online:

Part of the book series: Cancer Treatment and Research ((CTAR,volume 157))

Abstract

Megakaryopoiesis and thrombopoiesis are the central biological processes of platelet generation. Severe thrombocytopenia is a major morbidity and mortality factor in several diseases and represents a significant unmet medical need. Since the discovery of thrombopoietin (TPO) as the primary physiological regulator of megakaryopoiesis, a number of therapeutics have been developed for thrombocytopenia and been tested in preclinical models and human clinical trials. The TPO mimetics romiplostim (Nplate® or AMG531) and eltrombopag (Promacta®) have recently been approved for the treatment of adult chronic idiopathic (immune) thrombocytopenic purpura (ITP) and are successful examples of these endeavors. This chapter will review scientific progress over the last 20 years on various thrombopoietic factors with an emphasis on the biology, physiology, and pharmacology of TPO, its cognate receptor, c-Mpl, and various TPO mimetics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Battinelli EM, Hartwig JH, Italiano JE Jr. Delivering new insight into the biology of megakaryopoiesis and thrombopoiesis. Curr Opin Hematol. 2007;14(5):419–26.

    Article  PubMed  Google Scholar 

  2. Deutsch VR, Tomer A. Megakaryocyte development and platelet production. Br J Haematol. 2006;134(5):453–66.

    Article  PubMed  CAS  Google Scholar 

  3. Kaushansky K. The molecular mechanisms that control thrombopoiesis. J Clin Invest. 2005;115(12):3339–47.

    Article  PubMed  CAS  Google Scholar 

  4. Kuter DJ, Bussel JB, Lyons RM, et al. Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: a double-blind randomised controlled trial. Lancet. 2008;371(9610):395–403.

    Article  PubMed  CAS  Google Scholar 

  5. Rodeghiero F. First-line therapies for immune thrombocytopenic purpura: re-evaluating the need to treat. Eur J Haematol Suppl. 2008;(69):19–26.

    Google Scholar 

  6. Kuter DJ, Begley CG. Recombinant human thrombopoietin: basic biology and evaluation of clinical studies. Blood. 2002;100(10):3457–69.

    Article  PubMed  CAS  Google Scholar 

  7. Gordon MS, Hoffman R. Growth factors affecting human thrombocytopoiesis: potential agents for the treatment of thrombocytopenia. Blood. 1992;80(2):302–7.

    PubMed  CAS  Google Scholar 

  8. Gainsford T, Nandurkar H, Metcalf D, Robb L, Begley CG, Alexander WS. The residual megakaryocyte and platelet production in c-mpl-deficient mice is not dependent on the actions of interleukin-6, interleukin-11, or leukemia inhibitory factor. Blood 2000;95(2):528–34.

    PubMed  CAS  Google Scholar 

  9. Gainsford T, Roberts AW, Kimura S, et al. Cytokine production and function in c-mpl-deficient mice: no physiologic role for interleukin-3 in residual megakaryocyte and platelet production. Blood. 1998;91(8):2745–52.

    PubMed  CAS  Google Scholar 

  10. Scott CL, Robb L, Mansfield R, Alexander WS, Begley CG. Granulocyte–macrophage colony-stimulating factor is not responsible for residual thrombopoiesis in mpl null mice. Exp Hematol. 2000;28(9):1001–7.

    Article  PubMed  CAS  Google Scholar 

  11. Kaye JA. FDA licensure of NEUMEGA to prevent severe chemotherapy-induced thrombocytopenia. Stem Cells. 1998;16(Suppl 2):207–23.

    Article  PubMed  Google Scholar 

  12. Kelemen E, Cserhati I, Tanos B. Demonstration and some properties of human thrombopoietin in thrombocythaemic sera. Acta Haematol. 1958;20(6):350–55.

    Article  PubMed  CAS  Google Scholar 

  13. Souyri M, Vigon I, Penciolelli JF, Heard JM, Tambourin P, Wendling F. A putative truncated cytokine receptor gene transduced by the myeloproliferative leukemia virus immortalizes hematopoietic progenitors. Cell. 1990;63(6):1137–47.

    Article  PubMed  CAS  Google Scholar 

  14. Methia N, Louache F, Vainchenker W, Wendling F. Oligodeoxynucleotides antisense to the proto-oncogene c-mpl specifically inhibit in vitro megakaryocytopoiesis. Blood. 1993;82(5):1395–401.

    PubMed  CAS  Google Scholar 

  15. Vigon I, Dreyfus F, Melle J, et al. Expression of the c-mpl proto-oncogene in human hematologic malignancies. Blood. 1993;82(3):877–83.

    PubMed  CAS  Google Scholar 

  16. Bartley TD, Bogenberger J, Hunt P, et al. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell. 1994;77(7):1117–24.

    Article  PubMed  CAS  Google Scholar 

  17. de Sauvage FJ, Hass PE, Spencer SD, et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature. 1994;369(6481):533–8.

    Article  PubMed  Google Scholar 

  18. Kato T, Ogami K, Shimada Y, et al. Purification and characterization of thrombopoietin. J Biochem. 1995;118(1):229–36.

    PubMed  CAS  Google Scholar 

  19. Kuter DJ, Beeler DL, Rosenberg RD. The purification of megapoietin: a physiological regulator of megakaryocyte growth and platelet production. Proc Natl Acad Sci USA. 1994;91(23):11104–8.

    Article  PubMed  CAS  Google Scholar 

  20. Lok S, Kaushansky K, Holly RD, et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature 1994;369(6481):565–8.

    Article  PubMed  CAS  Google Scholar 

  21. Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood 1996;87(6):2162–70.

    PubMed  CAS  Google Scholar 

  22. de Sauvage FJ, Carver-Moore K, Luoh SM, et al. Physiological regulation of early and late stages of megakaryocytopoiesis by thrombopoietin. J Exp Med. 1996;183(2):651–6.

    Article  PubMed  Google Scholar 

  23. Gurney AL, Carver-Moore K, de Sauvage FJ, Moore MW. Thrombocytopenia in c-mpl-deficient mice. Science 1994;265(5177):1445–7.

    Article  PubMed  CAS  Google Scholar 

  24. Kaushansky K, Drachman JG. The molecular and cellular biology of thrombopoietin: the primary regulator of platelet production. Oncogene 2002;21(21):3359–67.

    Article  PubMed  CAS  Google Scholar 

  25. Boulay JL, O’Shea JJ, Paul WE. Molecular phylogeny within type I cytokines and their cognate receptors. Immunity 2003;19(2):159–63.

    Article  PubMed  CAS  Google Scholar 

  26. Feese MD, Tamada T, Kato Y, et al. Structure of the receptor-binding domain of human thrombopoietin determined by complexation with a neutralizing antibody fragment. Proc Natl Acad Sci USA 2004;101(7):1816–21.

    Article  PubMed  CAS  Google Scholar 

  27. Cheetham JC, Smith DM, Aoki KH, et al. NMR structure of human erythropoietin and a comparison with its receptor bound conformation. Nat Struct Biol. 1998;5(10):861–6.

    Article  PubMed  CAS  Google Scholar 

  28. Syed RS, Reid SW, Li C, et al. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 1998;395(6701):511–16.

    Article  PubMed  CAS  Google Scholar 

  29. McCarty JM, Sprugel KH, Fox NE, Sabath DE, Kaushansky K. Murine thrombopoietin mRNA levels are modulated by platelet count. Blood 1995;86(10):3668–75.

    PubMed  CAS  Google Scholar 

  30. Stoffel R, Wiestner A, Skoda RC. Thrombopoietin in thrombocytopenic mice: evidence against regulation at the mRNA level and for a direct regulatory role of platelets. Blood 1996;87(2):567–73.

    PubMed  CAS  Google Scholar 

  31. Sungaran R, Markovic B, Chong BH. Localization and regulation of thrombopoietin mRNA expression in human kidney, liver, bone marrow, and spleen using in situ hybridization. Blood 1997;89(1):101–7.

    PubMed  CAS  Google Scholar 

  32. Peck-Radosavljevic M, Wichlas M, Zacherl J, et al. Thrombopoietin induces rapid resolution of thrombocytopenia after orthotopic liver transplantation through increased platelet production. Blood 2000;95(3):795–801.

    PubMed  CAS  Google Scholar 

  33. Qian S, Fu F, Li W, Chen Q, de Sauvage FJ. Primary role of the liver in thrombopoietin production shown by tissue-specific knockout. Blood 1998;92(6):2189–91.

    PubMed  CAS  Google Scholar 

  34. Kaser A, Brandacher G, Steurer W, et al. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis. Blood 2001;98(9):2720–5.

    Article  PubMed  CAS  Google Scholar 

  35. Emmons RV, Reid DM, Cohen RL, et al. Human thrombopoietin levels are high when thrombocytopenia is due to megakaryocyte deficiency and low when due to increased platelet destruction. Blood 1996;87(10):4068–71.

    PubMed  CAS  Google Scholar 

  36. Fielder PJ, Gurney AL, Stefanich E, et al. Regulation of thrombopoietin levels by c-mpl-mediated binding to platelets. Blood 1996;87(6):2154–61.

    PubMed  CAS  Google Scholar 

  37. Fielder PJ, Hass P, Nagel M, et al. Human platelets as a model for the binding and degradation of thrombopoietin. Blood 1997;89(8):2782–8.

    PubMed  CAS  Google Scholar 

  38. Li J, Xia Y, Kuter DJ. Interaction of thrombopoietin with the platelet c-mpl receptor in plasma: binding, internalization, stability and pharmacokinetics. Br J Haematol. 1999;106(2):345–56.

    Article  PubMed  CAS  Google Scholar 

  39. Nichol JL. Endogenous TPO (eTPO) levels in health and disease: possible clues for therapeutic intervention. Stem Cells. 1998;16(Suppl 2):165–75.

    Article  PubMed  Google Scholar 

  40. Sabath DF, Kaushansky K, Broudy VC. Deletion of the extracellular membrane-distal cytokine receptor homology module of Mpl results in constitutive cell growth and loss of thrombopoietin binding. Blood 1999;94(1):365–7.

    PubMed  CAS  Google Scholar 

  41. Luoh SM, Stefanich E, Solar G, et al. Role of the distal half of the c-Mpl intracellular domain in control of platelet production by thrombopoietin in vivo. Mol Cell Biol. 2000;20(2):507–15.

    Article  PubMed  CAS  Google Scholar 

  42. Morita H, Tahara T, Matsumoto A, Kato T, Miyazaki H, Ohashi H. Functional analysis of the cytoplasmic domain of the human Mpl receptor for tyrosine-phosphorylation of the signaling molecules, proliferation and differentiation. FEBS Lett. 1996;395(2–3):228–34.

    Article  PubMed  CAS  Google Scholar 

  43. Tong W, Sulahian R, Gross AW, Hendon N, Lodish HF, Huang LJ. The membrane-proximal region of the thrombopoietin receptor confers its high surface expression by JAK2-dependent and -independent mechanisms. J Biol Chem. 2006;281(50):38930–40.

    Article  PubMed  CAS  Google Scholar 

  44. Majka M, Ratajczak J, Villaire G, et al. Thrombopoietin, but not cytokines binding to gp130 protein-coupled receptors, activates MAPKp42/44, AKT, and STAT proteins in normal human CD34+ cells, megakaryocytes, and platelets. Exp Hematol. 2002;30(7):751–60.

    Article  PubMed  CAS  Google Scholar 

  45. Graf G, Dehmel U, Drexler HG. Expression of thrombopoietin and thrombopoietin receptor MPL in human leukemia-lymphoma and solid tumor cell lines. Leuk Res. 1996;20(10):831–8.

    Article  PubMed  CAS  Google Scholar 

  46. Solar GP, Kerr WG, Zeigler FC, et al. Role of c-mpl in early hematopoiesis. Blood 1998;92(1):4–10.

    PubMed  CAS  Google Scholar 

  47. Debili N, Wendling F, Cosman D, et al. The Mpl receptor is expressed in the megakaryocytic lineage from late progenitors to platelets. Blood 1995;85(2):391–401.

    PubMed  CAS  Google Scholar 

  48. Sato T, Fuse A, Niimi H, Fielder PJ, Avraham H. Binding and regulation of thrombopoietin to human megakaryocytes. Br J Haematol. 1998;100(4):704–11.

    Article  PubMed  CAS  Google Scholar 

  49. Columbyova L, Loda M, Scadden DT. Thrombopoietin receptor expression in human cancer cell lines and primary tissues. Cancer Res. 1995;55(16):3509–12.

    PubMed  CAS  Google Scholar 

  50. Drexler HG, Quentmeier H. Thrombopoietin: expression of its receptor MPL and proliferative effects on leukemic cells. Leukemia 1996;10(9):1405–21.

    PubMed  CAS  Google Scholar 

  51. Cardier JE, Dempsey J. Thrombopoietin and its receptor, c-mpl, are constitutively expressed by mouse liver endothelial cells: evidence of thrombopoietin as a growth factor for liver endothelial cells. Blood 1998;91(3):923–9.

    PubMed  CAS  Google Scholar 

  52. Brizzi MF, Battaglia E, Montrucchio G, et al. Thrombopoietin stimulates endothelial cell motility and neoangiogenesis by a platelet-activating factor-dependent mechanism. Circ Res. 1999;84(7):785–96.

    PubMed  CAS  Google Scholar 

  53. Geddis AE, Fox NE, Kaushansky K. The Mpl receptor expressed on endothelial cells does not contribute significantly to the regulation of circulating thrombopoietin levels. Exp Hematol. 2006;34(1):82–6.

    Article  PubMed  CAS  Google Scholar 

  54. Coers J, Ranft C, Skoda RC. A truncated isoform of c-Mpl with an essential C-terminal peptide targets the full-length receptor for degradation. J Biol Chem. 2004;279(35):36397–404.

    Article  PubMed  CAS  Google Scholar 

  55. Li J, Sabath DF, Kuter DJ. Cloning and functional characterization of a novel c-mpl variant expressed in human CD34 cells and platelets. Cytokine 2000;12(7):835–44.

    Article  PubMed  CAS  Google Scholar 

  56. Millot GA, Feger F, Garcon L, Vainchenker W, Dumenil D, Svinarchuk F. MplK, a natural variant of the thrombopoietin receptor with a truncated cytoplasmic domain, binds thrombopoietin but does not interfere with thrombopoietin-mediated cell growth. Exp Hematol. 2002;30(2):166–75.

    Article  PubMed  CAS  Google Scholar 

  57. Choi ES, Nichol JL, Hokom MM, Hornkohl AC, Hunt P. Platelets generated in vitro from proplatelet-displaying human megakaryocytes are functional. Blood 1995;85(2):402–13.

    PubMed  CAS  Google Scholar 

  58. Lecine P, Villeval JL, Vyas P, Swencki B, Xu Y, Shivdasani RA. Mice lacking transcription factor NF-E2 provide in vivo validation of the proplatelet model of thrombocytopoiesis and show a platelet production defect that is intrinsic to megakaryocytes. Blood 1998;92(5):1608–16.

    PubMed  CAS  Google Scholar 

  59. Carver-Moore K, Broxmeyer HE, Luoh SM, et al. Low levels of erythroid and myeloid progenitors in thrombopoietin-and c-mpl-deficient mice. Blood 1996;88(3):803–8.

    PubMed  CAS  Google Scholar 

  60. Kimura S, Roberts AW, Metcalf D, Alexander WS. Hematopoietic stem cell deficiencies in mice lacking c-Mpl, the receptor for thrombopoietin. Proc Natl Acad Sci USA. 1998;95(3):1195–200.

    Article  PubMed  CAS  Google Scholar 

  61. Sitnicka E, Lin N, Priestley GV, et al. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood 1996;87(12):4998–5005.

    PubMed  CAS  Google Scholar 

  62. Kobayashi M, Laver JH, Kato T, Miyazaki H, Ogawa M. Thrombopoietin supports proliferation of human primitive hematopoietic cells in synergy with steel factor and/or interleukin-3. Blood 1996;88(2):429–36.

    PubMed  CAS  Google Scholar 

  63. Broudy VC, Lin NL, Kaushansky K. Thrombopoietin(c-mpl ligand) acts synergistically with erythropoietin, stem cell factor, and interleukin-11 to enhance murine megakaryocyte colony growth and increases megakaryocyte ploidy in vitro. Blood 1995;85(7):1719–26.

    PubMed  CAS  Google Scholar 

  64. Kuter DJ. New thrombopoietic growth factors. Blood 2007;109(11):4607–16.

    Article  PubMed  CAS  Google Scholar 

  65. Akahori H, Shibuya K, Obuchi M, et al. Effect of recombinant human thrombopoietin in nonhuman primates with chemotherapy-induced thrombocytopenia. Br J Haematol. 1996;94(4):722–8.

    Article  PubMed  CAS  Google Scholar 

  66. Harker LA, Marzec UM, Hunt P, et al. Dose–response effects of pegylated human megakaryocyte growth and development factor on platelet production and function in nonhuman primates. Blood 1996;88(2):511–21.

    PubMed  CAS  Google Scholar 

  67. Hokom MM, Lacey D, Kinstler OB, et al. Pegylated megakaryocyte growth and development factor abrogates the lethal thrombocytopenia associated with carboplatin and irradiation in mice. Blood 1995;86(12):4486–92.

    PubMed  CAS  Google Scholar 

  68. Neelis KJ, Hartong SC, Egeland T, Thomas GR, Eaton DL, Wagemaker G. The efficacy of single-dose administration of thrombopoietin with coadministration of either granulocyte/macrophage or granulocyte colony-stimulating factor in myelosuppressed rhesus monkeys. Blood 1997;90(7):2565–73.

    PubMed  CAS  Google Scholar 

  69. Basser RL, Underhill C, Davis I, et al. Enhancement of platelet recovery after myelosuppressive chemotherapy by recombinant human megakaryocyte growth and development factor in patients with advanced cancer. J Clin Oncol. 2000;18(15):2852–61.

    PubMed  CAS  Google Scholar 

  70. Archimbaud E, Ottmann OG, Yin JA, et al. A randomized, double-blind, placebo-controlled study with pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) as an adjunct to chemotherapy for adults with de novo acute myeloid leukemia. Blood. 1999;94(11):3694–701.

    PubMed  CAS  Google Scholar 

  71. Bolwell B, Vredenburgh J, Overmoyer B, et al. Phase 1 study of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) in breast cancer patients after autologous peripheral blood progenitor cell (PBPC) transplantation. Bone Marrow Transplant. 2000;26(2):141–5.

    Article  PubMed  CAS  Google Scholar 

  72. Nash RA, Kurzrock R, DiPersio J, et al. A phase I trial of recombinant human thrombopoietin in patients with delayed platelet recovery after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2000;6(1):25–34.

    Article  PubMed  CAS  Google Scholar 

  73. Nomura S, Dan K, Hotta T, Fujimura K, Ikeda Y. Effects of pegylated recombinant human megakaryocyte growth and development factor in patients with idiopathic thrombocytopenic purpura. Blood 2002;100(2):728–30.

    Article  PubMed  CAS  Google Scholar 

  74. Basser RL, O’Flaherty E, Green M, et al. Development of pancytopenia with neutralizing antibodies to thrombopoietin after multicycle chemotherapy supported by megakaryocyte growth and development factor. Blood 2002;99(7):2599–602.

    Article  PubMed  CAS  Google Scholar 

  75. Li J, Yang C, Xia Y, et al. Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood 2001;98(12):3241–8.

    Article  PubMed  CAS  Google Scholar 

  76. Doshi PD, Giri JG, Abegg AL, et al. Promegapoietin, a family of chimeric growth factors, supports megakaryocyte development through activation of IL-3 and c-Mpl ligand signaling pathways. Exp Hematol. 2001;29(10):1177–84.

    Article  PubMed  CAS  Google Scholar 

  77. Cwirla SE, Balasubramanian P, Duffin DJ, et al. Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science 1997;276(5319):1696–9.

    Article  PubMed  CAS  Google Scholar 

  78. Frederickson S, Renshaw MW, Lin B, et al. A rationally designed agonist antibody fragment that functionally mimics thrombopoietin. Proc Natl Acad Sci USA 2006;103(39):14307–12.

    Article  PubMed  CAS  Google Scholar 

  79. Lin B, Renshaw MW, Autote K, et al. A step-wise approach significantly enhances protein yield of a rationally-designed agonist antibody fragment in E. coli. Protein Expr Purif. 2008;59(1):55–63.

    Article  PubMed  CAS  Google Scholar 

  80. Cerneus D, Brown K, Harris R, et al. Stimulation of platelet production in healthy volunteers by a novel pegylated peptide-based thrombopoietin (TPO) receptor agonist. ASH Annu Meet Abstr. 2005;106(11):1249.

    Google Scholar 

  81. Jefferis R, Lund J, Pound JD. IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Immunol Rev. 1998;163:59–76.

    Article  PubMed  CAS  Google Scholar 

  82. Broudy VC, Lin NL. AMG531 stimulates megakaryopoiesis in vitro by binding to Mpl. Cytokine 2004;25(2):52–60.

    Article  PubMed  CAS  Google Scholar 

  83. Nichol JL. AMG 531: an investigational thrombopoiesis-stimulating peptibody. Pediatr Blood Cancer 2006;47(5 Suppl):723–5.

    Article  PubMed  Google Scholar 

  84. Hartley C, McElroy T, Molineux G, et al. The novel thrombopoietic agent AMG531 is effective in preclinical models of chemo/radiotherapy induced thrombocytopenia. Proc Am Assoc Cancer Res. 2005;46:1233–8.

    Google Scholar 

  85. Wang B, Nichol JL, Sullivan JT. Pharmacodynamics and pharmacokinetics of AMG 531, a novel thrombopoietin receptor ligand. Clin Pharmacol Ther. 2004;76(6):628–38.

    Article  PubMed  CAS  Google Scholar 

  86. Bussel JB, Kuter DJ, Pullarkat V, Lyons RM, Guo M, Nichol JL. Safety and efficacy of long-term treatment with romiplostim in thrombocytopenic patients with chronic ITP. Blood 2009;113(10):2161–71.

    Article  PubMed  CAS  Google Scholar 

  87. Fukushima-Shintani M, Suzuki K, Iwatsuki Y, et al. AKR-501 (YM477) a novel orally-active thrombopoietin receptor agonist. Eur J Haematol. 2009;82(4):247–54.

    Article  PubMed  CAS  Google Scholar 

  88. Fukushima-Shintani M, Suzuki K, Iwatsuki Y, et al. AKR-501 (YM477) in combination with thrombopoietin enhances human megakaryocytopoiesis. Exp Hematol. 2008;36(10):1337–42.

    Article  PubMed  CAS  Google Scholar 

  89. Desjardins RE, Tempel DL, Lucek R, Kuter DJ. Single and multiple oral doses of AKR-501 (YM477) increase the platelet count in healthy volunteers. ASH Annu Meet Abstr. 2006;108(11):477.

    Google Scholar 

  90. Duffy KJ, Darcy MG, Delorme E, et al. Hydrazinonaphthalene and azonaphthalene thrombopoietin mimics are nonpeptidyl promoters of megakaryocytopoiesis. J Med Chem. 2001;44(22):3730–45.

    Article  PubMed  CAS  Google Scholar 

  91. Erickson-Miller CL, Delorme E, Iskander M, et al. Species specificity and receptor domain interaction of a small molecule TPO receptor agonist. ASH Annu Meet Abstr. 2004;104(11):2909.

    Google Scholar 

  92. Erickson-Miller CL, Delorme E, Tian SS, et al. Preclinical activity of eltrombopag (SB-497115), an oral, non-peptide thrombopoietin receptor agonist. Stem Cells 2008;27(2):424–30.

    Article  CAS  Google Scholar 

  93. Kim MJ, Park SH, Opella SJ, et al. NMR structural studies of interactions of a small, nonpeptidyl TPO mimic with the thrombopoietin receptor extracellular juxtamembrane and transmembrane domains. J Biol Chem. 2007;282(19):14253–61.

    Article  PubMed  CAS  Google Scholar 

  94. Nakamura T, Miyakawa Y, Miyamura A, et al. A novel nonpeptidyl human c-Mpl activator stimulates human megakaryopoiesis and thrombopoiesis. Blood 2006;107(11):4300–7.

    Article  PubMed  CAS  Google Scholar 

  95. Bussel JB, Provan D, Shamsi T, et al. Effect of eltrombopag on platelet counts and bleeding during treatment of chronic idiopathic thrombocytopenic purpura: a randomised, double-blind, placebo-controlled trial. Lancet 2009;373(9664):641–8.

    Article  PubMed  CAS  Google Scholar 

  96. McHutchison JG, Dusheiko G, Shiffman ML, et al. Eltrombopag for thrombocytopenia in patients with cirrhosis associated with hepatitis C. N Engl J Med. 2007;357(22):2227–36.

    Article  PubMed  CAS  Google Scholar 

  97. Orita T, Tsunoda H, Yabuta N, et al. A novel therapeutic approach for thrombocytopenia by minibody agonist of the thrombopoietin receptor. Blood 2005;105(2):562–6.

    Article  PubMed  CAS  Google Scholar 

  98. Kai M, Motoki K, Yoshida H, et al. Switching constant domains enhances agonist activities of antibodies to a thrombopoietin receptor. Nat Biotechnol. 2008;26(2):209–11.

    Article  PubMed  CAS  Google Scholar 

  99. Kai M, Hagiwara T, Emuta C, et al. In vivo efficacy of anti-MPL agonist antibody in promoting primary human hematopoietic cells. Blood 2009;113(10):2213–16.

    Article  PubMed  CAS  Google Scholar 

  100. Kuter DJ. New drugs for familiar therapeutic targets: thrombopoietin receptor agonists and immune thrombocytopenic purpura. Eur J Hematol. 2008;80(Suppl. 69):9–18.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wei, P. (2010). Thrombopoietin Factors. In: Lyman, G., Dale, D. (eds) Hematopoietic Growth Factors in Oncology. Cancer Treatment and Research, vol 157. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7073-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7073-2_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7072-5

  • Online ISBN: 978-1-4419-7073-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics