Skip to main content

Granulocyte Colony-Stimulating Factors

  • Chapter
  • First Online:

Part of the book series: Cancer Treatment and Research ((CTAR,volume 157))

Abstract

Despite the first recognition of red cells in the blood by the Dutch scientist Jan Swammerdam around 1658 and the first description of the shape of erythrocytes by his acquaintance Antoni van Leeuwenhoek in 1695, the colorless cellular component of the blood remained unrecognized until 1843. At this time “white globules” were identified in the blood simultaneously by Gabriel Andral and William Addison (working in France and Scotland, respectively) and shown to be associated with disease. Addison, for instance, recognized pus cells as being blood cells that had passed out of the circulation to the site of infection [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hajdu SI. The discovery of blood cells. Ann Clin Lab Sci. 2003;33:237–8.

    PubMed  Google Scholar 

  2. Pluznik DH, Sachs L. The cloning of normal “mast” cells in tissue culture. J Cell Physiol. 1965;66:319–24.

    CAS  PubMed  Google Scholar 

  3. Bradley TR, Metcalf D. The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci. 1966;44:287–99.

    CAS  PubMed  Google Scholar 

  4. Stanley ER, Heard PM. Factors regulating macrophage production and growth purification and some properties of the colony stimulating factor from medium conditioned by mouse l neoplastic fibroblast cells. J Biol Chem. 1977;252:4305–12.

    CAS  PubMed  Google Scholar 

  5. Burgess AW, Camakaris J, Purification MD. Properties of colony stimulating factor from mouse lung conditioned medium. J Biol Chem. 1977;252:1998–2003.

    CAS  PubMed  Google Scholar 

  6. Gough NM, Gough J, Metcalf D, et al. Molecular cloning of cDNA encoding a murine haematopoietic growth regulator, granulocyte–macrophage colony stimulating factor. Nature. 1984;309:763–7.

    CAS  PubMed  Google Scholar 

  7. Nicola NA, Metcalf D, Matsumoto M, Johnson GR. Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells. Identification as granulocyte colony-stimulating factor. J Biol Chem. 1983;258:9017–23.

    CAS  PubMed  Google Scholar 

  8. Metcalf D. Hematopoietic cytokines. Blood. 2008;111:485–91.

    CAS  PubMed  Google Scholar 

  9. Souza LM, Boone TC, Gabrilove J, et al. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science. 1986;232:61–5.

    CAS  PubMed  Google Scholar 

  10. Welte K, Platzer E, Lu L, et al. Purification and biochemical characterization of human pluripotent hematopoietic colony-stimulating factor. Proc Natl Acad Sci USA. 1985;82:1526–30.

    CAS  PubMed  Google Scholar 

  11. Nagata S, Tsuchiya M, Asano S, et al. Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature. 1986;319:415–18.

    CAS  PubMed  Google Scholar 

  12. Zsebo KM, Cohen AM, Murdock DC, et al. Recombinant human granulocyte colony stimulating factor: molecular and biological characterization. Immunobiology. 1986;172:175–84.

    CAS  PubMed  Google Scholar 

  13. Morstyn G, Campbell L, Souza LM, et al. Effect of granulocyte colony stimulating factor on neutropenia induced by cytotoxic chemotherapy. Lancet. 1988;1:667–72.

    CAS  PubMed  Google Scholar 

  14. Gabrilove JL, Jakubowski A, Fain K, et al. Phase I study of granulocyte colony-stimulating factor in patients with transitional cell carcinoma of the urothelium. J Clin Invest. 1988;82:1454–61.

    CAS  PubMed  Google Scholar 

  15. Bronchud MH, Scarffe JH, Thatcher N, et al. Phase I/II study of recombinant human granulocyte colony-stimulating factor in patients receiving intensive chemotherapy for small cell lung cancer. Br J Cancer. 1987;56:809–13.

    CAS  PubMed  Google Scholar 

  16. Gabrilove JL, Jakubowski A, Scher H, et al. Effect of granulocyte colony-stimulating factor on neutropenia and associated morbidity due to chemotherapy for transitional-cell carcinoma of the urothelium. N Engl J Med. 1988;318:1414–22.

    CAS  PubMed  Google Scholar 

  17. Welte K, Gabrilove J, Bronchud MH, et al. Filgrastim (r-metHuG-CSF) – the first 10 years. Blood. 1996;88:1907–29.

    CAS  PubMed  Google Scholar 

  18. Nicola NA, Biochemical MD. Properties of differentiation factors for murine myelo monocytic leukemic cells in organ conditioned media separation from colony stimulating factors. J Cell Physiol. 1981;109:253–64.

    CAS  PubMed  Google Scholar 

  19. Cheers C, Haigh AM, Kelso A, et al. Production of colony-stimulating factors (CSFs) during infection: separate determinations of macrophage-, granulocyte-, granulocyte–macrophage-, and multi-CSFs. Infect Immun. 1988;56:247–51.

    CAS  PubMed  Google Scholar 

  20. Tweardy DJ, Cannizzaro LA, Palumbo AP, et al. Molecular cloning and characterization of a complementary DNA for human granulocyte colony-stimulating factor (G-CSF) from a glioblastoma multiforme cell line and localization of the G-CSF gene to chromosome band 17q21. Cytogenet Cell Genet. 1987;46.

    Google Scholar 

  21. Ernst TJ, Ritchie AR, Demetri GD, Griffin JD. Regulation of granulocyte- and monocyte-colony stimulating factor mRNA levels in human blood monocytes is mediated primarily at a post-transcriptional level. J Biol Chem. 1989;264:5700–3.

    CAS  PubMed  Google Scholar 

  22. Falkenburg JH, Harrington MA, de Paus RA, et al. Differential transcriptional and posttranscriptional regulation of gene expression of the colony-stimulating factors by interleukin-1 and fetal bovine serum in murine fibroblasts. Blood. 1991;78:658–65.

    CAS  PubMed  Google Scholar 

  23. Demetri GD, Griffin JD. Granulocyte colony-stimulating factor and its receptor. Blood. 1991;78:2791–808.

    CAS  PubMed  Google Scholar 

  24. Miksits K, Beyer J, Siegert W. Serum concentrations of G-CSF during high-dose chemotherapy with autologous stem cell rescue. Bone Marrow Transplant. 1993;11:375–7.

    CAS  PubMed  Google Scholar 

  25. Dunn SM, Coles LS, Lang RK, et al. Requirement for nuclear factor (NF)-kappa B p65 and NF-interleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulating factor promoter. Blood. 1994;83:2469–79.

    CAS  PubMed  Google Scholar 

  26. Ye P, Rodriguez FH, Kanaly S, et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med. 2001;194:519–27.

    CAS  PubMed  Google Scholar 

  27. Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.

    CAS  PubMed  Google Scholar 

  28. Hill CP, Osslund TD, Eisenberg D. The structure of granulocyte-colony-stimulating factor and its relationship to other growth factors. Proc Natl Acad Sci USA. 1993;90:5167–71.

    CAS  PubMed  Google Scholar 

  29. Okabe M, Asano M, Kuga T, et al. In vitro and in vivo hematopoietic effect of mutant human granulocyte colony-stimulating factor. [see comments]. Blood. 1990;75:1788–93.

    CAS  PubMed  Google Scholar 

  30. Lu HS, Clogston CL, Narhi LO, et al. Folding and oxidation of recombinant human granulocyte colony stimulating factor produced in Escherichia coli characterization of the disulfide-reduced intermediates and cysteine–serine analogs. J Biol Chem. 1992;267:8770–7.

    CAS  PubMed  Google Scholar 

  31. Kubota N, Orita T, Hattori K, et al. Structural characterization of natural and recombinant human granulocyte colony-stimulating factors. J Biochem. 1990;107:486–92.

    CAS  PubMed  Google Scholar 

  32. Boulay J-L, O’Shea JJ, Paul WE. Molecular phylogeny within type 1 cytokines and their cognate receptors. Immunity. 2003;19:159–63.

    CAS  PubMed  Google Scholar 

  33. Barge RM, de Koning JP, Pouwels K, et al. Tryptophan 650 of human granulocyte colony-stimulating factor (G-CSF) receptor, implicated in the activation of JAK2, is also required for G-CSF-mediated activation of signaling complexes of the p21ras route. Blood. 1996;87:2148–53.

    CAS  PubMed  Google Scholar 

  34. Dong F, van Buitenen C, Pouwels K, et al. Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation. Mol Cell Biol. 1993;13:7774–81.

    CAS  PubMed  Google Scholar 

  35. Fukunaga R, Ishizaka-Ikeda E, Nagata S. Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor. Cell. 1993;74:1079–87.

    CAS  PubMed  Google Scholar 

  36. Santini V, Scappini B, Indik ZK, et al. The carboxy-terminal region of the granulocyte colony-stimulating factor receptor transduces a phagocytic signal. Blood. 2003;101:4615–22.

    CAS  PubMed  Google Scholar 

  37. Dong F, Brynes RK, Tidow N, et al. Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med. 1995;333:487–93.

    CAS  PubMed  Google Scholar 

  38. Dong F, Dale DC, Bonilla MA, et al. Mutations in the granulocyte colony-stimulating factor receptor gene in patients with severe congenital neutropenia. Leukemia. 1997;11:120–5.

    CAS  PubMed  Google Scholar 

  39. Budel LM, Touw IP, Delwel R, Lowenberg B. Granulocyte colony-stimulating factor receptors in human acute myelocytic leukemia. Blood. 1989;74:2668–73.

    CAS  PubMed  Google Scholar 

  40. Hanazono Y, Hosoi T, Kuwaki T, et al. Structural analysis of the receptors for granulocyte colony-stimulating factor on neutrophils. Exp Hematol. 1990;18:1097–103.

    CAS  PubMed  Google Scholar 

  41. Khwaja A, Carver J, Jones HM, et al. Expression and dynamic modulation of the human granulocyte colony-stimulating factor receptor in immature and differentiated myeloid cells. Br J Haematol. 1993;85:254–9.

    CAS  PubMed  Google Scholar 

  42. Shimoda K, Okamura S, Harada N, et al. Identification of a functional receptor for granulocyte colony-stimulating factor on platelets. J Clin Invest. 1993;91:1310–13.

    CAS  PubMed  Google Scholar 

  43. Corcione A, Corrias MV, Daniele S, et al. Expression of granulocyte colony-stimulating factor and granulocyte colony-stimulating factor receptor genes in partially overlapping monoclonal B-cell populations from chronic lymphocytic leukemia patients. Blood. 1996;87:2861–9.

    CAS  PubMed  Google Scholar 

  44. Matsushita K, Arima N. Involvement of granulocyte colony-stimulating factor in proliferation of adult T-cell leukemia cells. Leuk Lymphoma. 1998;31:295–304.

    CAS  PubMed  Google Scholar 

  45. Boneberg EM, Hareng L, Gantner F, et al. Human monocytes express functional receptors for granulocyte colony-stimulating factor that mediate suppression of monokines and interferon-gamma. Blood. 2000;95:270–6.

    CAS  PubMed  Google Scholar 

  46. Morikawa K, Morikawa S, Nakamura M, Miyawaki T. Characterization of granulocyte colony-stimulating factor receptor expressed on human lymphocytes. Br J Haematol. 2002;118:296–304.

    CAS  PubMed  Google Scholar 

  47. Layton JE, Hall NE. The interaction of G-CSF with its receptor. Front Biosci. 2006;11:3181–9.

    CAS  PubMed  Google Scholar 

  48. Roberts AW. G-CSF: a key regulator of neutrophil production, but that’s not all! Growth Factors. 2005;23:33–41.

    CAS  PubMed  Google Scholar 

  49. Chang JM, Metcalf D, Gonda TJ, Johnson GR. Long-term exposure to retrovirally expressed granulocyte-colony-stimulating factor induces a nonneoplastic granulocytic and progenitor cell hyperplasia without tissue damage in mice. J Clin Invest. 1989;84:1488–96.

    CAS  PubMed  Google Scholar 

  50. Yamada T, Kaneko H, Iizuka K, et al. Elevation of lymphocyte and hematopoietic stem cell numbers in mice transgenic for human granulocyte. Lab Invest. 1996;74:384–94.

    CAS  PubMed  Google Scholar 

  51. Pojda Z, Molineux G, Dexter TM. Hemopoietic effects of short-term in vivo treatment of mice with various doses of rhG-CSF. Exp Hematol. 1990;18:27–31.

    CAS  PubMed  Google Scholar 

  52. Cronkite EP, Bullis J, Pappas N, Shimosaka AS. In-vivo G-CSF induces anemia thrombopenia and hemopoiesis in fatty marrow. Exp Hematol. 1990;18.

    Google Scholar 

  53. de Haan G, Engel C, Dontje B, et al. Mutual inhibition of murine erythropoiesis and granulopoiesis during combined erythropoietin, granulocyte colony-stimulating factor, and stem cell factor administration: in vivo interactions and dose–response surfaces. Blood. 1994;84:4157–63.

    PubMed  Google Scholar 

  54. Lieschke GJ, Grail D, Hodgson G, et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood. 1994;84:1737–46.

    CAS  PubMed  Google Scholar 

  55. Coccia M, Hartley C, Sutherland W, et al. Neutropenia in a novel anti-mG-CSF autoantibody mouse model. Exp Hematol. 2000;28.

    Google Scholar 

  56. Lieschke GJ. CSF-deficient mice – what have they taught us? Ciba Found Symp. 1997;204:60–74.

    CAS  PubMed  Google Scholar 

  57. Liu F, Wu HY, Wesselschmidt R, et al. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity. 1996;5:491–501.

    CAS  PubMed  Google Scholar 

  58. Cebon J, Layton JE, Maher D, Morstyn G. Endogenous haemopoietic growth factors in neutropenia and infection. Br J Haematol. 1994;86:265–74.

    CAS  PubMed  Google Scholar 

  59. Barth E, Fischer G, Schneider EM, et al. Peaks of endogenous G-CSF serum concentrations are followed by an increase in respiratory burst activity of granulocytes in patients with septic shock. Cytokine. 2002;17:275–84.

    CAS  PubMed  Google Scholar 

  60. Lord BI. Myeloid cell kinetics in response to haemopoietic growth factors. Baillieres Clin Haematol. 1992;5:533–50.

    CAS  PubMed  Google Scholar 

  61. Lord BI, Molineux G, Pojda Z, et al. Myeloid cell kinetics in mice treated with recombinant interleukin-3, granulocyte colony-stimulating factor (CSF), or granulocyte–macrophage CSF in vivo. Blood. 1991;77:2154–9.

    CAS  PubMed  Google Scholar 

  62. Lord BI, Woolford LW, Molineux G. Kinetics of neutrophil production following filgrastim SD/01. Exp Hematol. 2000;28.

    CAS  Google Scholar 

  63. Takamatsu Y, Simmons PJ, Moore RJ, et al. Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization. Blood. 1998;1.

    Google Scholar 

  64. Simon M, Lengfelder E, Reiter S, Hehlmann R. Osteoporosis in severe congenital neutropenia: inherent to the disease or a sequela of G-CSF treatment? Am J Hematol. 1996;52:127.

    CAS  PubMed  Google Scholar 

  65. Dale DC, Cottle TE, Fier CJ, et al. Severe chronic neutropenia: treatment and follow-up of patients in the Severe Chronic Neutropenia International Registry. Am J Hematol. 2003;72:82–93.

    PubMed  Google Scholar 

  66. Takahashi T, Wada T, Mori M, et al. Overexpression of the granulocyte colony-stimulating factor gene leads to osteoporosis in mice. Lab Invest. 1996;74:827–34.

    CAS  PubMed  Google Scholar 

  67. Froberg MK, Garg UC, Stroncek DF, et al. Changes in serum osteocalcin and bone-specific alkaline phosphatase are associated with bone pain in donors receiving granulocyte-colony-stimulating factor for peripheral blood stem and progenitor cell collection. Transfusion. 1999;39:410–14.

    CAS  PubMed  Google Scholar 

  68. Semerad CL, Christopher MJ, Liu F, et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood. 2005;106:3020–7.

    CAS  PubMed  Google Scholar 

  69. Lord BI, Molineux G, Chang J, et al. Hemopoietic cell kinetics in mice and humans during treatment in-vivo with hemopoietic growth factors. Exp Hematol. 1990;18.

    CAS  Google Scholar 

  70. Faust J, Lacey DL, Hunt P, et al. Osteoclast markers accumulate on cells developing from human peripheral blood mononuclear precursors. J Cell Biochem. 1999;72:67–80.

    CAS  PubMed  Google Scholar 

  71. Gudi R, Krishnamurthy M, Pachter BR. Astemizole in the treatment of granulocyte colony-stimulating factor-induced bone pain. [see comment]. Ann Intern Med. 1995;123:236–7.

    CAS  PubMed  Google Scholar 

  72. Morstyn G, Campbell L, Lieschke G, et al. Treatment of chemotherapy-induced neutropenia by subcutaneously administered granulocyte colony-stimulating factor with optimization of dose and duration of therapy. J Clin Oncol. 1989;7:1554–62.

    CAS  PubMed  Google Scholar 

  73. Di Leo A, Bajetta E, Nole F, et al. The intramuscular administration of granulocyte colony-stimulating factor as an adjunct to chemotherapy in pretreated ovarian cancer patients: an Italian Trials in Medical Oncology (ITMO) Group Pilot Study. Br J Cancer. 1994;69:961–6.

    CAS  PubMed  Google Scholar 

  74. Bartocci A, Mastrogiannis DS, Migliorati G, et al. Macrophages specifically regulate the concentration of their own growth factor in the circulation. Proc Natl Acad Sci USA. 1987;84:6179–83.

    CAS  PubMed  Google Scholar 

  75. Zink T, Ross A, Luers K, et al. Structure and dynamics of the human granulocyte colony-stimulating factor determined by NMR spectroscopy: loop mobility in a four-helix-bundle protein. Biochemistry. 1994;33:8453–63.

    CAS  PubMed  Google Scholar 

  76. Ono M. Physicochemical and biochemical characteristics of glycosylated recombinant human granulocyte colony stimulating factor (lenograstim). Eur J Cancer. 1994;30A(Suppl-11).

    CAS  PubMed  Google Scholar 

  77. Nissen C. Glycosylation of recombinant human granulocyte colony stimulating factor: implications for stability and potency. Eur J Cancer. 1994;30A(Suppl-4).

    CAS  PubMed  Google Scholar 

  78. Pedrazzoli P, Gibelli N, Pavesi L, et al. Effects of glycosylated and non-glycosylated G-CSFs, alone and in combination with other cytokines, on the growth of human progenitor cells. Anticancer Res. 1996;16:1781–5.

    CAS  PubMed  Google Scholar 

  79. Mire-Sluis AR, Das RG, Thorpe R. The international standard for granulocyte colony stimulating factor (G-CSF). Evaluation in an international collaborative study. Participants of the collaborative study. J Immunol Methods. 1995;179:117–26.

    CAS  PubMed  Google Scholar 

  80. Querol S, Cancelas JA, Amat L, et al. Effect of glycosylation of recombinant human granulocytic colony-stimulating factor on expansion cultures of umbilical cord blood CD34+ cells. Haematologica. 1999;84:493–8.

    CAS  PubMed  Google Scholar 

  81. Tanaka H, Tanaka Y, Shinagawa K, et al. Three types of recombinant human granulocyte colony-stimulating factor have equivalent biological activities in monkeys. Cytokine. 1997;9:360–9.

    CAS  PubMed  Google Scholar 

  82. Bonig H, Silbermann S, Weller S, et al. Glycosylated vs non-glycosylated granulocyte colony-stimulating factor (G-CSF) – results of a prospective randomised monocentre study. Bone Marrow Transplant. 2001;28:259–64.

    CAS  PubMed  Google Scholar 

  83. Uzumaki H, Okabe T, Sasaki N, et al. Identification and characterization of receptors for granulocyte colony-stimulating factor on human placenta and trophoblastic cells. Proc Natl Acad Sci USA. 1989;86:9323–6.

    CAS  PubMed  Google Scholar 

  84. Piao YF, Okabe T. Receptor binding of human granulocyte colony-stimulating factor to the blast cells of myeloid leukemia. Cancer Res. 1990;50:1671–4.

    CAS  PubMed  Google Scholar 

  85. Togawa A, Mizoguchi H, Toyama K, et al. Clinical evaluation of rhG-CSF in patients with neutropenia induced by chemotherapy for multiple myeloma. [Japanese]. Rinsho Ketsueki – Jpn J Clin Hematol. 2000;41:115–22.

    CAS  Google Scholar 

  86. Agency EM. Assessment report for Tevagrastim. 2008. http://www.emea.europa.eu/humandocs/PDFs/EPAR/tevagrastim/H-827-en6.pdf

  87. Molineux G, Kinstler O, Briddell B, et al. A new form of filgrastim with sustained duration in vivo and enhanced ability to mobilize PBPC in both mice and humans. Exp Hematol. 1999;27:1724–34.

    CAS  PubMed  Google Scholar 

  88. Niven RW, Prestrelski SJ, Treuheit MJ, et al. Protein nebulization II. Stabilization of G-CSF to air-jet nebulization and the role of protectants. Int J Pharm (Amsterdam). 1996;127:191–201.

    CAS  Google Scholar 

  89. Watanabe Y, Kiriyama M, Oe J, et al. Pharmacodynamic activity (leukopoietic effect) of recombinant human granulocyte colony-stimulating factor (rhG-CSF) after rectal administration in rabbits with leukopenia induced by cyclophosphamide. Biol Pharm Bull. 1996;19:1064–7.

    CAS  PubMed  Google Scholar 

  90. Jensen-Pippo KE, Whitcomb KL, Deprince RB, et al. Enternal bioavailability of human granulocyte colony stimulating factor conjugated with poly(ethylene glycol). Pharm Res (New York). 1996;13:102–7.

    CAS  Google Scholar 

  91. Tian SS, Lamb P, King AG, et al. A small, nonpeptidyl mimic of granulocyte-colony-stimulating factor [see comments]. Science. 1998;281:257–9.

    CAS  PubMed  Google Scholar 

  92. Doyle ML, Tian S-S, Miller SG, et al. Selective binding and oligomerization of the murine granulocyte colony-stimulating factor receptor by a low molecular weight, nonpeptidyl ligand. J Biol Chem. 2003;278:9426–34.

    CAS  PubMed  Google Scholar 

  93. Takatani H, Soda H, Fukuda M, et al. Levels of recombinant human granulocyte colony-stimulating factor in serum are inversely correlated with circulating neutrophil counts. Antimicrob Agents Chemother. 1996;40:988–91.

    CAS  PubMed  Google Scholar 

  94. Furuya H, Wakayama T, Ohguni S, et al. Effect of continuous subcutaneous administration of a small dose of granulocyte colony stimulating factor (G-CSF) by the use of a portable infusion pump in patients with non-Hodgkin’s lymphoma receiving chemotherapy. Int J Hematol. 1995;61:123–9.

    CAS  PubMed  Google Scholar 

  95. Besarab A, Flaharty KK, Erslev AJ, et al. Clinical pharmacology and economics of recombinant human erythropoietin in end-stage renal disease: the case for subcutaneous administration. J Am Soc Nephrol. 1992;2:1405–16.

    CAS  PubMed  Google Scholar 

  96. Laterveer L, Lindley IJD, Hamilton MS, et al. Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood. 1995;85:2269–75.

    CAS  PubMed  Google Scholar 

  97. Liles WC, Broxmeyer HE, Rodger E, et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood. 2003;102:2728–30.

    CAS  PubMed  Google Scholar 

  98. Duhrsen U, Villeval JL, Boyd J, et al. Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood. 1988;72:2074–81.

    CAS  PubMed  Google Scholar 

  99. Lévesque J-P, Hendy J, Takamatsu Y, et al. Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol. 2002;30:440–9.

    PubMed  Google Scholar 

  100. Woll PJ, Thatcher N, Lomax L, et al. Use of hematopoietic progenitors in whole blood to support dose-dense chemotherapy: a randomized phase II trial in small-cell lung cancer patients. J Clin Oncol. 2001;19:712–19.

    CAS  PubMed  Google Scholar 

  101. Klocke R, Kuhlmann MT, Scobioala S, et al. Granulocyte colony-stimulating factor (G-CSF) for cardio- and cerebrovascular regenerative applications. Curr Med Chem. 2008;15:968–77.

    CAS  PubMed  Google Scholar 

  102. Vertesaljai M, Piroth Z, Fontos G, et al. Drugs, gene transfer, signaling factors: a bench to bedside approach to myocardial stem cell therapy. Heart Fail Rev. 2008;13:227–44.

    PubMed  Google Scholar 

  103. Kurdi M, Booz GW. G-CSF-based stem cell therapy for the heart – unresolved issues. Part B: stem cells, engraftment, transdifferentiation, and bioengineering. Congest Heart Fail. 2007;13:347–51.

    PubMed  Google Scholar 

  104. Kurdi M, Booz GWG-. CSF-based stem cell therapy for the heart-unresolved issues. Part A: paracrine actions, mobilization, and delivery. Congest Heart Fail. 2007;13:221–7.

    CAS  PubMed  Google Scholar 

  105. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. [see comments]. Nature. 2001;410:701–5.

    CAS  PubMed  Google Scholar 

  106. Okada H, Takemura G, Li Y, et al. Effect of a long-term treatment with a low-dose granulocyte colony-stimulating factor on post-infarction process in the heart. J Cell Mol Med. 2008;12:1272–83.

    CAS  PubMed  Google Scholar 

  107. Tatsumi K, Otani H, Sato D, et al. Granulocyte-colony stimulating factor increases donor mesenchymal stem cells in bone marrow and their mobilization into peripheral circulation but does not repair dystrophic heart after bone marrow transplantation. Circ J. 2008;72:1351–8.

    PubMed  Google Scholar 

  108. Liang HL, Yi DH, Zheng QJ, et al. Improvement of heart allograft acceptability associated with recruitment of CD4+CD25+ T cells in peripheral blood by recipient treatment with granulocyte colony-stimulating factor. Transplant Proc. 2008;40:1604–11.

    CAS  PubMed  Google Scholar 

  109. Brunner S, Huber BC, Fischer R, et al. G-CSF treatment after myocardial infarction: impact on bone marrow-derived vs cardiac progenitor cells. Exp Hematol. 2008;36:695–702.

    CAS  PubMed  Google Scholar 

  110. Zohlnhofer D, Ott I, Mehilli J, et al. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. [see comment]. JAMA. 2006;295:1003–10.

    PubMed  Google Scholar 

  111. Ripa RS, Jorgensen E, Wang Y, et al. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. [see comment]. Circulation. 2006;113:1983–92.

    CAS  PubMed  Google Scholar 

  112. Erbs S, Linke A, Schachinger V, et al. Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial. [reprint in Nat Clin Pract Cardiovasc Med. 2008 Feb;5(2):78–9; PMID: 17984996]. Circulation. 2007;116:366–74.

    PubMed  Google Scholar 

  113. Ince H, Petzsch M, Kleine HD, et al. Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte-colony-stimulating factor (FIRSTLINE-AMI). [see comment]. Circulation. 2005;112:3097–106.

    CAS  PubMed  Google Scholar 

  114. Cohen MH, Gootenberg J, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist. 2007;12:713–18.

    CAS  PubMed  Google Scholar 

  115. Shojaei F, Wu X, Malik AK, et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol. 2007;25:911–20.

    CAS  PubMed  Google Scholar 

  116. Shojaei F, Wu X, Zhong C, et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 2007;450:825–31.

    CAS  PubMed  Google Scholar 

  117. Shojaei F, Wu X, Qu X, et al. G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci USA. 2009;106:6742–7.

    CAS  PubMed  Google Scholar 

  118. Movahedi K, Guilliams M, Van den Bossche J, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008;111:4233–44.

    CAS  PubMed  Google Scholar 

  119. Umemura N, Saio M, Suwa T, et al. Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol. 2008;83:1136–44.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Molineux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Molineux, G. (2010). Granulocyte Colony-Stimulating Factors. In: Lyman, G., Dale, D. (eds) Hematopoietic Growth Factors in Oncology. Cancer Treatment and Research, vol 157. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7073-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7073-2_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7072-5

  • Online ISBN: 978-1-4419-7073-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics