Skip to main content

Fluorescent-Based Quantitative Measurements of Signal Transduction in Single Cells

  • Chapter
  • First Online:
Book cover Design and Analysis of Biomolecular Circuits

Abstract

Budding yeast (Saccharomyces cerevisiae) has been widely used as a model system to study fundamental biological processes. Genetic and biochemical approaches have allowed in the last decades to uncover the key components involved in many signaling pathways. Generally, most techniques measure the average behavior of a population of cells, and thus miss important cell-to-cell variations. With the recent progress in fluorescent proteins, new avenues have been opened to quantitatively study the dynamics of signaling in single living cells. In this chapter, we describe several techniques based on fluorescence measurements to quantify the activation of biological pathways. Flow cytometry allows for rapid quantification of the total fluorescence of a large number of single cells. In contrast, microscopy offers a lower throughput but allows to follow with a high temporal resolution the localization of proteins at sub-cellular resolution. Finally, advanced functional imaging techniques such as FRET and FCS offer the possibility to directly visualize the formation of protein complexes or to quantify the activity of proteins in vivo. Together these techniques present powerful new approaches to study cellular signaling and will greatly increase our understanding of the regulation of signaling networks in budding yeast and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferrell JE, Machleder EM (1998) The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280:895–898

    Article  Google Scholar 

  2. Muzzey D, van Oudenaarden A (2009) Quantitative time-lapse fluorescence microscopy in single cells. Annu Rev Cell Dev Biol 25:301–327

    Article  Google Scholar 

  3. Santos SDM, Verveer PJ, Bastiaens PIH (2007) Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 9:324–330

    Article  Google Scholar 

  4. Cai L, Dalal CK, Elowitz MB (2008) Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature 455:485–490

    Article  Google Scholar 

  5. Garmendia-Torres C, Goldbeter A, Jacquet M (2007) Nucleocytoplasmic oscillations of the yeast transcription factor Msn2: evidence for periodic PKA activation. Curr Biol 17:1044–1049

    Article  Google Scholar 

  6. Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6:451–464

    Article  Google Scholar 

  7. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    Article  Google Scholar 

  8. Taniguchi Y et al (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533–538

    Article  Google Scholar 

  9. Colman-Lerner A et al (2005) Regulated cell-to-cell variation in a cell-fate decision system. Nature 437:699–706

    Article  Google Scholar 

  10. Amantonico A, Oh JY, Sobek J, Heinemann M, Zenobi R (2008) Mass spectrometric method for analyzing metabolites in yeast with single cell sensitivity. Angew Chem Int Ed Engl 47:5382–5385

    Article  Google Scholar 

  11. Monroe E, Jurchen J, Rubakhin S, Sweedler J (2007) Single-cell measurements with mass spectrometry. In: Xu XN (ed) New frontiers in ultrasensitive bioanalysis: advanced analytical chemistry applications in nanobiotechnology, single molecule detection, and single cell analysis. John Wiley & Sons, Inc., New York, p 269

    Google Scholar 

  12. Elf J, Li G-W, Xie XS (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316:1191–1194

    Article  Google Scholar 

  13. Xie XS, Choi PJ, Li G-W, Lee NK, Lia G (2008) Single-molecule approach to molecular biology in living bacterial cells. Annu Rev Biophy 37:417–444

    Article  Google Scholar 

  14. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  Google Scholar 

  15. Zimmer M (2002) Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem Rev 102:759–781

    Article  Google Scholar 

  16. Huh W-K et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  Google Scholar 

  17. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  Google Scholar 

  18. Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  Google Scholar 

  19. van Drogen F, Peter M (2004) Revealing protein dynamics by photobleaching techniques. Methods Mol Biol 284:287–306

    Google Scholar 

  20. van Drogen F, Stucke VM, Jorritsma G, Peter M (2001) MAP kinase dynamics in response to pheromones in budding yeast. Nat Cell Biol 3:1051–1059

    Article  Google Scholar 

  21. Patterson GH, Lippincott-Schwartz J (2004) Selective photolabeling of proteins using photoactivatable GFP. Methods 32:445–450

    Article  Google Scholar 

  22. Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99:12651–12656

    Article  Google Scholar 

  23. Goffeau A et al (1996) Life with 6000 genes. Science 274:546, 563–547

    Google Scholar 

  24. Chen RE, Thorner J (2007) Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1773:1311–1340

    Article  Google Scholar 

  25. Bardwell L (2005) A walk-through of the yeast mating pheromone response pathway. Peptides 26:339–350

    Article  Google Scholar 

  26. Rudolf F, Pelet S, Peter M (2007) Regulation of MAPK signaling in yeast. Top Curr Genet 20:187–204

    Article  Google Scholar 

  27. Lamson R, Takahashi S, Winters M, Pryciak PM (2006) Dual role for membrane localization in yeast MAP kinase cascade activation and its contribution to signaling fidelity. Curr Biol 16:618–623

    Article  Google Scholar 

  28. Nolan JP, Yang L (2007) The flow of cytometry into systems biology. Brief Funct Genomic Proteomic 6:81–90

    Article  Google Scholar 

  29. Drouet M, Lees O (1993) Clinical applications of flow cytometry in hematology and immunology. Biol Cell 78:73–78

    Article  Google Scholar 

  30. Shapiro HM (1983) Multistation multiparameter flow cytometry: a critical review and rationale. Cytometry 3:227–243

    Article  Google Scholar 

  31. Rieseberg M, Kasper C, Reardon KF, Scheper T (2001) Flow cytometry in biotechnology. Appl Microbiol Biotechnol 56:350–360

    Article  Google Scholar 

  32. Gasch AP et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    Google Scholar 

  33. Oehlen LJ, Cross FR (1994) G1 cyclins CLN1 and CLN2 repress the mating factor response pathway at start in the yeast cell cycle. Genes Dev 8:1058–1070

    Article  Google Scholar 

  34. Strickfaden SC et al (2007) A mechanism for cell-cycle regulation of MAP kinase signaling in a yeast differentiation pathway. Cell 128:519–531

    Article  Google Scholar 

  35. Acar M, Becskei A, van Oudenaarden A (2005) Enhancement of cellular memory by reducing stochastic transitions. Nature 435:228–232

    Article  Google Scholar 

  36. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  37. Bennett MR, Hasty J (2009) Microfluidic devices for measuring gene network dynamics in single cells. Nat Rev Genet 10:628–638

    Article  Google Scholar 

  38. Hersen P, McClean MN, Mahadevan L, Ramanathan S (2008) Signal processing by the HOG MAP kinase pathway. Proc Natl Acad Sci USA 105:7165–7170

    Article  Google Scholar 

  39. Muzzey D, Gómez-Uribe CA, Mettetal JT, van Oudenaarden A (2009) A systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 138:160–171

    Article  Google Scholar 

  40. Paliwal S et al (2007) MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature 446:46–51

    Article  Google Scholar 

  41. Charvin G, Cross FR, Siggia ED (2008) A microfluidic device for temporally controlled gene expression and long-term fluorescent imaging in unperturbed dividing yeast cells. PLoS ONE 3:e1468

    Article  Google Scholar 

  42. Lee PJ, Helman NC, Lim WA, Hung PJ (2008) A microfluidic system for dynamic yeast cell imaging. Biotechniques 44:91–95

    Article  Google Scholar 

  43. Carpenter AE et al (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100

    Article  Google Scholar 

  44. Gordon A et al (2007) Single-cell quantification of molecules and rates using open-source microscope-based cytometry. Nat Methods 4:175–181

    Article  Google Scholar 

  45. Bean JM, Siggia ED, Cross FR (2006) Coherence and timing of cell cycle start examined at single-cell resolution. Mol Cell 21:3–14

    Article  Google Scholar 

  46. Cyert MS (2001) Regulation of nuclear localization during signaling. J Biol Chem 276:20805–20808

    Article  Google Scholar 

  47. Reiser V, Ruis H, Ammerer G (1999) Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 10:1147–1161

    Google Scholar 

  48. Yu RC et al (2008) Negative feedback that improves information transmission in yeast signalling. Nature 456:755–761

    Article  Google Scholar 

  49. Görner W et al (1998) Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12:586–597

    Article  Google Scholar 

  50. Dechant R et al (2010) Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J 29:2515–2526

    Article  Google Scholar 

  51. Kraft C, Deplazes A, Sohrmann M, Peter M (2008) Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 10:602–610

    Article  Google Scholar 

  52. Shimada Y, Wiget P, Gulli M-P, Bi E, Peter M (2004) The nucleotide exchange factor Cdc24p may be regulated by auto-inhibition. EMBO J 23:1051–1062

    Article  Google Scholar 

  53. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 2:55–75

    Article  MATH  Google Scholar 

  54. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    Article  Google Scholar 

  55. Patterson GH, Piston DW, Barisas BG (2000) Förster distances between green fluorescent protein pairs. Anal Biochem 284:438–440

    Article  Google Scholar 

  56. Wu P, Brand L (1994) Resonance energy transfer: methods and applications. Anal Biochem 218:1–13

    Article  Google Scholar 

  57. Yi T-M, Kitano H, Simon MI (2003) A quantitative characterization of the yeast heterotrimeric G protein cycle. Proc Natl Acad Sci USA 100:10764–10769

    Article  Google Scholar 

  58. Berney C, Danuser G (2003) FRET or no FRET: a quantitative study. Biophys J 84:3992–4010

    Article  Google Scholar 

  59. Pelet S, Previte MJR, So PTC (2006) Comparing the quantification of Forster resonance energy transfer measurement accuracies based on intensity, spectral, and lifetime imaging. J Biomed Opt 11:34017

    Article  Google Scholar 

  60. Becker W et al (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63:58–66

    Article  Google Scholar 

  61. Verveer PJ, Squire A, Bastiaens PIH (2001) Frequency-domain fluorescence lifetime imaging microscopy: a window on the biochemical landscape of the cell. In: Periasamy A (ed) Methods in cellular imaging. Oxford University Press, New York, pp 273–294

    Google Scholar 

  62. Maeder CI et al (2007) Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Nat Cell Biol 9:1319–1326

    Article  Google Scholar 

  63. Fehr M, Ehrhardt DW, Lalonde S, Frommer WB (2004) Minimally invasive dynamic imaging of ions and metabolites in living cells. Curr Opin Plant Biol 7:345–351

    Article  Google Scholar 

  64. Fehr M, Frommer WB, Lalonde S (2002) Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc Natl Acad Sci USA 99:9846–9851

    Article  Google Scholar 

  65. Ting AY, Kain KH, Klemke RL, Tsien RY (2001) Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc Natl Acad Sci USA 98:15003–15008

    Article  Google Scholar 

  66. Harvey CD et al (2008) A genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci USA 105:19264–19269

    Article  Google Scholar 

  67. Magde D, Elson E, Webb W (1972) Thermodynamic fluctuations in a reacting system – measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708

    Article  Google Scholar 

  68. Schwille P, Haupts U, Maiti S, Webb WW (1999) Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J 77:2251–2265

    Article  Google Scholar 

  69. Schwille P (2001) Fluorescence correlation spectroscopy and its potential for intracellular applications. Cell Biochem Biophys 34:383–408

    Article  Google Scholar 

  70. Chen Y, Müller JD, So PT, Gratton E (1999) The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J 77:553–567

    Article  Google Scholar 

  71. Hwang LC, Wohland T (2007) Recent advances in fluorescence cross-correlation spectroscopy. Cell Biochem Biophys 49:1–13

    Article  Google Scholar 

  72. Schwille P, Meyer-Almes FJ, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72:1878–1886

    Article  Google Scholar 

  73. Slaughter BD, Schwartz JW, Li R (2007) Mapping dynamic protein interactions in MAP kinase signaling using live-cell fluorescence fluctuation spectroscopy and imaging. Proc Natl Acad Sci USA 104:20320–20325

    Article  Google Scholar 

  74. George TC et al (2004) Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer. Cytometry A 59:237–245

    Article  Google Scholar 

  75. George TC et al (2006) Quantitative measurement of nuclear translocation events using similarity analysis of multispectral cellular images obtained in flow. J Immunol Methods 311:117–129

    Article  Google Scholar 

  76. Pepperkok R, Ellenberg J (2006) High-throughput fluorescence microscopy for systems biology. Nat Rev Mol Cell Biol 7:690–696

    Article  Google Scholar 

  77. Taylor R et al (2009) Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform. Proc Natl Acad Sci USA

    Google Scholar 

Download references

Acknowledgements

We would like to thank Reinhard Dechant for critical reading of the manuscript. Work in the laboratory of M.P. is supported by Unicellsys, SPMD, the SystemsX.ch initiative (YeastX and LiverX projects), the ETHZ and the Swiss National Science Foundation (SNF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Pelet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pelet, S., Peter, M. (2011). Fluorescent-Based Quantitative Measurements of Signal Transduction in Single Cells. In: Koeppl, H., Setti, G., di Bernardo, M., Densmore, D. (eds) Design and Analysis of Biomolecular Circuits. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6766-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6766-4_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6765-7

  • Online ISBN: 978-1-4419-6766-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics