Skip to main content
Book cover

Loudness pp 89–107Cite as

Correlates of Loudness

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 37))

Abstract

This chapter reviews two issues related to responses correlated with loudness. First, the physiological effects of loud sounds are examined. Then, specific indirect measures, both perceptual and physiological that correlate with loudness growth, are summarized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aydin Y, Kaltenbach M (2007) Noise perception, heart rate and blood pressure in relation to aircraft noise in the vicinity of the Frankfurt airport. Clin Res Cardiol 96:347–358.

    Article  CAS  PubMed  Google Scholar 

  • Babisch W, Gallacher JE, Elwood PC, Ising H (1988) Traffic noise and cardiovascular risk. The Caerphilly study, first phase. Outdoor noise levels and risk factors. Arch Environ Health 43:407–414.

    Article  CAS  PubMed  Google Scholar 

  • Babisch W, Ising H, Elwood PC, Sharp DS, Bainton D (1993a) Traffic noise and cardiovascular risk: the Caerphilly and Speedwell studies, second phase. Risk estimation, prevalence, and incidence of ischemic heart disease. Arch Environ Health 48:406–413.

    CAS  PubMed  Google Scholar 

  • Babisch W, Ising H, Gallacher JE, Sharp DS, Baker IA (1993b) Traffic noise and cardiovascular risk: the Speedwell study, first phase. Outdoor noise levels and risk factors. Arch Environ Health 48:401–405.

    CAS  PubMed  Google Scholar 

  • Bapat U, Tolley N (2006) Temporary threshold shift due to recreational firearm use. J Laryngol Otol 121:927–931.

    PubMed  Google Scholar 

  • Basner M, Samel A, Isermann U (2006) Aircraft noise effects on sleep: application of the results of a large polysomnographic field study. J Acoust Soc Am 119:2772–2784.

    Article  PubMed  Google Scholar 

  • Basner M, Glatz C, Griefahn B, Penzel T, Samel A (2008a) Aircraft noise: effects on macro- and microstructure of sleep. Sleep Med 9:382–387.

    Article  PubMed  Google Scholar 

  • Basner M, Muller U, Elmenhorst EM, Kluge G, Griefahn B (2008b) Aircraft noise effects on sleep: a systematic comparison of EEG awakenings and automatically detected cardiac activations. Physiol Meas 29:1089–1103.

    Article  PubMed  Google Scholar 

  • Bench J (1971) Anticipatory elicitation of the middle-ear muscle reflex. J Laryngol Otol 85:1161–1165.

    Article  CAS  PubMed  Google Scholar 

  • Bilecen D, Seifritz E, Scheffler K, Henning J, Schulte AC (2002) Amplitopicity of the human auditory cortex: an fMRI study. Neuroimage 17:710–718.

    Article  PubMed  Google Scholar 

  • Blamey PJ, Dooley GJ, James CJ, Parisi ES (2000) Monaural and binaural loudness measures in cochlear implant users with contralateral residual hearing. Ear Hear 21:6–17.

    Article  CAS  PubMed  Google Scholar 

  • Botte MC, Charron S, Bouayad H (1993) Temporary threshold and loudness shifts: frequency patterns and correlations. J Acoust Soc Am 93:1524–1534.

    Article  CAS  PubMed  Google Scholar 

  • Buus S, Florentine M (2001) Modifications to the power function for loudness. In Sommerfeld E, Kompass R, Lachmann T (eds), Fechner Day 2001. Berlin: Pabst, pp. 236–241.

    Google Scholar 

  • Cai S, Ma WL, Young ED (2009) Encoding intensity in ventral cochlear nucleus following acoustic trauma: implications for loudness recruitment. J Assoc Res Otolaryngol 10:5–22.

    Article  PubMed  Google Scholar 

  • Carter N, Henderson R, Lal S, Hart M, Booth S, Hunyor S (2002) Cardiovascular and autonomic response to environmental noise during sleep in night shift workers. Sleep 25:457–464.

    PubMed  Google Scholar 

  • Cavatorta A, Falzoi M, Romanelli A, Cigala F, Ricco M, Bruschi G, Franchini I, Borghetti A (1987) Adrenal response in the pathogenesis of arterial hypertension in workers exposed to high noise levels. J Hypertens Suppl 5:S463–S466.

    CAS  PubMed  Google Scholar 

  • Chodynicki S, Gindzienska E, Rogowski M (1986) Effect of noise and vibration on the ear during fetal development. Otolaryngol Pol 40:120–127.

    CAS  PubMed  Google Scholar 

  • Cui B, Wu M, She X (2009) Effects of chronic noise exposure on spatial learning and memory of rats in relation to neurotransmitters and NMDAR2B alteration in the hippocampus. J Occup Health 51:152–158.

    Article  PubMed  Google Scholar 

  • Daniel E (2007) Noise and hearing loss: a review. J Sch Health 77:225–231.

    Article  PubMed  Google Scholar 

  • Davis M (1984) The Mammalian Startle Response. Neural Mechanisms of Startle Behavior. New York: Springer.

    Google Scholar 

  • Davis RC, Berry T (1964) Gastrointestinal reactions to response-contingent stimulation. Psychol Rep 15:95–113.

    Google Scholar 

  • Davis RC, Buchwald AM, Frankman RW (1955) Autonomic and muscular responses and their relation to simple stimuli. Psychol Monographs 69:1–71.

    Google Scholar 

  • Epstein M (2007) An introduction to induced loudness reduction. J Acoust Soc Am 122:EL74–80.

    Article  PubMed  Google Scholar 

  • Epstein M, Florentine M (2005) Inferring basilar-membrane motion from tone-burst otoacoustic emissions and psychoacoustic measurements. J Acoust Soc Am 117:263–274.

    Article  PubMed  Google Scholar 

  • Epstein M, Silva I (2009) Analysis of parameters for the estimation of loudness from tone-burst otoacoustic emissions. J Acoust Soc Am 125:3855–3864.

    Article  PubMed  Google Scholar 

  • Evans GW, Lepore SJ (1993) Non-auditory effects of noise on children: a critical review. Child Environ 10:42–72.

    Google Scholar 

  • Fidell S, Pearsons K, Tabachnick BG, Howe R (2000) Effects on sleep disturbance of changes in aircraft noise near three airports. J Acoust Soc Am 107:2535–2547.

    Article  CAS  PubMed  Google Scholar 

  • Florentine M, Epstein M (2006) To honor Stevens and repeal his law (for the auditory system). In: Kornbrot DE, Msetfi RM, MacRae AW (eds), Fechner Day. St Albans: International Society for Psychophysics, pp. 37–42.

    Google Scholar 

  • Florentine M, Buus S, Rosenberg M (2004). Reaction-time data support the existence of softness imperception in cochlear hearing loss. In Pressnitzer D, de Cheveigne A, McAdams S, Collet L (eds), Auditory Signal Processing: Physiology, Psychoacoustics, and Models. New York: Springer.

    Google Scholar 

  • Franssen EA, van Wiechen CM, Nagelkerke NJ, Lebret E (2004) Aircraft noise around a large international airport and its impact on general health and medication use. Occup Environ Med 61:405–413.

    Article  CAS  PubMed  Google Scholar 

  • Fu QJ (2005) Loudness growth in cochlear implants: effect of stimulation rate and electrode configuration. Hear Res 202:55–62.

    Article  PubMed  Google Scholar 

  • Glass DC, Singer JE (1972) Behavioral aftereffects of unpredictable and uncontrollable aversive events. Am Sci 60:457–465.

    CAS  PubMed  Google Scholar 

  • Haines MM, Stansfeld SA, Job RF, Berglund B, Head J (2001) Chronic aircraft noise exposure, stress responses, mental health and cognitive performance in school children. Psychol Med 31:265–277.

    CAS  PubMed  Google Scholar 

  • Hale HB (1952) Adrenalcortical activity associated with exposure to low frequency sounds. Am J Psychol 171:732.

    Google Scholar 

  • Hamernik RP, Qiu W (2001) Energy-independent factors influencing noise-induced hearing loss in the chinchilla model. J Acoust Soc Am 110:3163–3168.

    Article  CAS  PubMed  Google Scholar 

  • Haralabidis AS, Dimakopoulou K, Vigna-Taglianti F, Giampaolo M, Borgini A, Dudley ML, Pershagen G, Bluhm G, Houthuijs D, Babisch W, Velonakis M, Katsouyanni K, Jarup L (2008) Acute effects of night-time noise exposure on blood pressure in populations living near airports. Eur Heart J 29:658–664.

    Article  PubMed  Google Scholar 

  • Hillera W, Goebelb G (2007) When tinnitus loudness and annoyance are discrepant: Audiological characteristics and psychological profile. Audiol Neurotol 12:391–400.

    Article  Google Scholar 

  • Hirsh IJ, Ward WD (1952) Recovery of the auditory threshold after strong acoustic stimulation. J Acoust Soc Am 24:131–141.

    Article  Google Scholar 

  • Horne JA, Pankhurst FL, Reyner LA, Hume K, Diamond ID (1994) A field study of sleep disturbance: effects of aircraft noise and other factors on 5,742 nights of actimetrically monitored sleep in a large subject sample. Sleep 17:146–159.

    CAS  PubMed  Google Scholar 

  • Howe SW, Decker TN (1984) Monaural and binaural auditory brainstem responses in relation to the psychophysical loudness growth function. J Acoust Soc Am 76:787–793.

    Article  CAS  PubMed  Google Scholar 

  • Husbands JM, Steinberg SA, Kurian R, Saunders JC (1999) Tip-link integrity on chick tall hair cell stereocilia following intense sound exposure. Hear Res 135:135–145.

    Article  CAS  PubMed  Google Scholar 

  • Jarup L, Babisch W, Houthuijs D, Pershagen G, Katsouyanni K, Cadum E, Dudley ML, Savigny P, Seiffert I, Swart W, Breugelmans O, Bluhm G, Selander J, Haralabidis A, Dimakopoulou K, Sourtzi P, Velonakis M, Vigna-Taglianti F (2008) Hypertension and exposure to noise near airports: the HYENA study. Environ Health Perspect 116:329–333.

    Article  PubMed  Google Scholar 

  • Kjellstrom T, Friel S, Dixon J, Corvalan C, Rehfuess E, Campbell-Lendrum D, Gore F, Bartram J (2007) Urban environmental health hazards and health equity. J Urban Health 84:i86–97.

    Article  PubMed  Google Scholar 

  • Klorman R, Cicchetti D, Thatcher JE, Ison JR (2003) Acoustic startle in maltreated children. J Abnorm Child Psychol 31:359–370.

    Article  PubMed  Google Scholar 

  • Krystal JH, Webb E, Grillon C, Cooney N, Casal L, Morgan CA, 3rd, Southwick SM, Davis M, Charney DS (1997) Evidence of acoustic startle hyperreflexia in recently detoxified early onset male alcoholics: modulation by yohimbine and m-chlorophenylpiperazine (mCPP). Psychopharmacology (Berl) 131:207–215.

    Article  CAS  Google Scholar 

  • Kryter KD (1970) The Effects of Noise on Man. Environmental Sciences. New York: Academic Press.

    Google Scholar 

  • Kryter KD (1972) Non-auditory effects of environmental noise. Am J Public Health 62:389–398.

    Article  CAS  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2006) Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci 26:2115–2123.

    Article  CAS  PubMed  Google Scholar 

  • Langers DR, van Dijk P, Schoenmaker ES, Backes WH (2007) fMRI activation in relation to sound intensity and loudness. Neuroimage 35:709–718.

    Article  PubMed  Google Scholar 

  • Leibold LJ, Werner LA (2002) Relationship between intensity and reaction time in normal-hearing infants and adults. Ear Hear 23:92–97.

    Article  PubMed  Google Scholar 

  • Liberman MC, Dodds LW (1987) Acute ultrastructural changes in acoustic trauma: serial-section reconstruction of stereocilia and cuticular plates. Hear Res 26:45–64.

    Article  CAS  PubMed  Google Scholar 

  • Margolis RH, Popelka GR (1975) Loudness and the acoustic reflex. J Acoust Soc Am 58:1330–1332.

    Article  CAS  PubMed  Google Scholar 

  • Marozeau J, Florentine M (2007) Loudness growth in individual listeners with hearing losses: a review. J Acoust Soc Am 122:EL81–87.

    Article  PubMed  Google Scholar 

  • Melamed S, Froom P, Kristal-Boneh E, Gofer D, Ribak J (1997) Industrial noise exposure, noise annoyance, and serum lipid levels in blue-collar workers – the CORDIS Study. Arch Environ Health 52:292–298.

    Article  CAS  PubMed  Google Scholar 

  • Melamed S, Kristal-Boneh E, Froom P (1999) Industrial noise exposure and risk factors for cardiovascular disease: findings from the CORDIS Study. Noise Health 1:49–56.

    PubMed  Google Scholar 

  • Melnick W (1991) Human temporary threshold shift (TTS) and damage risk. J Acoust Soc Am 90:147–154.

    Article  CAS  PubMed  Google Scholar 

  • Menard M, Gallego S, Berger-Vachon C, Collet L, Thai-Van H (2008) Relationship between loudness growth function and auditory steady-state response in normal-hearing subjects. Hear Res 235:105–113.

    Article  PubMed  Google Scholar 

  • Morgan CA, III, Grillon C, Southwick SM, Davis M, Charney DS (1995) Fear-potentiated startle in posttraumatic stress disorder. Biol Psychiatry 38:378–385.

    Article  PubMed  Google Scholar 

  • Morgan CA, III, Grillon C, Southwick SM, Davis M, Charney DS (1996) Exaggerated acoustic startle reflex in Gulf War veterans with posttraumatic stress disorder. Am J Psychiatry 153:64–68.

    PubMed  Google Scholar 

  • Morgan CA, III, Grillon C, Lubin H, Southwick SM (1997a) Startle deficits in women with sexual assault-related PTSD. Ann N Y Acad Sci 821:486–490.

    Article  PubMed  Google Scholar 

  • Morgan CA, III, Grillon C, Lubin H, Southwick SM (1997b) Startle reflex abnormalities in women with sexual assault-related posttraumatic stress disorder. Am J Psychiatry 154:1076–1080.

    PubMed  Google Scholar 

  • Muller J, Janssen T (2004) Similarity in loudness and distortion product otoacoustic emission input/output functions: implications for an objective hearing aid adjustment. J Acoust Soc Am 115:3081–3091.

    Article  PubMed  Google Scholar 

  • Neely ST, Gorga MP, Dorn PA (2003) Cochlear compression estimates from measurements of distortion-product otoacoustic emissions. J Acoust Soc Am 114:1499–1507.

    Article  PubMed  Google Scholar 

  • Nelson PB, Soli S (2000) Acoustical barriers to learning: children at risk in every classroom. Language Speech Hearing Serv Schools 31:356–361.

    Google Scholar 

  • Norena AJ, Eggermont JJ (2006) Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. NeuroReport 17:559–563.

    Article  PubMed  Google Scholar 

  • Oxenham AJ, Plack CJ (1997) A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing. J Acoust Soc Am 101:3666–3675.

    Article  CAS  PubMed  Google Scholar 

  • Popelka GR, Karlovich RS, Wiley TL (1974) Letter: acoustic reflex and critical bandwidth. J Acoust Soc Am 55:883–885.

    Article  CAS  PubMed  Google Scholar 

  • Pratt H, Sohmer H (1977) Correlations between psychophysical magnitude estimates and simultaneously obtained auditory nerve, brain stem and cortical responses to click stimuli in man. Electroencephalogr Clin Neurophysiol 43:802–812.

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitz PM (2000) Noise-induced hearing loss. Am Fam Physician 61:2749–2756, 2759–2760.

    CAS  PubMed  Google Scholar 

  • Rabinowitz WM (1977) Acoustic-Reflex Effects on the Input Admittance and Transfer Characteristics of the Human Middle-Ear (dissertation). Cambridge, MA: Massachusetts Institute of Technology.

    Google Scholar 

  • Rosenlund M, Berglind N, Pershagen G, Jarup L, Bluhm G (2001) Increased prevalence of hypertension in a population exposed to aircraft noise. Occup Environ Med 58:769–773.

    Article  CAS  PubMed  Google Scholar 

  • Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L (1997) Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101:2151–2163.

    Article  CAS  PubMed  Google Scholar 

  • Sadhra S, Jackson CA, Ryder T, Brown MJ (2002) Noise exposure and hearing loss among student employees working in university entertainment venues. Ann Occup Hyg 46:455–463.

    Article  CAS  PubMed  Google Scholar 

  • Sanpetrino NM, Smith RL (2006) The growth of loudness functions measured in cochlear implant listeners using absolute magnitude estimation and compared using Akaike’s information criterion. Conf Proc IEEE Eng Med Biol Soc 1:1642–1644.

    Article  PubMed  Google Scholar 

  • Schapkin SA, Falkenstein M, Marks A, Griefahn B (2006) Executive brain functions after exposure to nocturnal traffic noise: effects of task difficulty and sleep quality. Eur J Appl Physiol 96:693–702.

    Article  PubMed  Google Scholar 

  • Scharf B (1983). Loudness adaptation. In: Tobias JV, Schubert ED (eds), Hearing Research and Theory, Vol. 2. New York: Academic Press, pp. 1–56.

    Google Scholar 

  • Serpanos YC, O’Malley H, Gravel JS (1997) The relationship between loudness intensity functions and the click-ABR wave V latency. Ear Hear 18:409–419.

    Article  CAS  PubMed  Google Scholar 

  • Sigalovsky IS, Melcher JR (2006) Effects of sound level on fMRI activation in human brainstem, thalamic and cortical centers. Hear Res 215:67–76.

    Article  PubMed  Google Scholar 

  • Silva I (2009) Estimation of postaverage SNR from evoked responses under nonstationary noise. IEEE Trans Biomed Eng 56:2123–2130.

    Article  PubMed  Google Scholar 

  • Silva I, Epstein M (2010) Estimation of loudness growth through tone-burst auditory brainstem responses. J Acoust Soc Am 127(6) 3629–3642.

    Google Scholar 

  • Sokolovski A (1973) The protective action of the stapedius muscle in noise-induced hearing loss in cats. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 203:289–309.

    Article  CAS  PubMed  Google Scholar 

  • Stansfeld SA, Matheson MP (2003) Noise pollution: non-auditory effects on health. Br Med Bull 68:243–257.

    Article  PubMed  Google Scholar 

  • Thompson SJ (1993) Review: extraaural health effects of chronic noise exposure in humans. Schriftenr Ver Wasser Boden Lufthyg 88:91–117.

    CAS  PubMed  Google Scholar 

  • Thurston FE, Roberts SL (1991) Environmental noise and fetal hearing. J Tenn Med Assoc 84:9–12.

    CAS  PubMed  Google Scholar 

  • Uziel A (1985) Non-genetic factors affecting hearing development. Acta Otolaryngol Suppl 421:57–61.

    Article  CAS  PubMed  Google Scholar 

  • van Dijk FJ, Souman AM, de Vries FF (1987) Non-auditory effects of noise in industry. VI. A final field study in industry. Int Arch Occup Environ Health 59:133–145.

    Article  CAS  PubMed  Google Scholar 

  • Vernon JA, Meikle MB (2003) Tinnitus: clinical measurement. Otolaryngol Clin North Am 36:293–305, vi.

    Article  PubMed  Google Scholar 

  • Vlek C (2005) “Could we all be a little more quiet, please?” A behavioural-science commentary on research for a quieter Europe in 2020. Noise Health 7:59–70.

    Article  CAS  PubMed  Google Scholar 

  • Wagner E, Florentine M, Buus S, McCormack J (2004) Spectral loudness summation and simple reaction time. J Acoust Soc Am 116:1681–1686.

    Article  PubMed  Google Scholar 

  • Zenker Castro F, Barajas de Prat JJ, Larumbe Zabala E (2008) Loudness and auditory steady-state responses in normal-hearing subjects. Int J Audiol 47:269–275.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Epstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Epstein, M.J. (2011). Correlates of Loudness. In: Florentine, M., Popper, A., Fay, R. (eds) Loudness. Springer Handbook of Auditory Research, vol 37. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6712-1_4

Download citation

Publish with us

Policies and ethics