Skip to main content

Efficiency of Cross-Bridges and Mitochondria in Mouse Cardiac Muscle

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 682))

Abstract

The aim of this study was to make cellular-level measurements of the mechanical efficiency of mouse cardiac muscle and to use these measurements to determine (1) the work performed by a cross-bridge in one ATP-splitting cycle and (2) the fraction of the free energy available in metabolic substrates that is transferred by oxidative phosphorylation to free energy in ATP (i.e. mitochondrial thermodynamic efficiency). Experiments were performed using isolated left ventricular mouse papillary muscles (n=9; studied at 27°C) and the myothermic technique. The production of work and heat was measured during and after 40 contractions at a contraction frequency of 2 Hz. Each contraction consisted of a brief isometric period followed by isovelocity shortening. Work output, heat output and enthalpy output were all independent of shortening velocity. Maximum initial mechanical efficiency (mean±SEM) was 31.1±1.3% and maximum net mechanical efficiency 16.9±1.5%. It was calculated that the maximum work per cross-bridge cycle was 20 zJ, comparable to values for mouse skeletal muscle, and that mitochondrial thermodynamic efficiency was 72%. Analysis of data in the literature suggests that mitochondrial efficiency of cardiac muscle from other species is also likely to be between 70 and 80%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Values for ΔGATP in mouse heart muscle from Saupe et al. (1998, 2000), Spindler et al. (1998, 2002), Chacko et al. (2000), Dobson and Himmelreich (2002), Weiss et al. (2002), Javadpour et al. (2003), and Day et al. (2006).

References

  • Allen DG, Morris PG, Orchard CH, Pirolo JS (1985) A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis. J Physiol 361:185–204

    PubMed  CAS  Google Scholar 

  • Balschi JA, Shen H, Madden MC, Hai JO, Bradley EL, Jr., Wolkowicz PE (1997) Model systems for modulating the free energy of ATP hydrolysis in normoxically perfused rat hearts. J Mol Cell Cardiol 29:3123–3133

    Article  PubMed  CAS  Google Scholar 

  • Barclay CJ (1996) Mechanical efficiency and fatigue of fast and slow muscles of the mouse. J Physiol 497:781–794

    PubMed  CAS  Google Scholar 

  • Barclay CJ, Weber CL (2004) Slow skeletal muscles of the mouse have greater initial efficiency than fast muscles but the same net efficiency. J Physiol 559:519–533

    Article  PubMed  CAS  Google Scholar 

  • Barclay CJ, Constable JK, Gibbs CL (1993) Energetics of fast- and slow-twitch muscles of the mouse. J Physiol 472:61–80

    PubMed  CAS  Google Scholar 

  • Barclay CJ, Arnold PD, Gibbs CL (1995) Fatigue and heat production in repeated contractions of mouse skeletal muscle. J Physiol 488:741–752

    PubMed  CAS  Google Scholar 

  • Barclay CJ, Widén C, Mellors LJ (2003) Initial mechanical efficiency of isolated cardiac muscle. J Exp Biol 206:2725–2732

    Article  PubMed  CAS  Google Scholar 

  • Barclay CJ, Lichtwark GA, Curtin NA (2008) The energetic cost of activation in mouse fast-twitch muscle is the same whether measured using reduced filament overlap or N-benzyl-p-toluenesulphonamide. Acta Physiol 193:381–391

    Article  CAS  Google Scholar 

  • Chacko VP, Aresta F, Chacko SM, Weiss RG (2000) MRI/MRS assessment of in vivo murine cardiac metabolism, morphology, and function at physiological heart rates. Am J Physiol Heart Circ Physiol 279:H2218–H2224

    PubMed  CAS  Google Scholar 

  • Colomo F, Poggesi C, Tesi C (1994) Force responses to rapid length changes in single intact cells from frog heart. J Physiol 475:347–350

    PubMed  CAS  Google Scholar 

  • Colomo F, Piroddi N, Poggesi C, Te Kronnie G, Tesi C (1997) Active and passive forces of ­isolated myofibrils from cardiac and fast skeletal muscle of the frog. J Physiol 500:535–548

    PubMed  CAS  Google Scholar 

  • Day SM, Westfall MV, Fomicheva EV, Hoyer K, Yasuda S, Cross NC, D’Alecy LG, Ingwall JS, Metzger JM (2006) Histidine button engineered into cardiac troponin I protects the ischemic and failing heart. Nat Med 12:181–189

    Article  PubMed  CAS  Google Scholar 

  • Dobson GP, Headrick JP (1995) Bioenergetic scaling: metabolic design and body-size constraints in mammals. Proc Natl Acad Sci USA 92:7317–7321

    Article  PubMed  CAS  Google Scholar 

  • Dobson GP, Himmelreich U (2002) Heart design: free ADP scales with absolute mitochondrial and myofibrillar volumes from mouse to human. Bioch Biophys Acta 1553:261–267

    Article  CAS  Google Scholar 

  • Gibbs CL, Barclay CJ (1995) Cardiac efficiency. Cardiov Res 30:627–634

    CAS  Google Scholar 

  • Headrick JP, Dobson GP, Williams JP, McKirdy JC, Jordan L, Willis RJ (1994) Bioenergetics and control of oxygen consumption in the in situ rat heart. Am J Physiol Heart Circ Physiol 267:H1074–H1084

    CAS  Google Scholar 

  • Huxley AF, Simmons RM (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538

    Article  PubMed  CAS  Google Scholar 

  • Javadpour MM, Tardiff JC, Pinz I, Ingwall JS (2003) Decreased energetics in murine hearts ­bearing the R92Q mutation in cardiac troponin T. J Clin Invest 112:768–775

    PubMed  CAS  Google Scholar 

  • Kammermeier H, Schmidt P, Jungling E (1982) Free energy change of ATP-hydrolysis: a causal factor of early hypoxic failure of the myocardium? J Mol Cell Cardiol 14:267–277

    Article  PubMed  CAS  Google Scholar 

  • Kushmerick MJ, Moerland TS, Wiseman RW (1992) Mammalian skeletal muscle fibers distinguished by contents of phosphocreatine, ATP, and Pi. Proc Natl Acad Sci U S A 89:7521–7525

    Article  PubMed  CAS  Google Scholar 

  • Mast F, Woledge RC, Elzinga G (1990) Analysis of thermopile records from contracting isolated cardiac muscle. Am J Physiol Heart Circ Physiol 259:H1601–H1605

    CAS  Google Scholar 

  • Mulieri LA, Luhr G, Trefry J, Alpert NR (1977) Metal-film thermopiles for use with rabbit right ventricular papillary muscles. Am J Physiol Cell Physiol 233:C146–C156

    CAS  Google Scholar 

  • Rosing J, Slater EC (1972) The value of ΔGo for the hydrolysis of ATP. Bioch Biophys Acta 267:275–290

    Article  CAS  Google Scholar 

  • Saupe KW, Spindler M, Tian R, Ingwall JS (1998) Impaired cardiac energetics in mice lacking muscle-specific isoenzymes of creatine kinase. Circ Res 82:898–907

    Article  PubMed  CAS  Google Scholar 

  • Saupe KW, Spindler M, Hopkins JC, Shen W, Ingwall JS (2000) Kinetic, thermodynamic, and developmental consequences of deleting creatine kinase isoenzymes from the heart. Reaction kinetics of the creatine kinase isoenzymes in the intact heart. J Biol Chem 275:19742–19746

    Article  PubMed  CAS  Google Scholar 

  • Semafuko WE, Bowie WC (1975) Papillary muscle dynamics: in situ function and responses of the papillary muscle. Am J Physiol 228:1800–1807

    PubMed  CAS  Google Scholar 

  • Smith NP, Barclay CJ, Loiselle DS (2005) The efficiency of muscle contraction. Prog Biophys Mol Biol 88:1–58

    Article  PubMed  CAS  Google Scholar 

  • Spindler M, Saupe KW, Christe ME, Sweeney HL, Seidman CE, Seidman JG, Ingwall JS (1998) Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. J Clin Invest 101:1775–1783

    Article  PubMed  CAS  Google Scholar 

  • Spindler M, Niebler R, Remkes H, Horn M, Lanz T, Neubauer S (2002) Mitochondrial creatine kinase is critically necessary for normal myocardial high-energy phosphate metabolism. Am J Physiol Heart Circ Physiol 283:H680–687

    PubMed  CAS  Google Scholar 

  • VanBuren P, Harris DE, Alpert NR, Warshaw DM (1995) Cardiac V1 and V3 myosins differ in their hydrolytic and mechanical activities in vitro. Circ Res 77:439–444

    Article  PubMed  CAS  Google Scholar 

  • Weiss RG, Chatham JC, Georgakopolous D, Charron MJ, Wallimann T, Kay L, Walzel B, Wang Y, Kass DA, Gerstenblith G, Chacko VP (2002) An increase in the myocardial PCr/ATP ratio in GLUT4 null mice. FASEB 16:613–615

    CAS  Google Scholar 

  • Widén C, Barclay CJ (2006) ATP splitting by half the cross-bridges can explain the twitch ­energetics of mouse papillary muscle. J Physiol 573:5–15

    Article  PubMed  Google Scholar 

  • Woledge RC, Reilly PJ (1988) Molar enthalpy change for hydrolysis of phosphorylcreatine under conditions in muscle cells. Biophys J 54:97–104

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Barclay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Barclay, C.J., Widén, C. (2010). Efficiency of Cross-Bridges and Mitochondria in Mouse Cardiac Muscle. In: Rassier, D. (eds) Muscle Biophysics. Advances in Experimental Medicine and Biology, vol 682. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6366-6_15

Download citation

Publish with us

Policies and ethics