Skip to main content

Genetic Predispositions for Hematologic and Lymphoid Disorders

  • Chapter
  • First Online:
  • 1334 Accesses

Part of the book series: Molecular Pathology Library ((MPLB,volume 4))

Abstract

A wide spectrum of inherited and sporadic genetic abnormalities predisposes individuals to increased risks of developing hematopoietic and lymphoid disorders. Each of these genetic abnormalities is associated with a syndrome with characteristic clinical and laboratory features. These predispositions to hematolymphoid disorders may be placed into one of two board categories: (1) bone marrow (BM) failure syndromes; and (2) primary immune deficiency syndromes. The majority of individuals in either of these two groups will have an inherited genetic abnormality. The disorders predisposing to hematolymphoid neoplasias addressed in this chapter are presented in Table 2.1. An attempt was made to include in this table the processes where there is sufficient documentation of increased risks of developing hematologic or lymphoid neoplasms. This table also attempts to group the different hematolymphoid predisposition entities by major function of their mutated gene’s normal counterpart. This is not an entirely satisfying approach. For example, patients with Dyskeratosis congenita (DC) and a mutation of DKC1 will have an abnormal dyskerin, the normal counterpart of which is involved in RNA biogenesis and telomerase activity. Similarly, some disorders like Ataxia–telangiectasia (AT) or Wiskott–Aldrich syndrome are included in classifications of primary BM failure syndromes as well as in those of primary immune deficiency diseases. Space does not allow for providing an extensive discussion of the clinical and laboratory features of each of entities to be presented, but this information is available in many current reviews and texts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Orkin SH, Nathan DG, Ginsburg D, et al, eds. Nathan and Oski’s hematology of infancy and childhood. 7th ed. Philadelphia: Saunders/Elsevier; 2009:307-395, 1255–1295

    Google Scholar 

  2. Segel GB, Lictman MA. Familial (inherited) leukemia, lymphoma, and myeloma. An overview. Blood Cells Mol Dis. 2004;32:246–261.

    Article  PubMed  Google Scholar 

  3. Van Krieken JH, Onciu M, Elenitoba-Johnson KSJ, Jaffe ES. Lymphoproliferative diseases associated with primary immune disorders. In: Swerdlow SH, Campo E, Harris NL, et al. eds, WHO classification of tumors of haematopoietic and lymphoid tissues. 4th ed. Lyon:IARC Press; 2008:335–339.

    Google Scholar 

  4. Le D, Shannon K, Lange BJ. Heritable predispositions to childhood hematologic malignancies. In: Pui C-H, ed. Childhood leukemias. 2nd ed. New York:Cambridge University Press; 2006:362–387.

    Chapter  Google Scholar 

  5. Friedman JM. Neurofibromatosis 1: clinical manifestations and diagnostic criteria. J Child Neurol. 2002;17:548–554.

    Article  PubMed  CAS  Google Scholar 

  6. Friedman JM. Neurofibromatosis 1. Available at: http://www.ncbi.nlm.nih.gov/bookself/. Accessed January 7, 2007.

  7. Lee MJ, Stephenson DA. Recent developments in neurofibromatosis type 1. Curr Opin Neurol. 2007;20:135–141.

    Article  PubMed  CAS  Google Scholar 

  8. Lamment M, Friedman JM, Kluwe L, et al. Prevalence of neurofibromatosis 1 in German children at elementary school enrollment. Arch Dermatol. 2005;141:71–74.

    Article  Google Scholar 

  9. Viskochil D. Genetics of neurofibromatosis 1 and the NF1 gene. J Child Neurol. 2002;17:562–570.

    Article  PubMed  Google Scholar 

  10. Theos A, Korf BR. Pathophysiology of neurofibromatosis type 1. Ann Intern Med. 2006;144:842–849.

    PubMed  Google Scholar 

  11. McCormick F. Ras signaling and NF1. Curr Opin Genet Dev. 1995;5:51–55.

    Article  PubMed  CAS  Google Scholar 

  12. Shannon KM, O’Connell P, Martin GA, et al. Loss of the normal NF1 allele from the bone marrow of children with type 1 eurofibromatosis and malignant myeloid disorders. N Engl J Med. 1994;330:637–639.

    Article  Google Scholar 

  13. Shannon KM, Watterson J, Johnson P, et al. Monosomy 7 myeloproliferative disease in children with neurofibromatosis, type 1. Blood. 1992;79:1311–1318.

    PubMed  CAS  Google Scholar 

  14. Stiller CA, Chessells JM, Fitchett M. Neurofibromatosis and childhood leukemia/lymphoma: a population-based UKCCSG study. Br J Haematol. 1994;70:969–972.

    CAS  Google Scholar 

  15. Niemeyer CM, Arico M, Basso G, et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Blood. 1997;89:3534–3543.

    PubMed  CAS  Google Scholar 

  16. Baumann I, Bennett JM, Niemeyer CM, et al. Juvenile myelomonocytic leukaemia. In: Swerlow SH, Campo E, Harris NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2008:82–84.

    Google Scholar 

  17. Lauchle JO, Braun BS, Loh ML, Shannon K. Inherited predispositions and hyperactive RAS in myeloid leukemogenesis. Pediatr Blood Cancer. 2006;46:579–585.

    Article  PubMed  Google Scholar 

  18. Side LE, Emanuel PD, Taylor B, et al. Mutations of the NF1 gene in children with juvenile myelomonocytic leukemia with clinical evidnce of neurofibromatosis type 1. Blood. 1998;92:267–272.

    PubMed  CAS  Google Scholar 

  19. Emanuel PD, Bates LJ, Zhu SW, et al. The role of monocyte-derived hemopoietic growth factors in the regulation of myeloproliferation in juvenile chronic myelomonocytic leukemia. Exp Hematol. 1991;19:1017–1024.

    PubMed  CAS  Google Scholar 

  20. Stephens K, Weaver M, Leppig KA, et al. Interstitial uniparental isodisomy at clustered breakpoint intervals is a frequent mechanism on NF1 inactivation in myeloid malignancies. Blood. 2007;108:1684–1689.

    Article  CAS  Google Scholar 

  21. Flotho C, Steinemann D, Mullighan CG, et al. Genome-wide single-nucelotide polymorphism analysis in juvenile myelomonocytic leukemia identifies uniparental disomy surrounding the NF1 locus in cases associated with neurofibromatosis but not in cases with mutant RAS or PTPN11. Oncogene. 2007;26:5816–5821.

    Article  PubMed  CAS  Google Scholar 

  22. Jacks T, Shih S, Schmitt EM, et al. Tumorigenic and developmental consequences of a targeted NF1 mutation in the mouse. Nat Gene. 1994;7:353–361.

    Article  CAS  Google Scholar 

  23. Maris JM, Wiersma SR, Mahgoub N, et al. Monosomy 7 myelodysplastic syndrome and other second malignant neoplasms in children with neurofibromatosis. Cancer. 1997;79:1438–1446.

    Article  PubMed  CAS  Google Scholar 

  24. Zvulunov A, Barak Y, Metzker A. Juvenile xanthogranuloma, neurofibromatosis, and juvenile chronic myelogenous leukemia. World statistical analysis. Arch Dermatol. 1996;131:904–908.

    Article  Google Scholar 

  25. Jang KA, Choi JH, Sung KJ, et al. Juvenile chronic myelogenous leukemia, neurofibromatosis, and xanthoma. J Dermtol. 1999;26:33–35.

    CAS  Google Scholar 

  26. Benessahraoui M, Aubin F, Paratte F, et al. Juvenile myelomonocytic leukemia, xanthoma, and neurofibromatosis type 1. Arch Pediatr. 2003;10:891–894.

    Article  PubMed  CAS  Google Scholar 

  27. Griffiths S, Thompson P, Frayling I, Upadhyaya M. Molecular diagnosis of neurofibromatosis type 1: 2 years experience. Fam Cancer. 2007;6:21–34.

    Article  PubMed  CAS  Google Scholar 

  28. Messiaen LM, Callens T, Mortier G, et al. Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat. 2000;15:541–545.

    Article  PubMed  CAS  Google Scholar 

  29. Upadhyaya M, Maynard J, Osborn M, et al. Characterization of germline mutations in the neurofibromatosis type 1 (NF1) gene. J Med Genet. 1995;32:706–710.

    Article  PubMed  CAS  Google Scholar 

  30. Fahsold R, Hoffmeyer S, Mischung C, et al. Minor lesion mutational spectrum of the entire NF1 gene does not explain its high mutability but points to a functional domain upstream of the GAP-related domain. Am J Hum Genet. 2000;66:790–818.

    Article  PubMed  CAS  Google Scholar 

  31. Heim RA, Kam-Morgan LN, Binnie CG, et al. Distribution of 13 truncating mutations in the neurofibromatosis 1 gene. Hum Mol Genet. 1995;4:975–981.

    Article  PubMed  CAS  Google Scholar 

  32. Allanson JE. Noonan syndrome. GeneReviews, NCBI Bookshelf. October 7, 2008.

    Google Scholar 

  33. Allanson J. Noonan syndrome. In: Cassidy SB, Allanson JE, eds. Management of genetic syndromes. New York: Wiley; 2005.

    Google Scholar 

  34. Jongmans M, Sistermans EA, Rikken A, et al. Genotypic and phenotypic characterization of Noonan syndrome: new data and review of the literature. Am J Med Genet. 2005;134A:165–170.

    Article  PubMed  Google Scholar 

  35. Van der Burgt I, Berends B, Lommen E, et al. Clinical and molecular studies in a large Dutch family with Noonan syndrome. Am J Med Genet. 1994;53:187–191.

    Article  PubMed  Google Scholar 

  36. Van der Burgt I. Noonan syndrome. Orphanet J Rare Dis. 2007;2:4.

    Article  PubMed  Google Scholar 

  37. Van der Burgt I, Brunner H. Genetic heterogeneity in Noonan syndrome: evidence for an autosomal recessive form. Am J Med Genet. 2000;94:46–51.

    Article  Google Scholar 

  38. Sharland M, Burch M, McKenna WM, Patton MA. A clinical study of Noonan syndrome. Arch Dis Child. 1992;67:178–183.

    Article  PubMed  CAS  Google Scholar 

  39. Tartaglia M, Gelb BD. Noonan syndrome and related disorders: genetics and pathogenesis. Ann Rev Genomics Hum Genet. 2005;6:45–68.

    Article  CAS  Google Scholar 

  40. Tartaglia M, Kalidas K, Shaw A, et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet. 2002;70:1555–1563.

    Article  PubMed  CAS  Google Scholar 

  41. Tartaglia M, Mehler EL, Goldberg R, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001;29:465–468.

    Article  PubMed  CAS  Google Scholar 

  42. Zenker M, Buheitel G, Rauch R, et al. Genotype-phenotype correlations in Noonan syndrome. J Pediatr. 2004;144:368–374.

    Article  PubMed  CAS  Google Scholar 

  43. Pandit B, Sarkozy A, Pennacchio LA, et al. Gain-of-Function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet. 2007;39:1007–1012.

    Article  PubMed  CAS  Google Scholar 

  44. Razzaque MA, Nishizawa T, Komoike Y, et al. Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nat Genet. 2007;39:1013–1017.

    Article  PubMed  CAS  Google Scholar 

  45. Roberts AE, Araki T, Swanson KD, et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet. 2007;39:70–74.

    Article  PubMed  CAS  Google Scholar 

  46. Schubbert S, Zenker M, Rowe SL, et al. Germline KRAS mutations cause Noonan syndrome. Nat Genet. 2006;38:331–336.

    Article  PubMed  CAS  Google Scholar 

  47. Hof P, Pluskey S, Dhe-Paganon S, et al. Crystal structure of the tyrosine phospatase SHP-2. Cell. 1998;92:441–450.

    Article  PubMed  CAS  Google Scholar 

  48. Tartaglia M, Gelb BD. Germ-line and somatic PTPN11 mutations in human disease. Euro J Med Genet. 2005;48:81–96.

    Article  Google Scholar 

  49. Edouard T, Montagner A, Dance M, et al. How do SHP2 mutations that oppositely influence its biochemical activity result in syndromes with overlapping symptoms? Cell Mol Life Sci. 2007;64:1585–1590.

    Article  PubMed  CAS  Google Scholar 

  50. Bader-Meunier B, Tchernia G, Mielot F, et al. Occurrence of myeloproliferative disorder in patients with Noonan syndrome. J Pediatr Hematol Oncol. 1997;130:885–889.

    CAS  Google Scholar 

  51. Bentires-Alj M, Paez JG, David FS, et al. Activating mutations of the Noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 2004;64:8816–8820.

    Article  PubMed  CAS  Google Scholar 

  52. Cheong JLY, Moorkamp MH. Respiratory failure, juvenile myelomonocytic leukemia, and neonatal Noonan syndrome. J Pediatr Hematol Oncol. 2007;29:262–264.

    Article  PubMed  Google Scholar 

  53. Kratz CP, Niemeyer CM, Castleberry RP, et al. The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Blood. 2005;106:2183–2185.

    Article  PubMed  CAS  Google Scholar 

  54. Prombo M, Rosanda C, Pasino M, et al. Acute lymphoblastic leukemia in Noonan syndrome: report of two cases. Med Pediatr Oncol. 1993;21:454–455.

    Article  Google Scholar 

  55. Roti G, La Starza R, Ballanti S, et al. Acute lymphoblastic leukemia in Noonan syndrome. Br J Haematol. 2006;133:443–450.

    Article  Google Scholar 

  56. Tartaglia M, Niemeyer CM, Fragale A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet. 2003;34:148–150.

    Article  PubMed  CAS  Google Scholar 

  57. Tartaglia M, Martinelli S, Stella L, et al. Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am J Hum Genet. 2006;78:279–290.

    Article  PubMed  CAS  Google Scholar 

  58. Loh ML, Vattikuti S, Schubbert S, et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood. 2004;103:2325–2331.

    Article  PubMed  CAS  Google Scholar 

  59. Tartaglia M, Martinelli S, Cazzaniga G, et al. Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood. 2004;104:307–313.

    Article  PubMed  CAS  Google Scholar 

  60. Loh ML, Reynolds MG, Vattikuti S, et al. PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children’s Cancer Group. Leukemia. 2004;18:1831–1834.

    Article  PubMed  CAS  Google Scholar 

  61. Loh ML, Martinelli S, Cordeddu V, et al. Acquired PTPN11 mutations occur rarely in adult patients with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk Res. 2005;29:459–462.

    Article  PubMed  CAS  Google Scholar 

  62. Johan MF, Bowen DT, Frew ME, et al. Mutations in PTPN11 are uncommon in adult myelodysplastic syndromes and acute myeloid leukemia. Br J Haematol. 2004;124:836–844.

    Article  Google Scholar 

  63. Watkins F, Fidler C, Boultwood J, Wainscoat JS. Mutations in PTPN11 are rare in adult myelodysplastic syndrome and acute myeloid leukemia. Am J Hematol. 2004;76:417.

    Article  PubMed  Google Scholar 

  64. Yamamoto T, Isomura M, Xu Y, et al. PTPN11, RAS and FLT3 mutations in childhood acute lymphoblastic leukemia. Leuk Res. 2006;30:1085–1089.

    Article  PubMed  CAS  Google Scholar 

  65. Luna-Fineman S, Shannon KM, Atwater SK, et al. Myelodysplastic and myeloproliferative disorders of childhood: a study of 167 patients. Blood. 1999;93:459–466.

    PubMed  CAS  Google Scholar 

  66. Gassas A, Doyle JJ, Weitzman S, et al. A basic classification and comprehensive examination of pediatric myeloproliferative syndromes. J Pediatr Hemato Oncol. 2005;27:192–196.

    Article  Google Scholar 

  67. Yoshida R, Miyata M, Nagai T, et al. A 3-bp deletion mutation of PTPN11 in an infant with severe Noonan syndrome including hydrops fetalis and juvenile myelomonocytic leukemia. Am J Med Genet A. 2004;128:63–66.

    Article  Google Scholar 

  68. Yoshida R, Hasegawa T, Hasegawa Y, et al. Protein-tyrosine phosphatase, nonreceptor type 11 mutation analysis and clinical assessment in 45 patients with Noonan syndrome. J Clin Endocrinol Metab. 2004;89:3359–3364.

    Article  PubMed  CAS  Google Scholar 

  69. Besler M, Mason PJ, Link DC, Wilson DB. Inherited bone marrow failure syndromes. In: Orkin SH, Nathan DG, Ginsburg D, et al., eds. Nathan and Oski’s hematology of infancy and childhood. 7th ed. Philadelphia, PA: Saunders Elsevier; 2009:312–329.

    Google Scholar 

  70. Taniguchi T. Fanconi anemia. GeneRreviews, NCBI Bookshelf. Available at: http//:www.ncbi.nlm.nih.gov/bookshelf. Accessed March 27, 2008.

  71. Tischkowitz M, Dokal I. Fanconi anaemia and leukaemia – clinical and molecular aspects. Br J Haematol. 2004;126:176–191.

    Article  PubMed  CAS  Google Scholar 

  72. Joenje H, Patel KJ. The emerging genetic and molecular basis of Fanconi anemia. Nat Rev Genet. 2001;2:446–457.

    Article  PubMed  CAS  Google Scholar 

  73. Kutler DI, Singh B, Satagopan J, et al. A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood. 2003;101:1249–1256.

    Article  PubMed  CAS  Google Scholar 

  74. Alter BP. Cancer in Fanconi anemia. Cancer. 2003;97:425–440.

    Article  PubMed  Google Scholar 

  75. Rosenberg PS, Greene MH, Alter BP. Cancer incidence in persons with Fanconi anemia. Blood. 2003;101:822–826.

    Article  PubMed  CAS  Google Scholar 

  76. Rosenberg PS, Yi H, Alter BP. Individualized risks of first adverse events in patients with Fanconi anemia. Blood. 2004;104:350–355.

    Article  PubMed  CAS  Google Scholar 

  77. Rosenberg PS, Alter BP, Ebell W. Cancer risks in Fanconi anemia: findings from the German Fanconi Anemia Registry. Haematologica. 2008;93:511–517.

    Article  PubMed  Google Scholar 

  78. Mathew CG. Fanconi anemia genes and susceptibility to cancer. Oncogene. 2006;25:5875–5884.

    Article  PubMed  CAS  Google Scholar 

  79. van Zeeberg HJT, Snijders PJF, Joenje H, Brakenhoff RH. Human papillomavirus DNA and p53 polyorphisms in squamous cell cancer from Fanconi anemia patients. J Nat Cancer Instit. 2004;96:967–968.

    Article  CAS  Google Scholar 

  80. Velazquez I, Alter BP. Androgens and liver tumors: Fanconi anemia and non-Fanconi conditions. Am J Hematol. 2004;77:257–267.

    Article  PubMed  CAS  Google Scholar 

  81. Alter BP. Fanconi’s anemia and malignancies. Am J Hematol. 1996;53:99–110.

    Article  PubMed  CAS  Google Scholar 

  82. Wagner JE, Tolar J, Levran O, et al. Germline mutations in BRCA2: shared genetic susceptibility to breast cancer, early onset leukemia, and Fanconi anemia. Blood. 2004;103:3226–3229.

    Article  PubMed  CAS  Google Scholar 

  83. Taniguchi T, D’Andrea AD. Molecular pathogenesis of Fanconi anemia: recent progress. Blood. 2006;107:4223–4233.

    Article  PubMed  CAS  Google Scholar 

  84. Morgan NV, Essop F, Demuth I, et al. A common Fanconi anemia mutation in black populations of sub-Saharan Africa. Blood. 2005;105:3542–3544.

    Article  PubMed  CAS  Google Scholar 

  85. Tipping AJ, Pearson T, Morgan NV, et al. Molecular and genealogic evidence for a founder effect in Fanconi anemia families of the Afrikaner population of South Africa. Proc Natl Acad Sci U S A. 2001;98:5734–5739.

    Article  PubMed  CAS  Google Scholar 

  86. Whitney MA, Saito H, Jakobs PM, et al. A common mutation in the FACC gene causes Fanconi anemia in Ashkenazi Jews. Nat Genet. 1993;4:202–205.

    Article  PubMed  CAS  Google Scholar 

  87. Callen E, Casado JA, Tischkowitz MD, et al. A common founder mutation iv FANCA underlies the world’s highest prevalence of Fanconi anemia in Gypsy families. Blood. 2005;105:1946–1949.

    Article  PubMed  CAS  Google Scholar 

  88. D’Andrea AD, Grompe M. The Fanconi anemia/BRCA pathway. Nat Rev Cancer. 2003;3:23–34.

    Article  PubMed  CAS  Google Scholar 

  89. Venkitaraman AR. Tracing the network connecting BRCA and Fanconi anemia proteins. Nat Rev Cancer. 2004;4:266–276.

    Article  PubMed  CAS  Google Scholar 

  90. Jacquemont C, Taniguchi T. The Fanconi anemia pathway and ubiquitin. BMC Biochem. 2007;8(Suppl 1):1–10.

    Article  CAS  Google Scholar 

  91. Wang W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet. 2007;8:735–748.

    Article  PubMed  CAS  Google Scholar 

  92. Smogorzewska A, Matsuoka S, Vinciguerra P, et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell. 2007;129:289–301.

    Article  PubMed  CAS  Google Scholar 

  93. Bagby GC. Genetic basis of Fanconi anemia. Cur Opin Hematol. 2003;10:68–76.

    Article  CAS  Google Scholar 

  94. Mirchandani KD, D’Andrea AD. The Fanconi anemia/BRCA pathway: a coordinator of cross-link repair. Exp Cell Res. 2006;312:2647–2653.

    Article  PubMed  CAS  Google Scholar 

  95. Tamary H, Alter BP, Nishri D, Rosenberg PS. Frequency and natural history of bone marrow failure syndromes: the Israeli Fanconi Anemia Registry. Blood. 2008;112(Suppl):382–383.

    Google Scholar 

  96. Alter BP, Caruso JP, Drachtman RA, et al. Fanconi anemia: myelodysplasia as a predictor of outcome. Cancer Genet Cytogenet. 2000;117:125–131.

    Article  PubMed  CAS  Google Scholar 

  97. Tonnies H, Huber S, Kuhl JS, et al. Clonal chromosome aberrations in bone marrow cells of Fanconi anemia patients: gains of the chromosome segment 3q26q29 as an adverse risk factor. Blood. 2003;101:3872–3874.

    Article  PubMed  CAS  Google Scholar 

  98. Butturini A, Gale RP, Verlander PC, et al. Hematologic abnormalities in Fanconi anemia: an International Fanconi Anemia Registry study. Blood. 1994;84:1650–1655.

    PubMed  CAS  Google Scholar 

  99. Auerbach AD, Allen RG. Leukemia and preleukemia in Fanconi anemia patients. A review of the literature and report of the International Fanconi Anemia Registry. Cancer Genet Cytogenet. 1991;51:1–12.

    Article  PubMed  Google Scholar 

  100. Gillo AP, Verlander PC, Batish SD, et al. Phenotypic consequences of mutations in the Fanconi anemia FAC gene: an International Fanconi Anemia Registry study. Blood. 1997;90:105–110.

    Google Scholar 

  101. Yamashita T, Wu N, Kupfer G, et al. Clinical variability of Fanconi anemia (type C) results from expression of an amino terminal truncated Fanconi anemia complementation group C polypeptide with partial activity. Blood. 1996;87:4424–4432.

    PubMed  CAS  Google Scholar 

  102. Faivre L, Guardiola P, Lewis C, et al. Association of complementation group and mutation type with clinical outcome in Fanconi anemia – European Fanconi Anemia Research Group. Blood. 2000;96:4064–4070.

    PubMed  CAS  Google Scholar 

  103. Hirsch B, Shimamura A, Moreau L, et al. Association of biallelic BRCA2/FANCC1 mutations with spontaneous chromosomal instability and solid tumors of childhood. Blood. 2004;103:2554–2559.

    Article  PubMed  CAS  Google Scholar 

  104. Mathew CG. Fanconi anaemia genes and susceptibility to cancer. Oncogene. 2008;25:5875–5884.

    Article  CAS  Google Scholar 

  105. Briot D, Mace-Aime G, Subra F, Roselli F. Aberrant activation of stress-response pathways leads to TNF-alpha oversecretion in Fanconi anemia. Blood. 2008;111:1913–1923.

    Article  PubMed  CAS  Google Scholar 

  106. Auerbach AD. Fanconi anemia diagnosis and the diepoxybutane (DEB) test. Exp Hematol. 1993;21:731–733.

    PubMed  CAS  Google Scholar 

  107. Auerbach AD. Diagnosis of Fanconi anemia by disepoxy-butane analysis. Curr Protoc Hum Genet. 2003; Chapter 8: Unit 8.7.

  108. Auerbach AD, Alter BP. Prenatal and postnatal diagnosis of aplastic anemia. In: Alter BP, ed. Methods in hematology: perinatal hematology. Edinburgh: Churchill Livingstone; 1989:225.

    Google Scholar 

  109. Gregory JJ Jr, Wagner JE, Verlander PC, et al. Somatic mosaicism in Fanconi anemia: evidence of genotypic reversion in lymphohematopoietic stem cells. Proc Natl Acad Sci U S A. 2001;98:532–2537.

    Article  PubMed  CAS  Google Scholar 

  110. Nakanishi K, Taniguchi T, Ranganathan V, et al. Interaction of FANCD2 and NSB1 in the DNA damage response. Nat Cell Biol. 2002;4:913–920.

    Article  PubMed  CAS  Google Scholar 

  111. Schroeder TM, Kurth R. Spontaneous chromosomal breakage and high incidence of leukemia in inherited disease. Blood. 1971;37:96–112.

    PubMed  CAS  Google Scholar 

  112. Seyschab H, Friedl R, Sun Y, et al. Comparative evaluation of diepoxybutane sensitivity and cell cycle blockage in the diagnosis of Fanconi anemia. Blood. 1995;85:2233–2237.

    PubMed  CAS  Google Scholar 

  113. Moreira CF, Brito LC, Lemos JA. Flow cytometry for diepoxybutane test analysis. Genet Mol Res. 2008;7:1353–1359.

    Article  PubMed  CAS  Google Scholar 

  114. Toraldo R, Camino G, Tolone D, D’Avanzo M. Variable response to the diepoxybutane test in two dizhgoyic twins with Fanconi anemia and flow cytometry for diagnostic confirmation. Pediatr Hematol Oncol. 1998;15:45–54.

    Article  PubMed  CAS  Google Scholar 

  115. Alter BP. Diagnosis, genetics, and management of inherited bone marrow failure syndromes. Hematology. 2007;2007:29–39.

    Article  Google Scholar 

  116. Shimamura A, De Oca RM, Svenson JL, et al. A novel diagnostic screen for defects in the Fanconi anemia pathway. Blood. 2002;100:4649–4654.

    Article  PubMed  CAS  Google Scholar 

  117. Shimamura A, D’Andrea AD. Subtyping of Fanconi anemia patients: implications for clinical management. Blood. 2003;102:3459 (Letter).

    Article  PubMed  CAS  Google Scholar 

  118. Chandra S, Lavran O, Jurickova I, et al. A rapid method for retrovirus-mediated identification of complementation groups in Fanconi anemia patients. Mol Ther. 2005;12:976–984.

    Article  PubMed  CAS  Google Scholar 

  119. Ameziane N, Errami A, Leveille F, et al. Genetic subtyping of Fanconi anemia by comprehensive mutation screening. Hum Mut. 2008;29:159–166.

    Article  PubMed  CAS  Google Scholar 

  120. Sanz MM, German J. Bloom’s syndrome. GeneReviews, NCBI Bookshelf. Available at: www.ncbi.nlm.nih.gov/bookshelf/. Accessed March 22, 2006.

  121. German J. Bloom’s syndrome. XX, The first one hundred cancers. Cancer Genet Cytogenet. 1997;93:100–106.

    Article  PubMed  CAS  Google Scholar 

  122. Staughen J, Ciocci S, Ye TZ, et al. Physcial mapping of the Bloom syndrome region by the identification of YAC and PI clones from human chromosome 15 band q26.1. Genomic. 1996;35:118–128.

    Article  Google Scholar 

  123. Ellis NA, Gordon J, Ye TZ. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell. 1995;83:655–666.

    Article  PubMed  CAS  Google Scholar 

  124. Hickson ID, Davies SL, Li JL, et al. Role of the Bloom’s syndrome helicase in maintenance of genome stability. Biochem Soc Trans. 2001;29:201–204.

    Article  PubMed  CAS  Google Scholar 

  125. Amor-Gueret M. Bloom syndrome, genomic instability and cancer: the SOS-like hypothesis. Cancer Lett. 2006;236:1–12.

    Article  PubMed  CAS  Google Scholar 

  126. Yodh JG, Stevens BC, Kanagaraj R, et al. BLM helicase measures DNA unwound before switching strands and hRPA promotes unwinding reinitiation. EMBO J. 2009;28:405–416.

    Article  PubMed  CAS  Google Scholar 

  127. Sanz MM, Proytcheva M, Ellis NA, et al. BLM, the Bloom’s syndrome protein, varies during cell cycle in its amount, distribution, and co-localization with other nuclear proteins. Cytogenet Cell Genet. 2000;91:217–223.

    Article  PubMed  CAS  Google Scholar 

  128. German J, Sanz MM, Ciocci S, et al. Syndrome-causing mutations of the BLM gene in persons in the Bloom’s Syndrome Registry. Hum Mutat. 2007;28:743–753.

    Article  PubMed  CAS  Google Scholar 

  129. Ellis NA, Ciocci S, Proytcheva M, et al. The Ashkenazi Jewish Bloom syndrome mutation blmAsh is present in non-Jewish Americans of Spanish ancestry. Am J Hum Genet. 1998;63:1685–1693.

    Article  PubMed  CAS  Google Scholar 

  130. Babbe H, Chester N, Ledre P, Reizis B. The Bloom’s syndrome helicase is critical for development and function of the alphabeta T-cell lineage. Mole Cell Biol. 2007;27:1947–1959.

    Article  CAS  Google Scholar 

  131. Babbe H, McMenamin J, Hobeika E, et al. Genomic instability resulting from Blm deficiency compromises development, maintenance, and function of the B cell lineage. J Immunol. 2008;182:347–360.

    Google Scholar 

  132. Poppe B, Van Limbergen H, Van Roy N, et al. Chromosome aberrations in Bloom syndrome patients with myeloid malignancies. Cancer Genet Cytogenet. 2001;128:39–42.

    Article  PubMed  CAS  Google Scholar 

  133. Xu D, Guo R, Sobeck A, et al. RMI, a new OB-fold complex essential for Bloom syndrome protein to maintain genome stability. Genes Dev. 2008;22:2843–2855.

    Article  PubMed  CAS  Google Scholar 

  134. Singh TR, Ali AM, Busygina V, et al. BLAP18/RMI2, a novel OB-fold-containing protein, is an essential component of the Bloom helicase-double Holliday junction dissolvasome. Genes Dev. 2008;22:2856–2868.

    Article  PubMed  CAS  Google Scholar 

  135. Chaganti RSK, Schonberg S, German J. A many fold increase in sister chromatid exchanges in Bloom’s syndrome lymphocytes. Proc Natl Acad Sci U S A. 1974;71:4508–4512.

    Article  PubMed  CAS  Google Scholar 

  136. Morimoto W, Kaneko H, Isogai K, et al. Expression of BLM (the causative gene for Bloom syndrome) and screening of Bloom syndrome. Int J Mol Med. 2002;10:95–99.

    PubMed  CAS  Google Scholar 

  137. Concannon PJ, Gatti RA. Nijmegen breakage syndrome. GeneReviews. NCBI bookshelf. Available at: www.ncbi.nih.gov/. Accessed June 14, 2005.

  138. International Nijmegen breakage study group. Nijmegen breakage syndrome. Arch Dis Child. 2000;82:400–406.

    Article  Google Scholar 

  139. Michalkiewitz J, Barth C, Chzanowska K, et al. Abnormalities in T and NK lymphocyte phenotype in patients with Nijmegen breakage syndrome. Clin Exp Immunol. 2003;134:482–490.

    Article  Google Scholar 

  140. Varon R, Vissinga C, Platzer M, et al. Nibrin, a novel DNA double-break strand protein is mutated in Nijmegen breakage syndrome. Cell. 1998;93:467–476.

    Article  PubMed  CAS  Google Scholar 

  141. Demuth I, Digweed M. The clinical manifestation of a defective response to DNA double-strand breaks as exemplified by Nijmegen breakage syndrome. Oncogene. 2007;26:7792–7798.

    Article  PubMed  CAS  Google Scholar 

  142. Lee JH, Paul TT. ATM activation by DNA double-strand breaks through the Mre11-rad50-Nbs1 complex. Science. 2005;308:551–554.

    Article  PubMed  CAS  Google Scholar 

  143. Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature. 2005;434:605–611.

    Article  PubMed  CAS  Google Scholar 

  144. Jang ER, Lee JH, Lim DS, Lee JS. Analysis of ataxia-telangiectasia mutated (ATM) and Nijmegen breakage syndrome (NBS)-regulated gene expression patterns. J Cancer Res Clin Oncol. 2004;130:225–230.

    Article  PubMed  CAS  Google Scholar 

  145. Cheng VG, Ewens WJ. Heterozygous carriers of Nujmengen breakage syndrome have a distinct gene expression phenotype. Genomic Res. 2006;16:973–979.

    Article  CAS  Google Scholar 

  146. Weemaes CM, Smeets DF, Van der Burgt CJ, et al. Nijmegen breakage syndrome: a progress report. Int J Radiat Biol. 1994;66:185–188.

    Article  Google Scholar 

  147. Gladkowska-Dura M, Dzierzanowska-Fangrat K, Dura WT, et al. Unique morphologic spectrum of lymphomas in Nijmegen breakage syndrome (NBS) patients with high frequency of consecutive lymphoma formation. J Pathol. 2008;216:337–344.

    Article  PubMed  CAS  Google Scholar 

  148. Pluth M, Yamazaki V, Cooper BA, et al. Double-strand break and chromosomal rejoining defects with misrejoining in Nijmegen breakage syndrome cells. DNA Repair. 2008;7:108–118.

    Article  PubMed  CAS  Google Scholar 

  149. Weger RD, Chrzanowska KH, Sperling K, et al. Ataxia-telangiectasia variants (Nijmengen breakage syndrome). In: Ochs HD, Smith CIE, Puck JM, eds. Primary immunodeficiency diseases, a molecular and genetic approach. Oxford: Oxford University Press; 1999:324–334.

    Google Scholar 

  150. Michallet AG, Lesca G, Radford-Weiss I, et al. T-cell prolymphocytic leukemia with autoimmune manifestations in Nujmengen breakage syndrome. Ann Hematol. 2003;82:515–517.

    Article  PubMed  Google Scholar 

  151. Mueller Bu, Pizzo PA. Cancer in children with primary immunodeficiency. J Pediatr. 1995;126:1–10.

    Article  PubMed  CAS  Google Scholar 

  152. Jovanovic A, Minic P, Scekic-Guc M, et al. Successful treatment of Hodgkin lymphoma in Nijmegen breakage syndrome. J Pediatr Hematol Oncol. 2009;31:49–52.

    Article  PubMed  Google Scholar 

  153. Dembowska-Baginska B, Perek D, Brozyna A, et al. Non-Hodgkin lymphoma (NHL) in children with Nijmegen breakage syndrome (NBS). Pediatr Blood Cancer. 2009;52:186–190.

    Article  PubMed  Google Scholar 

  154. Seemanova E. An increased risk for malignant neoplasms in heterozygotes for a syndrome of microcephaly, normal intelligence, growth retardation, remarkable facies, immunodeficiency and chromosome instability. Mutat Res. 1990;238:321–324.

    PubMed  CAS  Google Scholar 

  155. Steffen J, Varon R, Mosor M, et al. Increased cancer risk of heterozygotes with NBS1 germline mutations in Poland. Int J Cancer. 2004;111:67–71.

    Article  PubMed  CAS  Google Scholar 

  156. Seemanova W, Sperling K, Neitzel H, et al. Nijmegen breakage syndrome (NBS) with neurological abnormalities and without chromosomal instability. J Med Genet. 2005;43:218–224.

    Article  PubMed  CAS  Google Scholar 

  157. Kruger L, Demuth I, Neitzel H, et al. Cancer incidence in Nijmegen breakage syndrome is modulated by the amount of a variant NBS protein. Carcinogenesis. 2007;28:107–111.

    Article  PubMed  Google Scholar 

  158. Bonilla FA, Geha RS. Primary immunodeficiency diseases. In: Orkin SH, Nathan DG, Ginsburg D, et al., eds. Nathan and Oski’s hematology of infancy and childhood. 7th ed. Philadelphia, PA: W.B. Saunders Elsevier; 2003:1255–1295.

    Google Scholar 

  159. Mavrou A, Tsangaris GT, Roma E, Kolialexi A. The ATM gene and ataxia telangiectasia. Anticancer Res. 2008;28:401–405.

    PubMed  CAS  Google Scholar 

  160. Patterson MC, Smith PJ. Ataxia telangectasia: an inherited human disorder involving hypersensitivity to ionizing radiation and related DNA-damaging chemicals. Ann Rev Genet. 1997;13:291–318.

    Article  Google Scholar 

  161. Taylor AM, Metcalfe JA, Thick J, et al. Leukemia and lymphoma in ataxia telangiectasia. Blood. 1996;87:423–438.

    PubMed  CAS  Google Scholar 

  162. Swift M, Morrell D, Massey RB, et al. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med. 1991;325:1831–1836.

    Article  PubMed  CAS  Google Scholar 

  163. Olsen JH, Hahnnemann JM, Borresen-Dole AL, et al. Cancer in patients with ataxia-telangiectasia and in their relatives in the Nordic countries. J Natl Cancer Inst. 2001;93:121–127.

    Article  PubMed  CAS  Google Scholar 

  164. Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268:1749–1753.

    Article  PubMed  CAS  Google Scholar 

  165. Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003;3:155–168.

    Article  PubMed  CAS  Google Scholar 

  166. Kastan MB, Lim DS. The many substrates and functions of ATM. Nat Rev Mol Cell Biol. 2000;1:179–186.

    Article  PubMed  CAS  Google Scholar 

  167. Gilad S, Khosravi R, Shkedy D, et al. Predominance of null mutations in ataxia-telangiectasia. Hum Mole Genet. 1996;5:433–439.

    Article  CAS  Google Scholar 

  168. McConville CM, Stankovic T, Byrd PJ, et al. Mutations associated with variant phenotypes in ataxia-telangiectasia. Am J Hum Genet. 1996;59:320–330.

    PubMed  CAS  Google Scholar 

  169. Stewart GS, Last JI, Stankovic T, et al. Residual ataxia telangiectasia mutated protein function in cells from ataxia telangiectasia patients, with 5762ins137 abd 727IT→G mutations, showing a less severe phenotype. J Biol Chem. 2001;276:30133–30141.

    Article  PubMed  CAS  Google Scholar 

  170. Hecht F, Hecht BK. Chromosome changes connect immunodeficiency and cancer in ataxia-telangiectasia. Am J Pediatr Hematol Oncol. 1987;9:185–188.

    Article  PubMed  CAS  Google Scholar 

  171. Stern MH, Theodorou I, Aurias A, et al. T-cell nonmalignant clonal proliferation in ataxia telangiectasia: a cytological, immunological, and molecular characterization. Blood. 1989;73:1285–1290.

    PubMed  CAS  Google Scholar 

  172. Meyn MS. High spontaneous intrachromosomal recombination rates in ataxia-telangiectasia. Science. 1993;260:1327–1330.

    Article  PubMed  CAS  Google Scholar 

  173. Lipkowitz S, Stern MH, Kirsch IR. Hybrid T cell receptor genes formed by interlocus recombination in normal and ataxia-telangiectasis lymphocytes. J Exp Med. 1990;172:409–418.

    Article  PubMed  CAS  Google Scholar 

  174. Concannon P. ATM heterozygosity and cancer risk. Nat Genet. 2002;32:89–90.

    Article  PubMed  CAS  Google Scholar 

  175. Chenevix-Trench G, Dork T, Scott C, et al. Dominant negative ATM mutations in breast cancer families. J Natl Cancer Inst. 2002;94:952.

    Google Scholar 

  176. Thorstenson YR, Roxas A, Kroiss R, et al. Contributions of ATM mutations to familial breast and ovarian cancer. Cancer. 2003;63:3325–3333.

    CAS  Google Scholar 

  177. Fang NY, Greiner TC, Weisenburger DD, et al. Oligonucleotide microarrays demonstrate the highest frequency of ATM mutations in the mantle cell subtype of lymphoma. Proc Nat Aced Sci U S A. 2003;100:5372–5377.

    Article  CAS  Google Scholar 

  178. Vorechovsky I, Luo L, Dyer MJS, et al. Clustering of missense mutations in the ataxia-telangiectasia gene in a sporadic T-cell leukaemia. Nat Genet. 1997;17:96–99.

    Article  PubMed  CAS  Google Scholar 

  179. Schaffner C, Idler I, Stilgenbauer S, et al. Mantle cell lymphoma is characterized by inactivation of the ATM gene. Proc Natl Acad Sci U S A. 2000;97:2773–2778.

    Article  PubMed  CAS  Google Scholar 

  180. Schaffner C, Stilgenbauer S, Rappold GA, et al. Somatic ATM mutations indicate a pathogenic role of ATM in B-cell chronic lymphocytic leukemia. Blood. 1999;94:748–753.

    PubMed  CAS  Google Scholar 

  181. Gronbaek K, Worm J, Ralfkiaer E, et al. ATM mutations are associated with inactivation of the ARF-TP53 tumor suppressor pathway in diffuse large B-cell lymphoma. Blood. 2002;100:1430–1437.

    Article  PubMed  CAS  Google Scholar 

  182. Offit K, Gilad S, Paglin S, et al. Rare variants of ATM and risk for Hodgkin’s disease and radiation-associated breast cancers. Clin Cancer Res. 2002;8:3813–3819.

    PubMed  CAS  Google Scholar 

  183. Gumy-Pause F, Wacker P, Sappino AP. ATM gene and lymphoid malignancies. Leukemia. 2004;18:238–242.

    Article  PubMed  CAS  Google Scholar 

  184. Luo L, Lu FM, Hart S, et al. Ataxia-telangiectasia and T-cell leukemias: no evidence for somatic ATM mutation in sporadic T-ALL or for hypermethylation of the ATM-NPAT/E14 bidirectional promoter in T-PLL. Cancer Res. 1998;58:2293–2297.

    PubMed  CAS  Google Scholar 

  185. Stankovic T, Stewart GS, Byrd P, et al. ATM mutations in sporadic lymphoid tumours. Leuk Lymphoma. 2002;43:1563–1571.

    Article  PubMed  CAS  Google Scholar 

  186. Boultwood J. Ataxia telangiectasia gene mutations in leukemia and lymphoma. J Clin Pathol. 2001;54:512–516.

    Article  PubMed  CAS  Google Scholar 

  187. Heinrich T, Prowald C, Friedl R, et al. Exclusion/confirmation of ataxia-telangiectasia via cell-cycle testing. Eur J Pediatr. 2006;165:250–257.

    Article  PubMed  Google Scholar 

  188. Porcedda P, Turinetto V, Brusco A, et al. A rapid flow cytometry test based on histone H2AX phosphorylation for the sensitive and specific diagnosis of ataxia telangietasia. Cytometry. 2008;73A:508–516.

    Article  Google Scholar 

  189. Honda M, Takagi M, Chessa L, et al. Rapid diagnosis of ataxia-telangiectasia by flow cytometry monitoring of DNA damage-dependent ATM phosphorylation. Leukemia. 2009;23:409–414.

    Article  PubMed  CAS  Google Scholar 

  190. Nahas SA, Butch AW, Gatti RA. Rapid flow cytometry-based structural maintenance of chromosome 1 (SMC1) phosphorylation assay for identification of ataxia-telangiectasia homozygotes and heterozygotes. Clin Chem. 2009;55:463–472.

    Article  PubMed  CAS  Google Scholar 

  191. Chun HH, Sun X, Nahas SA, et al. Improved diagnostic testing for ataxia-telangiectasia by immunoblotting of nuclear lysates for ATM protein expression. Mol Genet Met. 2003;80:437–443.

    Article  CAS  Google Scholar 

  192. Du L, Lai CH, Concannon P, Gatti RA. Rapid screen for truncating ATM mutations by PTT-EISA. Mutat Res. 2008;640:139–144.

    PubMed  CAS  Google Scholar 

  193. Telatar M, Wang Z, Udar N, et al. Ataxia-telangiectasia: mutations in ATM cDNA detected by protein-truncation screening. Am J Hum Genet. 1996;59:40–44.

    PubMed  CAS  Google Scholar 

  194. Vorechovsky I, Rasio D, Luo I, et al. The ATM gene and susceptibility to breast cancer: analysis of 38 breast tumors reveals no evidence for mutation. Cancer Res. 1996;56:2276–2732.

    Google Scholar 

  195. Stilgenbauer S, Schaffner C, Litterst A, et al. Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nat Med. 1997;3:1155–1159.

    Article  PubMed  CAS  Google Scholar 

  196. Gilad S, Khosravi R, Harnik R, et al. Identification of ATM mutations using extended RT-PCR and restriction endonuclease fingerprinting, and elucidation of the repertoire of A-T mutations in Israel. Hum Mutat. 1998;11:69–75.

    Article  PubMed  CAS  Google Scholar 

  197. Telatar M, Teraoka S, Wang Z, et al. Ataxia-telangiectasia: identification and detection of founder-effect mutations in the ATM gene in ethnic populations. Am J Hum Genet. 1998;62:86–97.

    Article  PubMed  CAS  Google Scholar 

  198. Hacia JG, Sun B, Hunt N, et al. Strategies for mutational analysis of the large multiexon ATM gene using high-density oligonucleotide arrays. Genome Res. 1998;8:1245–1258.

    PubMed  CAS  Google Scholar 

  199. Watts JA, Morley M, Burdick JT, et al. Gene expression phenotype in heterozygous carriers of ataxia telangiectasia. Am J Hum Genet. 2002;71:791–800.

    Article  PubMed  Google Scholar 

  200. Walne AJ, Dodal I. Advances in the understanding of dyskeratosis congenita. Br J Haematol. 2009;145:164–172.

    Article  PubMed  CAS  Google Scholar 

  201. Vulliamy TJ, Dokal I. Dyskeratosis congenita: the diverse clinical presentation of mutations in the telomerase complex. Biochimie. 2008;90:122–130.

    Article  PubMed  CAS  Google Scholar 

  202. Dokal I, Vulliamy T. Dyskeratosis congenita: its link to telomerase and aplastic anemia. Blood Rev. 2003;17:217–225.

    Article  PubMed  Google Scholar 

  203. Dokal I. Dyskeratosis congenital in all its forms. Br J Haematol. 2000;110:768–779.

    Article  PubMed  CAS  Google Scholar 

  204. Knight S, Vulliamy T, Copplestone A, et al. Dyskeratosis congenita (DC) registry: identification of new features of DC. Br J Haematol. 1998;103:990–996.

    Article  PubMed  CAS  Google Scholar 

  205. Kirwan M, Dokal I. Dyskeratosis congenita: a genetic disorder of many faces. Clin Genet. 2008;73:103–112.

    Article  PubMed  CAS  Google Scholar 

  206. Dokal I, Luzzatto L. Dyskeratosis congenita is a chromosomal instability disorder. Leuk Lymphoma. 1994;15:1–7.

    Article  PubMed  CAS  Google Scholar 

  207. Hassock S, Vetrie D, Giannelli F. Mapping and characterization of X-linked dyskeratosis congenita. Genomics. 1999;55:21–27.

    Article  PubMed  CAS  Google Scholar 

  208. Knight SW, Heiss NS, Vulliamy TJ, et al. X-liked dyskeratosis congenita is caused by missense mutations in the DKC1 gene. Am J Hum Genet. 1999;65:50–58.

    Article  PubMed  CAS  Google Scholar 

  209. Tollervey D, Kiss T. Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol. 1997;9:337–342.

    Article  PubMed  CAS  Google Scholar 

  210. Mitchell JR, Wood E, Collins K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature. 1999;402:551–555.

    Article  PubMed  CAS  Google Scholar 

  211. Wong JMY, Collins K, Trere D, et al. Telomerase RNA level limits telomere maintenance in X-linked dyskeratosis congenita. Genes Dev. 2006;20:2848–2858.

    Article  PubMed  CAS  Google Scholar 

  212. Vulliamy T, Marrone I, Goldman A, et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature. 2001;413:432–435.

    Article  PubMed  CAS  Google Scholar 

  213. Vulliamy TJ, Walne A, Baskaradas A, et al. Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure syndrome. Blood Cells Mol Dis. 2005;34:257–263.

    Article  PubMed  CAS  Google Scholar 

  214. Walne J, Vulliamy T, Beswick R, et al. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutation in the telomerase associated protein NOP10. Hum Mol Genet. 2007;16:1619–1629.

    Article  PubMed  CAS  Google Scholar 

  215. Marrone A, Walne A, Tamary H, et al. Telomerase reverse-transcriptase homozygous mutations in autosomal recessive dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome. Blood. 2007;110:4198–4205.

    Article  PubMed  CAS  Google Scholar 

  216. Savage SA, Giri N, Baerlocher GM, et al. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet. 2008;82:501–509.

    Article  PubMed  CAS  Google Scholar 

  217. Vulliamy T, Beswick R, Kirwan M, et al. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc Natl Acad Sci USA. 2008;105:8073–8078.

    Article  PubMed  CAS  Google Scholar 

  218. Vulliamy TJ, Marrone M, Knight S, et al. Mutations in dyskeratosis congenita: their impact on telomere length and the diversity of clinical presentation. Blood. 2006;107:2680–2685.

    Article  PubMed  CAS  Google Scholar 

  219. Marsh CW, Will AJ, Hows JH, et al. “Stem cell” origin of the hematopoietic defect in dyskeratosis congenita. Blood. 1992;79:3138–3144.

    PubMed  CAS  Google Scholar 

  220. Savage SA, Alter BP. The role of telomere biology in bone marrow failure and other disorders. Mech Ageing Dev. 2008;129:35–47.

    Article  PubMed  CAS  Google Scholar 

  221. Villiamy T, Marrone A, Dokal I, et al. Association between aplastic anemia and mutations in telomerase RNA. Lancet. 2002;359:2168–2170.

    Article  Google Scholar 

  222. Fogarty PF, Yamaguchi H, Wiestner A, et al. Late presentations of dyskeratosis congenita as apparently acquired aplastic anemia due to mutations in telomerase RNA. Lancet. 2003;362:1628–1630.

    Article  PubMed  CAS  Google Scholar 

  223. Yamaguchi H, Baerlocher GM, Lansdorp PM, et al. Mutations of the human telomerase RNA gene (TERT) in aplastic anemia and myelodysplastic syndrome. Blood. 2003;102:916–918.

    Article  PubMed  CAS  Google Scholar 

  224. Yamaguchi H, Calado RT, Ly H, et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med. 2005;352:1413–1424.

    Article  PubMed  CAS  Google Scholar 

  225. Xin Z-T, Beauchamp AD, Calado RT, et al. Functional characterization of natural telomerase mutations found in patients with hematologic disorders. Blood. 2007;109:524–532.

    Article  PubMed  CAS  Google Scholar 

  226. Coulthard S, Chase A, Pickard J, et al. Chromosome breakage analysis in dyskeratosis congenita peripheral blood lymphocytes. Br J Haematol. 1998;102:1162–1164.

    Article  PubMed  CAS  Google Scholar 

  227. Rommens JM, Durie PR. Shwachman-Diamond syndrome. GeneReviews, NCBI Bookshelf, July 17, 2008.

    Google Scholar 

  228. Dror Y. Shwachman-Diamond syndrome. Pediatr Blood Cancer. 2005;45:892–901.

    Article  PubMed  Google Scholar 

  229. Dokal I, Vulliamy T. Inherited aplastic anaemisa/bone marrow failure syndromes. Blood Rev. 2008;22:141–153.

    Article  PubMed  CAS  Google Scholar 

  230. Dror Y, Freedman MH. Shwachman-Diamond syndrome. Br J Haematol. 2002;118:701–713.

    Article  PubMed  Google Scholar 

  231. Cipolli M. Shwachman-Diamond syndrome: clinical phenotypes. Pancreatology. 2001;1:543–548.

    Article  PubMed  CAS  Google Scholar 

  232. Ip WF, Dupuis A, Ellis L, et al. Serum pancreatic enzymes define the pancreatic phenotype in patients with Shwachman-Diamond syndrome. J Pediatr. 2002;141:259–265.

    Article  PubMed  CAS  Google Scholar 

  233. Durie PR, Rommens JM. Shwachman-Diamond syndrome. In: Walker WA, Goulet O, Kleinman RE, et al., eds. Pediatric gastrointestinal disease. 4th ed. Lewiston, NY: BC Decker; 2004:1623–1624.

    Google Scholar 

  234. Makitie O, Ellis L, Durie PR, et al. Skeletal phenotype in patients with Shwachman-Diamond syndrome and mutations in SBDS. Clin Genet. 2004;65:101–112.

    Article  PubMed  CAS  Google Scholar 

  235. Goobie S, Popovic M, Morrison J, et al. Shwachman-Diamond syndrome with exocrine pancreatic dysfunction and bone marrow failure maps to the centromeric region of chromosome 7. Am J Hum Genet. 2001;68:1048–1054.

    Article  PubMed  CAS  Google Scholar 

  236. Popovic M, Goobie S, Morrison J, et al. Fine mapping of the locus for Shwachman-Diamond syndrome at 7q11, identification of shared disease haplotypes, and exclusion of TPST1 as a candidate gene. Eur J Hum Genet. 2002;10:250–258.

    Article  PubMed  CAS  Google Scholar 

  237. Boocock GRB, Morrison JA, Popovic M, et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet. 2003;33:97–101.

    Article  PubMed  CAS  Google Scholar 

  238. Savochenoko A, Krogan N, Cort JR, et al. The Shwachman-Bodian-Diamond syndrome protein family is involved in RNA metabolism. J Biol Chem. 2005;280:19213–19220.

    Article  CAS  Google Scholar 

  239. Shammas C, Menne TF, Hilcenko C, et al. Structural and mutational analysis of the SBDS protein family. Insight into the leukemia-associated Shwachman-Diamond syndrome. J Biol Chem. 2005;280:19221–19229.

    Article  PubMed  CAS  Google Scholar 

  240. Menne TF, Goyenechea B, Sanchez-Puig N, et al. The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nat Genet. 2007;39:486–495.

    Article  PubMed  CAS  Google Scholar 

  241. Austin KM, Gupta ML Jr, Coats SA, et al. Mitotic spindle destabilization and genomic instability in Shwachman-Diamond syndrome. J Clin Invest. 2008;118:1511–1518.

    Article  PubMed  CAS  Google Scholar 

  242. Ganapathi KA, Austin KM, Lee CS, et al. The human Shwachman-Diamond syndrome protein, SBDS, associates with ribosomal RNA. Blood. 2007;110:1458–1465.

    Article  PubMed  CAS  Google Scholar 

  243. Ganapathi KA, Shimamura A. Ribosomal dysfunction and inherited marrow failure. Br J Haematol. 2008;1441:376–387.

    Article  CAS  Google Scholar 

  244. Nakashima E, Mabuchi A, Makita Y, et al. Novel SBDS mutations caused by gene conversion in Japanese patients with Shwachman-Diamond syndrome. Hum Genet. 2004;114:345–348.

    Article  PubMed  CAS  Google Scholar 

  245. Woloszynek JR, Rothbaum RJ, Rawls AS, et al. Mutations of the SBDS gene are present in most patients with Shwachman-Diamond syndrome. Blood. 2004;104:3588–3590.

    Article  PubMed  CAS  Google Scholar 

  246. Nicolis E, Bonizzato A, Assaei BM, Cipoili M. Identification of novel mutations in patients with Shwachman-Diamond syndrome. Hum Mutat. 2005;25:410.

    Article  PubMed  Google Scholar 

  247. Chen JM, Cooper DN, Chuzhanova N, et al. Gene conversion: mechanisms, evolution and human disease. Nat Genet. 2007;8:762–775.

    Article  CAS  Google Scholar 

  248. Zhang S, Shi M, Hui CC, Rommens JM. Loss of the mouse ortholog of the Shwachman-Diamond syndrome gene (SBDS) results in early embryonic lethality. Mol Cell Biol. 2006;26:6656–6663.

    Article  PubMed  CAS  Google Scholar 

  249. Ginzberg H, Shin J, Ellis L, et al. Shwachman syndrome: phenotype manifestations of sibling sets and isolated cases in a large patient cohort are similar. J Pediatr. 1999;135:81–88.

    Article  PubMed  CAS  Google Scholar 

  250. Kuijpers TW, Alders M, Tool ATJ, et al. Hematologic abnormalities in Shwachman-Diamond syndrome: lack of genotype-phenotype relationship. Blood. 2005;105:356–361.

    Article  CAS  Google Scholar 

  251. Rothbaum R, Perrault J, Vlachos A, et al. Shwachman-Diamond syndrome: report from an international conference. J Pediatr. 2002;141:266–270.

    Article  PubMed  Google Scholar 

  252. Smith OP, Hann IM, Chessells JM, et al. Haematologic abnormalities in Shwachman-Diamond syndrome. Br J Haematol. 1996;94:279–284.

    Article  PubMed  CAS  Google Scholar 

  253. Stepanovic V, Wessels D, Goldman FD, et al. The chemotaxis defect of Shwachman-Diamond syndrome leukocytes. Cell Motil Cytoskeleton. 2004;57:158–174.

    Article  PubMed  CAS  Google Scholar 

  254. Dror Y, Freedman MH. Shwachman-Diamond syndrome: an inherited preleukemic bone marrow failure disorder with aberrant hematopoietic progenitors and faulty microenvironment. Blood. 1999;94:3048–3054.

    PubMed  CAS  Google Scholar 

  255. Calado RT, Young NS. Telomere maintenance and human bone marrow failure. Blood. 2008;111(9):4446–4455.

    Article  PubMed  CAS  Google Scholar 

  256. Calado RT, Graf SA, Wilkerson KL, et al. Mutations in the SBDS gene in acquired anemia. Blood. 2007;110:1141–1146.

    Article  PubMed  CAS  Google Scholar 

  257. Thornby I, Dror Y, Sung L, et al. Abnormal telomere shortening in leukocytes of children with Shwachman-Diamond syndrome. Br J Haematol. 2002;117:189–192.

    Article  Google Scholar 

  258. Yamaguchi M, Fujimura K, Toga H, et al. Shwachman-Diamond syndrome is not necessary for the terminal maturation of neutrophils but is important for maintaining viability of granulocytic precursors. Exp Hematol. 2007;35:579–586.

    Article  PubMed  CAS  Google Scholar 

  259. Donadieu J, Michel G, Merlin E, et al. Hematopoietic stem cell transplantation for Shwachman-Diamond syndrome: experience of the French neutropenia registry. Bone Marrow Transplant. 2005;36:787–792.

    Article  PubMed  CAS  Google Scholar 

  260. Freedman M, Alter BP. Risk of myelodysplastic syndrome and acute myeloid leukemia in congenital neutropenias. Sem Hematol. 2002;39:128–133.

    Article  CAS  Google Scholar 

  261. Dror Y, Durie P, Ginzberg H, et al. Clonal evolution in marrows of patients with Shwachman-Diamond syndrome: a prospective 5-year follow-up study. Exp Hematol. 2002;30:659–669.

    Article  PubMed  Google Scholar 

  262. Dokal I, Rule S, Chen F, et al. Adult onset of acute myeloid leukemia (M6) in patients with Shwachman-Diamond syndrome. Br J Haematol. 1997;99:171–173.

    Article  PubMed  CAS  Google Scholar 

  263. Lesesve JF, Dugue F, Gregoire DF, et al. Shwachman-Diamond syndrome with late-onset neutropenia and fatal acute myeloid leukaemia without maturation: a case report. Eur J Haematol. 2003;71:393–395.

    Article  PubMed  Google Scholar 

  264. Dror Y, Squire J, Durie P, Freedman MH. Malignant myeloid transformation with isochromosome 7q in Shwachman-Diamond syndrome. Leukemia. 1998;12(10):1591–1595.

    Article  PubMed  CAS  Google Scholar 

  265. Spirito FR, Crescenzi B, Matteucci C, et al. Cytogenetic characterization of acute myeloid leukemia in Shwachman’s syndrome. A case report. Haematologica. 2000;85:1207–1210.

    PubMed  CAS  Google Scholar 

  266. Maserati E, Minelli A, Pressato B, et al. Shwachman syndrome as mutator phenotype responsible for myeloid dysplasia/neoplasia through karyotype instability and chromosome 7 and 20 anomalies. Gene Chrom Cancer. 2006;45:374–382.

    Article  CAS  Google Scholar 

  267. Cunningham J, Sales M, Pearce A, et al. Does isochromosome 7q mandate bone marrow transplant in children with Shwachman-Diamond syndrome? Br J Haematol. 2002;119:1062–1069.

    Article  PubMed  Google Scholar 

  268. Gohring G, Karow A, Steinemann L, et al. Chromosomal aberrations in congenital bone marrow failure disorders – an early indicator for leukemogenesis? Ann Hematol. 2007;86:733–739.

    Article  PubMed  CAS  Google Scholar 

  269. Rujkijyanont P, Beyene J, Wei K, et al. Leukaemia-related gene expression in bone marrow cells from patients with preleukaemic disorder Shwachman-Diamond syndrome. Br J Haematol. 2007;137:537–544.

    Article  PubMed  CAS  Google Scholar 

  270. Majeed F, Jadko S, Freedman MH, Dror Y. Mutation analysis of SBDS in pediatric acute myeloblastic leukemia. Pediatr Blood Cancer. 2005;45:920–924.

    Article  PubMed  Google Scholar 

  271. Besler M, Mason PJ, Link DC, Wilson DB. Inherited bone marrow failure syndromes. In: Orkin SH, Nathan DG, Ginsburg D, et al., eds. Nathan and Oski’s hematology of infancy and childhood. 7th ed. Philadelphia, PA: Saunders Elsevier; 2009:351–360.

    Google Scholar 

  272. Gazda HT, Sieff CA. Recent insights into the pathogenesis of Diamond-Blackfan anaemia. Br J Haematol. 2006;135:149–157.

    Article  PubMed  CAS  Google Scholar 

  273. Flygare J, Karlsson S. Diamond-Blackfan anemia: erythropoiesis lost in translation. Blood. 2007;109:3152–3160.

    Article  PubMed  CAS  Google Scholar 

  274. Ellis SR, Lipton JM. Diamond Blackfan anemia: a disorder of red blood cell development. Curr Top Dev Biol. 2008;82:217–241.

    Article  PubMed  CAS  Google Scholar 

  275. Vlachos A, Ball S, Dahl N, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol. 2008;142:859–876.

    Article  PubMed  CAS  Google Scholar 

  276. Diamond LK, Blackfan KD. Hypoplastic anemia. Am J Dis Child. 1938;56:464–467.

    Google Scholar 

  277. Draptchinskaia N, Gustavsson P, Anderson B, et al. The gene encoding protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet. 1999;21:169–175.

    Article  PubMed  CAS  Google Scholar 

  278. Orfali KA, Ohene-Abuakwa Y, Bail SE. Diamond Blackfan anaemia I the UK: clinical and genetic heterogeneity. Br J Haematol. 2004;125:243–252.

    Article  PubMed  CAS  Google Scholar 

  279. Ramenghi U, Campagnoli MF, Garelli E, et al. Blackfan-Diamond anemia: report of seven further mutations in the RSP19 gene and evidence of mutation heterogeneity in the Italian population. Blood Cells Mol Dis. 2000;26:417–422.

    Article  PubMed  CAS  Google Scholar 

  280. Cmejla R, Cmejlova J, Handrkova H, et al. Ribosomal protein S17 gene (RPS17) is mutated in Diamond-Blackfan anemia. Hum Mutat. 2007;28:1178–1182.

    Article  PubMed  CAS  Google Scholar 

  281. Gazda HT, Grabowska A, Menda-Long LB, et al. Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. Am J Hum Genet. 2006;79:1110–1113.

    Article  PubMed  CAS  Google Scholar 

  282. Campagnoli MF, Garelli E, Quarello P, et al. Molecular basis of Diamond Blackfan anemia: new findings from the Italian registry and a review of the literature. Haematologica. 2004;89:480–489.

    PubMed  CAS  Google Scholar 

  283. Willig TN, Draptchinskaia N, Dianzani I, et al. Mutations in ribosomal protein S19 and Diamond Blackfan anemia: wide variation in phenotype expression. Blood. 1999;94:4294–4306.

    PubMed  CAS  Google Scholar 

  284. Farrar J, Nater M, Caywood E, et al. Abnormalities of the large ribosomal subunit protein, Rp135a, in Diamond-Blackfan anemia. Blood. 2008;112:1582–1592.

    Article  PubMed  CAS  Google Scholar 

  285. Gazda HT, Sheen MR, Vlachos A, et al. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet. 2008;83:769–780.

    Article  PubMed  CAS  Google Scholar 

  286. Gazda HT, Zhong R, Long L, et al. RNA and protein evidence for haplo-insuffficiency in Diamond-Blackfan anaemia patients with RPS19 mutations. Br J Haematol. 2004;127:105–113.

    Article  PubMed  CAS  Google Scholar 

  287. Hamaguchi I, Ooka A, Brun A, et al. Gene transfer improves erythroid development in ribosomal protein S19-deficient Diamond-Blackfan anemia. Blood. 2002;100:2724–2731.

    Article  PubMed  CAS  Google Scholar 

  288. Morimoto K, Lin S, Sakamoto K. The functions of RPS19 and their relationship to Diamond-Blackfan anemia: a review. Mol Genet Metab. 2007;90:358–362.

    Article  PubMed  CAS  Google Scholar 

  289. Campagnoli AF, Ramenghi U, Armiraglio A, et al. RSP19 mutations in patients with Diamond-Blackfan anemia. Hum Mutat. 2008;29:911–920.

    Article  PubMed  CAS  Google Scholar 

  290. Yaris N, Erduran E, Cobanoglu U. Hodgkin lymphoma in a child with Diamond-Blackfan anemia. J Pediatr Hematol Oncol. 2006;28:234–236.

    Article  PubMed  Google Scholar 

  291. Willig TN, Niemeyer CM, LeBlanc T, et al. Identification of new prognostic factors from the clinical and epidemiologic analysis of a registry of 229 Diamond-Blackfan anemia patients. DBA group of Societe d’Hematologie at d’Immunologie Pediatrique (SHIP), Gesellshaft fur Padiatrische Onkologie und Hamatologie (GPOH), and the European Society of Pediatric Hematology and Immunology (ESPHI). Pediatr Res. 1999;46:553–561.

    Article  PubMed  CAS  Google Scholar 

  292. Janov AJ, Leong T, Nathan DG, Guinan EC. Diamond-Blackfan anemia. Natural history and sequelae of treatment. Med. 1996;75:77–78.

    Article  CAS  Google Scholar 

  293. Lipton JM, Federman N, Khabbaze Y, et al. Osteogenic sarcoma associated with Diamond-Blackfan anemia: a report from the Diamond-Blackfan Anemia Registry. J Pediatr Hematol Oncol. 2001;23:39–44.

    Article  PubMed  CAS  Google Scholar 

  294. Ries LAG, Eisner MP, Kosary CL, et al. SEER cancer statistics review, 1973–1998. NCBI. Bethesda, MD: http://seer.cancer.gov/publications/CSR1973_1998, 2001.

  295. Lipton JM, Atsidaftos E, Zyskind I, Vlachos A. Improving clinical care and elucidating the pathophysiology of Diamond Blackfan anemia: an update from the Diamond Blackfan Anemia Registry. Pediatr Bllod Cancer. 2006;46:558–564.

    Article  Google Scholar 

  296. Gustavsson P, Garelli E, Draptchinskaia N, et al. Identificationn of microdeletions spanning the Diamond-Blackfan anemia locus on 19q13 and evidence for genetic heterogeneity. Am J Hum Genet. 1998;63:1388–1395.

    Article  PubMed  CAS  Google Scholar 

  297. Primary immunodeficiency diseases. Report of an IUIS scientific committee. Internationlal Union of Immunological Societies. Clin Exp Immunol 1999;118(suppl 1):1–28.

    Google Scholar 

  298. Geha RS, Notarangelo LD, Casanova JL, et al. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J Allergy Clin Immunol. 2007;120:776–794.

    Article  PubMed  Google Scholar 

  299. Gorman MRG. Recent developments related to the laboratory diagnosis of primary immunodeficiency diseases. Curr Opin Pediatr. 2008;20:688–697.

    Article  Google Scholar 

  300. Fischer A. Human primary immunodeficiency diseases. Immunity. 2007;27:835–845.

    Article  PubMed  CAS  Google Scholar 

  301. Marodi L, Notarangelo LD. Immunological and genetic bases of new primary immunodeficiencies. Nat Rev Immunol. 2007;7:851–861.

    Article  PubMed  CAS  Google Scholar 

  302. Costabile M, Quach A, Ferrante A. Molecular approaches in the diagnosis of primary immunodeficiency diseases. Hum Mutat. 2006;27:1163–1173.

    Article  PubMed  CAS  Google Scholar 

  303. Seemayer TA, Gross TG, Egeler RM, et al. X-linked lymphoproliferative disease: twenty-five years after the discovery. Pediatr Res. 1995;38:471–478.

    Article  PubMed  CAS  Google Scholar 

  304. Dutz JP, Benoit L, Wang X, et al. Lymphocytic vasculitis in X-linked lymphoproliferative disease. Blood. 2001;97:95–100.

    Article  PubMed  CAS  Google Scholar 

  305. Seemayer TA, Greiner TG, Gross TG, et al. X-linked lymphoproliferative disease. In: Goedert JJ, ed. Infectious causes of cancer, targets for intervention. Totowa, NJ: Humana; 2000:51–61.

    Chapter  Google Scholar 

  306. Purtilo DT, Sakamoto K, Barnabei V, et al. Epstein-Barr virus-induced diseases in boys with the X-linked lymphoproliferative syndrome (XLP): update on studies of the registry. Am J Med. 1982;73:49–56.

    Article  PubMed  CAS  Google Scholar 

  307. Schuster V, Kreth HW. X-linked lymphoproliferative disease. In: Ochs HD, Smith CIE, Puck J, eds. Primary immunodeficiency diseases, a molecular and genetic approach. Oxford: Oxford University Press; 1999:222–232.

    Google Scholar 

  308. Harrington DS, Weisenburger DD, Purtilo DT. Epstein-Barr virus-associated lymphoproliferative lesions. Clin Lab Med. 1988;8:97–118.

    PubMed  CAS  Google Scholar 

  309. Mroczek EC, Weisenburger DD, Grierson HL, et al. Fatal infectious mononucleosis and virus-associated hemophagocytic syndrome. Arch Pathol Lab Med. 1987;111:530–535.

    PubMed  CAS  Google Scholar 

  310. Okano M, Gross TG. Epstein-Barr virus associated hemophagocytic syndrome and fatal infectious mononucleosis. Am J Hematol. 1996;53:111–115.

    Article  PubMed  CAS  Google Scholar 

  311. Ma CS, Nichols KE, Tangye SG. Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu Rev Immunol. 2007;25:337–379.

    Article  PubMed  CAS  Google Scholar 

  312. Sumegi J, Huang D, Lanyi A, et al. Correlation of mutations of the SH2D1A gene and Epstien-Barr virus infections with clinical phenotype and outcome in X-linked lymphoproliferative disease. Blood. 2000;96:3118–3125.

    PubMed  CAS  Google Scholar 

  313. Grierson HL, Skare J, Hawk J, et al. Immunoglobulin class and subclass deficiencies prior to Epstein-Barr virus infection in males with X-linked lymphoproliferative disease. Am J Med Genet. 1991;40:294–297.

    Article  PubMed  CAS  Google Scholar 

  314. Harrington DS, Weisenburger DD, Purtilo DT. Malignant lymphoma in the X-linked lymphoproliferative syndrome. Cancer. 1987;59:1419–1429.

    Article  PubMed  CAS  Google Scholar 

  315. Egeler RM, de Kraker J, Slater R, Purtilo DT. Documentation of Burkitt lymphoma with t(8;14)(q24;q32) in X-linked lymphoproliferative disease. Cancer. 1992;70:683–687.

    Article  PubMed  CAS  Google Scholar 

  316. Strahm B, Rittweiler K, Duffner U, et al. Recurrent B-cell non-Hodgkin’s lymphoma in two brothers with X-linked lymphoproliferative disease without evidence for Epstein-Barr virus infection. Br J Haematol. 2000;108:377–382.

    Article  PubMed  CAS  Google Scholar 

  317. Nistala K, Gilmour KC, Cranston T, et al. X-linked lymphoproliferative disease: three atypical cases. Clin Exp immunol. 2001;126:126–130.

    Article  PubMed  CAS  Google Scholar 

  318. Brandau O, Schuster V, Weiss M, et al. Epstein-Barr virus-negative boys with non-Hodgkin lymphoma are mutated in the SH2D1A gene, as are patients with X-linked lymphoproliferative disease (XLP). Hum Mol Genet. 1999;8:2407–2413.

    Article  PubMed  CAS  Google Scholar 

  319. Woon ST, Ameratunga R, Croxson M, et al. Follicular lymphoma in a X-linked lymphoproliferative syndrome carrier female. Scand J Immunol. 2008;68:153–158.

    Article  PubMed  CAS  Google Scholar 

  320. Kanegane H, Ito Y, Ohsima K, et al. X-linked lymphoproliferative syndrome presenting with systemic lymphocytic vasculitis. Am J Hematol. 2005;78:130–133.

    Article  PubMed  Google Scholar 

  321. Latour S. Natural killer T cells and X-linked lymphoproliferative syndrome. Curr Opin Allergy Clin Immunol. 2007;7:510–514.

    Article  PubMed  Google Scholar 

  322. Nichols KE, Harkin DP, Levitz S, et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc Natl Acad Sci U S A. 1998;95:13765–13770.

    Article  PubMed  CAS  Google Scholar 

  323. Coffey AJ, Brooksbank RA, Branau O, et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet. 1998;20:129–135.

    Article  PubMed  CAS  Google Scholar 

  324. Sayos J, Wu C, Mora M, et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature. 1998;395:462–469.

    Article  PubMed  CAS  Google Scholar 

  325. Sayos J, Nguyen KB, Wu C, et al. Potential pathways for regulation of NK and T cell responses: differential X-linked lymphoproliferative syndrome gene product SAP interactions with SLAM and 2B4. Int Immunol. 2000;12:1749–1757.

    Article  PubMed  CAS  Google Scholar 

  326. Nagy N, Mattsson K, Maeda A, et al. The X-linked lymphoproliferative disease gene product SAP is expressed in activated T and NK cells. Immunol Lett. 2002;82:141–147.

    Article  PubMed  CAS  Google Scholar 

  327. Feldhahn N, Schwering I, Lee S, et al. Silencing of B cell receptor signals in human naïve B cells. J Exp Med. 2002;196:1291–1305.

    Article  PubMed  CAS  Google Scholar 

  328. Veillette A, Dong Z, Latour S. Consequences of the SLAM-SAP signaling pathway in innate-like and conventional lymphocytes. Immunity. 2007;27:698–710.

    Article  PubMed  CAS  Google Scholar 

  329. Benoit L, Wang X, Pabst HF, et al. Defective NK cell activation in X-linked lymphoproliferative disease. J Immunol. 2000;165:3549–3553.

    PubMed  CAS  Google Scholar 

  330. Lewis J, Eiben LJ, Nelson DL, et al. Distinct interactions of the X-linked lymphoproliferative syndrome gene product SAP with cytoplasmic domains of members of the CD2 receptor family. Clin Immunol. 2001;100:15–23.

    Article  PubMed  CAS  Google Scholar 

  331. Cocks BG, Chang CC, Carballido JM, et al. A novel receptor involved in T-cell activation. Nature. 1995;376:260–263.

    Article  PubMed  CAS  Google Scholar 

  332. Bouchon A, Cella M, Grierson HL, et al. Activation of NK cell-mediated cytotoxicity by a SAP-independent receptor of the CD2 family. J Immunol. 2001;167:5517–5521.

    PubMed  CAS  Google Scholar 

  333. de la Fuente MA, Pizcueta P, Nadal M, et al. CD84 leukocyte antigen is a new member of the Ig superfamily. Blood. 1997;90:2398–2405.

    PubMed  Google Scholar 

  334. Tangye SG, Phillips JH, Lanier LL. The CD2-subset of the Ig superfamily of cell surface molecules: receptor-ligand pairs expressed by NK cells and other immune cells. Semin Immunol. 2000;12:149–157.

    Article  PubMed  CAS  Google Scholar 

  335. Romero X, Benitez D, March S, et al. Differential expression of SAP and EAT-2-binding leukocyte cell-surface molecules CD84, CD150 (SLAM), CD229 (Ly9) and CD244 (2B4). Tissue Antigens. 2004;64:132–144.

    Article  PubMed  CAS  Google Scholar 

  336. Hamalainen H, Meissner S, Lahesmaa R. Signaling lymphocytic activation molecule (SLAM) is differentially expressed in human Th1 and Th2 cells. J Immunol Methods. 2000;242:9–19.

    Article  PubMed  CAS  Google Scholar 

  337. Tangye SG, Phillips JH, Lanier LL, Nichols KE. Functional requirement for SAP in 2B4-mediated activation of human natural killer cells as revealed by the X-linked lymphoproliferative syndrome. J Immunol. 2000;165:2932–2936.

    PubMed  CAS  Google Scholar 

  338. Nichols KE, Ma CS, Cannons JL, et al. Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Immunol Rev. 2005;203:180–199.

    Article  PubMed  CAS  Google Scholar 

  339. Argov S, Johnson DR, Collins M, et al. Defective natural killing activity but retention of lymphocyte-mediated antibody-dependent cellular cytotoxicity in patients with the X-linked lymphoproliferative syndrome. Cell Immunol. 1986;100:1–9.

    Article  PubMed  CAS  Google Scholar 

  340. Sullivan JL, Byron KS, Brewster FE, Purtilo DT. Deficient natural killer cell activity in X-linked lymphoproliferative syndrome. Science. 1980;210:543–545.

    Article  PubMed  CAS  Google Scholar 

  341. Dupre L, Andolfi G, Tangye SG, et al. SAP controls the cytolytic activity of CD8+T cells against EBV-infected cells. Blood. 2005;105:4383–4389.

    Article  PubMed  CAS  Google Scholar 

  342. Nichols KE, Hom J, Gong SY, et al. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat Med. 2005;11:340–345.

    Article  PubMed  CAS  Google Scholar 

  343. Ma CS, Hare NJ, Nichols KE, et al. Impaired humoral immunity in X-linked lymphoproliferative disease is associated with defective IL-10 production by CD4+ T cells. J Clin Invest. 2005;115:1049–1059.

    PubMed  CAS  Google Scholar 

  344. Ma CS, Pittaluga S, Avery DT, et al. Selective generation of functional somatically mutated IgM+CD27+, but not Ig isotype-switched, memory B cells in X-linked lymphoproliferative disease. J Clin Invest. 2006;116:322–333.

    Article  PubMed  CAS  Google Scholar 

  345. Cuss AK, Avery DT, Cannons JL, et al. Expansion of functionally immature transitional B cells is associated with human immunodeficient states characterized by impaired humoral immunity. J Immunol. 2006;176:1506–1516.

    PubMed  CAS  Google Scholar 

  346. Crotty S, Kersh EN, Cannons J, et al. SAP is required for generating long-term humoral immunity. Nature. 2003;421:282–287.

    Article  PubMed  CAS  Google Scholar 

  347. Cannons JL, Yu LJ, Jankovic D, et al. SAP regulates T cell-mediated help for humoral immunity by a mechanism distinct form cytokine regulation. J Exp Med. 2006;203:1551–1565.

    Article  PubMed  CAS  Google Scholar 

  348. Sumegi J, Seemayer TA, Huang D, et al. A spectrum of mutations in SH2D1A that casuses X-linked lymphoproliferative disease and other Epstein-Barr virus-associated illnesses. Leuk Lymphoma. 2002;43:1189–1201.

    Article  PubMed  CAS  Google Scholar 

  349. Rigaud S, Fondaneche MC, Lambert N, et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature. 2006;444:110–114.

    Article  PubMed  CAS  Google Scholar 

  350. Rigaud S, Latoru S. An X-linked lymphoproliferative syndrome (XLP) caused by mutations in the inhibitor-of-apoptosis gene XIAP. Med Sci (Paris). 2007;23:235–237.

    Google Scholar 

  351. Sumegi J, Johnson J, Filipovich A, Zang K. Lymphoproliferative disease, X-linked. GeneReviews, NCBI Bookshelf. August 3, 2006.

    Google Scholar 

  352. Shinozaki K, Kanegane H, Matsukura H, et al. Activation-dependent T cell expression of the X-linked lymphoproliferative disease gene product SLAM-associated protein and its assessment for patient detection. Int Immunol. 2002;14:1215–1223.

    Article  PubMed  CAS  Google Scholar 

  353. Johnson J, Filipovich AH, Zhang K. X-linked hyper IgM syndrome. GeneReviews, NCBI Bookshelf. Available at: www.ncbi.nlm.nih.gov/bookshelf. Accessed May 31, 2007.

  354. Winkelstein JA, Murino MC, Ochs H, et al. The X-linked hyper-IgM syndrome. Clinical and immunologic features of 79 patients. Medicine 2003;82373–384.

    Google Scholar 

  355. Durandy A, Taubenheim N, Peron S, Fischer A. Pathophysiology of B-cell intrinsic immunoglobulin class switch recombination deficiencies. Adv Immunol. 2007;94:275–306.

    Article  PubMed  CAS  Google Scholar 

  356. Notarangelo LD, Lanzi G, Toniati P, Giliani S. Immunodeficiencies due to defects of class-switch recombination. Immunol Res. 2007;38:68–77.

    Article  PubMed  CAS  Google Scholar 

  357. Etzioni A, Ochs HD. The hyper IgM syndrome – an evolving story. Pediatr Res. 2006;56:519–525.

    Article  CAS  Google Scholar 

  358. Durandy A, Revy P, Imai K, Fischer A. Hyper-immunoglobulin M syndromes caused by intrinsic B-lymphocyte defects. Immunol Rev. 2005;203:67–79.

    Article  PubMed  CAS  Google Scholar 

  359. Lee WI, Torgerson TR, Schumacher MJ, et al. Molecular analysis of a large cohort of patients with the hyper immunoglobulin M (IgM) syndrome. Blood. 2005;105:1881–1890.

    Article  PubMed  CAS  Google Scholar 

  360. Levy J, Espanol-Boren T, Thomas C, et al. Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr. 1997;131:47–54.

    Article  PubMed  CAS  Google Scholar 

  361. Facchetti F, Appiianai C, Salvi L, et al. Immunohistologic analysis of inffective CD40-CD40 ligand interactions in lymphoid tissues from patients with X-linked immunodeficiency with hyper-IgM. Abortive germinal center cell reaction and severe depletion of follicular dendritic cells. J Immunol. 1995;154:6624–6633.

    PubMed  CAS  Google Scholar 

  362. Ferrari PS, Giliani S, Insalaco A, et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A. 2001;98:12614–12619.

    Article  PubMed  CAS  Google Scholar 

  363. Kutukculer N, Moratto D, Aydinok Y, et al. Disseminated cryptosporidium infection in an infant with hyper-IgM syndrome caused by CD40 deficiency. J Pediatr. 2003;142:194–196.

    Article  PubMed  Google Scholar 

  364. Revy P, Muto T, Levy Y, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of hyper-IgM syndrome (HIGM2). Cell. 2000;102:565–575.

    Article  PubMed  CAS  Google Scholar 

  365. Quartier P, Bustamante J, Sanal O, et al. Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to activation-induced cytidine deaminase deficiency. Clin Immunol. 2004;110:22–29.

    Article  PubMed  CAS  Google Scholar 

  366. Durandy A, Honjo T. human genetic defects in class-switch recombination (hyper-IgM syndromes). Curr Opin Immunol. 2001;13:543–548.

    Article  PubMed  CAS  Google Scholar 

  367. Lebecque S, de Bouteiller O, Arpin C, et al. Germinal center founder cells display propensity for apoptosis before onset of somatic mutation. J Exp Med. 1997;185:563–571.

    Article  PubMed  CAS  Google Scholar 

  368. Imai K, Slupphaug G, Lee WI, et al. human uricil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class switch recombination. Nat Immunol. 2003;4:1023–1028.

    Article  PubMed  CAS  Google Scholar 

  369. Imai K, Zhu Y, Revy P, et al. Analysis of class switch recombination and somatic hypermutation in patients affected with autosomal dominant hyper-IgM syndrome type 2. Clin Immunol. 2005;115:277–285.

    Article  PubMed  CAS  Google Scholar 

  370. Zoana J, Elder ME, Schneider LC, et al. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet. 2000;67:1555–1562.

    Article  Google Scholar 

  371. Doffinger R, Smahi A, Bessia C, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nat Genet. 2001;27:277–285.

    Article  PubMed  CAS  Google Scholar 

  372. Ma JA, CA LS, et al. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol. 2001;2:223–228.

    Article  PubMed  CAS  Google Scholar 

  373. Xu Z, Fulop Z, Zhong Y, et al. DNA lesions and repair in immunoglobulin class switch recombination and somatic hypermutation. Ann NY Acad Sci. 2005;1050:146–162.

    Article  PubMed  CAS  Google Scholar 

  374. Li Z, Woo CJ, Iglesias-Ussel MD, et al. The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev. 2004;18:1–11.

    Article  PubMed  CAS  Google Scholar 

  375. de Villartay JP, Fischer A, Durandy A. The mechanism of immune diversification and their disorders. Nat Rev Immunol. 2003;3:962–972.

    Article  PubMed  CAS  Google Scholar 

  376. Orange JS, Geha RS. Finding NEMO: genetic disorders of NK-kB activation. J Clin Invest. 2003;112:983–985.

    PubMed  CAS  Google Scholar 

  377. Filipovich AH, Gross TG. Immunodeficiency and cancer. In: Abeloff MD, Armitage JO, Niederhuber JE, Kastan MB, McKenna WG, eds. Abeloff’s clinical oncology. 4th ed. Philadelphia: Churchill Livingstone Elsevier; 2008.

    Google Scholar 

  378. Brahmi Z, Lazarus KH, Hodes ME, Baehner RL. Immunologic studies of three family members with the immunodeficiency with hyper-IgM syndrome. J Clin Immunol. 1983;3:127–134.

    Article  PubMed  CAS  Google Scholar 

  379. Raziuddin S, Assaf HM, Teklu B. T cell malignancy in Richter’s syndrome presenting as hyper IgM. Induction and characterization of a novel CD3+, CD4-, CD8+ T cell subset from phytohemagglutini-stimulated patient’s CD3+, CD4+, CD8+ leukemia T cells. Eur J Immunol. 1989;3:469–474.

    Article  Google Scholar 

  380. Kitchen BJ, Boxer LA. Large granular lymphocyte leukemia (LGL) in a child with hyper IgM syndrome and autoimmune hemolytic anemia. Pediatr Blood Cancer. 2008;50:142–145.

    Article  PubMed  Google Scholar 

  381. Fuentes-Paez G, Saornil MA, Herreras JM, et al. CHARGE association, hyper-immunoglobulin M syndrome, and conjunctival MALT lymphoma. Cornea. 2007;26:864–867.

    Article  PubMed  Google Scholar 

  382. O’Gorman MR. Measurement of CD40L (CD154) expression on resting and in vitro-activated T cells. Curr Protoc Cytom 2001;Chapter 6:unit 6.7.

  383. O’Gorman MR, Zaas D, Paniagua M, et al. Development of a rapid whole blood flow cytometry procedure for the diagnosis of X-linked hyper-IgM syndrome patients and carriers. Clin Immunol Immunopathol. 1997;85:172–181.

    Article  PubMed  Google Scholar 

  384. Freeman AF, Holland SM. The hyper-IgE syndromes. Immunol Allergy Clin North Am. 2008;28:277–291.

    Article  PubMed  Google Scholar 

  385. Grimbacher B, Holland SM, Puck JM, et al. Hyper-IgE syndromes. Immunol Rev. 2005;203:244–250.

    Article  PubMed  CAS  Google Scholar 

  386. Freeman AF, Holland SM. Clinical manifestations, etiology, and pathogenesis of the hyper IgE syndromes. Pediatr Res. 2009;65(5):32R-37R.

    Article  PubMed  Google Scholar 

  387. Minegishi Y, Karasuyama H. Defects in Jak-STAT-mediated cytokine signals cause hyper-IgEsyndrome: lessons from a primary immunodeficiency. Int Immunol. 2009;21:105–112.

    Article  PubMed  CAS  Google Scholar 

  388. Buckley RH. The hyper-IgE syndrome. Clin Rev Allergy Immunol. 2001;20:139-154.

    Article  PubMed  CAS  Google Scholar 

  389. Grimbacher B, Schaffer AA, Holland SM, et al. Genetic linkage pf jyper-IgE syndrome to chromosome 4. Am J Hum Genet. 1999;65:7735–7744.

    Article  Google Scholar 

  390. Holland SM, DeLeo FR, Elloumi HZ, et al. STAT3 mutations in the hyper-IgE syndrome. N Engl J Med. 2007;18:1608–1619.

    Article  Google Scholar 

  391. Minegishi Y, Saito M, Tsuchiya S, et al. Dominant negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448:1058–1062.

    Article  PubMed  CAS  Google Scholar 

  392. Tange SG, Cook MC, Fulcher DA. Insights into the role of STAT3 in human lymphocyte differentiation as revealed by the hyper-IgE syndrome. J Immunol. 2009;182:21–28.

    Google Scholar 

  393. Ozaki K, Spolski R, Feng CG, et al. A critical role for IK-21 in regulating immunoglobulin production. Science. 2002;298:1630–1634.

    Article  PubMed  CAS  Google Scholar 

  394. Renner ED, Puck JM, Holland SM, et al. Autosomal recessive hyperimmunoglobulin E syndrome: a distinct disease entity. J Pediatr. 2004;144:93–99.

    Article  PubMed  CAS  Google Scholar 

  395. Minigishi Y, Saito M, Morio T, et al. Human Tyk2 deficiency reveals requisite roles of Tyk2 in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006;25:745–755.

    Article  CAS  Google Scholar 

  396. Woellner C, Shaffer AA, Puck JM, et al. The hyper IgE syndrome and mutations in Tyk2. Immunity. 2006;26:535.

    Article  CAS  Google Scholar 

  397. Wallet N, Ghez D, Delarue R, et al. Diffuse large B-cell lymphoma in hyperimmunoglobulinemia E syndrome. Clin Lymphoma Myeloma. 2007;7:425–427.

    Article  PubMed  Google Scholar 

  398. Leonard GD, Posadas E, Herrman PC, et al. Non-Hodgkin’s lymphoma in Job’s syndrome: a case report and review of the literature. Leuk Lymphoma. 2004;45:2521–2525.

    Article  PubMed  Google Scholar 

  399. Gorin LJ, Jeha SC, Sullivan MP, et al. Burkitt’s lymphoma developing in a 7 year old boy with hyper IgE syndrome. J Allergy Clin Immunol. 1989;83:5–10.

    Article  PubMed  CAS  Google Scholar 

  400. Kashef MA, Kashef S, Handjani F, Karimi M. Hodgkin lymphoma developing in a 4.5-year-old girl with hyper-IgE syndrome. Pediatr Hematol Oncol. 2006;23:59–63.

    Article  PubMed  Google Scholar 

  401. Chang SE, Huh J, Choi JH, et al. A case of hyper-IgE syndrome complicated by cutaneous, nodal, and liver peripheral T cell lymphomas. J Dermatol. 2002;29:320–322.

    PubMed  Google Scholar 

  402. Onal IK, Kurt M, Altundag K, et al. Peripheral T-cell lymphoma and Job’s syndrome: a rare association. Med Oncol. 2006;23:141–144.

    Article  PubMed  Google Scholar 

  403. Lee MW, Choi JH, Sung KJ, et al. Extensive xanthelasma associated with anaplastic large cell lymphoma and hyperimmunoglobulin E syndrome. Int J Dermatol. 2003;42:944–946.

    Article  PubMed  Google Scholar 

  404. Park MA, Li JT, Hagan JB, et al. Common variable immunodeficiency: a new look at an old disease. Lancet. 2008;372:489–502.

    Article  PubMed  Google Scholar 

  405. Chapel H, Lucas M, Lee M, et al. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood. 2008;112:277–288.

    Article  PubMed  CAS  Google Scholar 

  406. Wehr C, Kivioja T, Schmitt C, et al. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood. 2008;111:77–85.

    Article  PubMed  CAS  Google Scholar 

  407. Quinti I, Soresina A, Spadaro G, et al. Long term follow up and outcome of a large cohort of patients with common variable immunodeficiency. J Clin Immunol. 2007;27:308–316.

    Article  PubMed  Google Scholar 

  408. Knight AK, Cunningham-Rundles C. Inflammatory and autoimmune complications of common variable immuno-deficiency. Autoimmun Rev. 2006;5:156–159.

    Article  PubMed  CAS  Google Scholar 

  409. Ferry B, Jones J, Bateman E, et al. Measurments of peripheral B cell populations in common variable immunodeficiency using a whole blood method. Clin Exp Immunol. 2005;140:532–539.

    Article  PubMed  CAS  Google Scholar 

  410. Di Renzo M, Pasqui AL, Auteri A. Common variable immunodeficiency: a review. Clin Exp Med. 2004;3:211–217.

    Article  PubMed  Google Scholar 

  411. Cunningham-Rundles C. Common variable immunodeficiency. Curr Allergy Asthma Rep. 2001;1:421–429.

    Article  PubMed  CAS  Google Scholar 

  412. Conley ME, Notarangelo LD, Etzioni A. Diagnostic criteria for primary immunodeficiencies Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol. 1999;93:190–197.

    Article  PubMed  CAS  Google Scholar 

  413. Bacchelli C, Buckridge S, Thrasher AJ, Gaspar HB. Translational mini-review series on immunodeficiency: molecular defects in common variable immunodeficiency. Clin Exp Immunol. 2007;149:401–409.

    Article  PubMed  CAS  Google Scholar 

  414. Zhang L, Radigan L, Salzer U, et al. Transmembrane activator and calcium-modulating cyclophilin ligand interactor mutations in common variable immunodeficiency: clinical and immunologic outcome in heterozygotes. J Allergy Clin Immunol. 2007;120:1178–1185.

    Article  PubMed  CAS  Google Scholar 

  415. Broides A, Yang W, Conley ME. Genotype/phenotype correlations in X-linked agammaglobulinemia. Clin Immunol. 2006;118:195–200.

    Article  PubMed  CAS  Google Scholar 

  416. Castigli E, Wilson SA, Garibyan L, et al. TAC1is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 2005;37:829–834.

    Article  PubMed  CAS  Google Scholar 

  417. Salzer U, Chapel HM, Webster AD, et al. Mutations in TNFRSF13B encoding TAC1 are associated with common immunodeficiency in humans. Nat Genet. 2005;37:820–828.

    Article  PubMed  CAS  Google Scholar 

  418. Warnatz K, Bosaller L, Salzer U, et al. Human ICOS deficiency abrogates the germinal center reaction and provides a monogenic model for common variable immunodeficiency. Blood. 2006;107:3045–3052.

    Article  PubMed  CAS  Google Scholar 

  419. Salzer U, Grimbacher B. TAC1tly changing tunes: farewell to a yin and yang of BAFF receptor and TAC1 in humoral immunity? New genetic defects in common variable immunodeficiency. Curr Opin Allergy Clin Immunol. 2005;5:496–503.

    Article  PubMed  CAS  Google Scholar 

  420. van Zelm MC, Reisli I, van der Burg M, et al. An antibody-deficient syndrome due to mutations in the CD19 gene. N Engl J Med. 2006;354:1901–1912.

    Article  PubMed  Google Scholar 

  421. Christopher A, Bates M, Misoo E, et al. Granulocytic-lymphomatous lung disease shortens survival in common variable immune deficiency. J Allergy Clin Immunol. 2004;114:415–421.

    Article  Google Scholar 

  422. Wheat WH, Cool CD, Morimoto Y, et al. Possible role of human herpesvirus 8 in the lymphoproliferative disorders in common variable immunodeficiency. J Exp Med. 2005;202:479–484.

    Article  PubMed  CAS  Google Scholar 

  423. Sanders CA, Medeiros LJ, Weiss LM, et al. Lymphoproliferative lesions in patients with common variable immunodeficiency syndrome. Am J Surg Pathol. 1992;16:1170–1182.

    Article  Google Scholar 

  424. Cunningham-Rundles C, Siegel FP, Cunningham-Rundles S, et al. Incidence of cancer in 98 patients with common varied immunodeficiency. J Clin Immunol. 1987;7:294–299.

    Article  PubMed  CAS  Google Scholar 

  425. Kinlen LI, Webster AD, Bird AG, et al. Prospective study of cancer in patients with hypogammaglobulinaemia. Lancet. 1985;1:262–266.

    Google Scholar 

  426. Mellemkjaer L, Hammarstrom L, Andersen V, et al. Cancer risk among patients with IgA deficiency or common variable immunodeficiency and their relatives: a combined Danish and Swedish study. Clin Exp Immunol. 2002;130:495–500.

    Article  PubMed  CAS  Google Scholar 

  427. Chau I, Quinti I, Grimbacher B. Lymphoma in common variable immunodeficiency: interplay between immune dysregualtion, infection and genetics. Curr Opin Hematol. 2008;15:368–374.

    Article  Google Scholar 

  428. Hemaszewski R, Webster A. Primary hypogammaglobulinaemia: a survey of clinical manifestations and complications. Q J Med. 1993;86:31–42.

    Google Scholar 

  429. Gompels M, Hodges E, Lock R, et al. Lymphoproliferative disease in antibody deficiency: a multicentre study. Clin Exp Immunol. 2003;134:314–320.

    Article  PubMed  CAS  Google Scholar 

  430. Aghamohammadi A, Parvaneh N, Tigari F, et al. Lymphoma of mucosa-associated lymphoid tissue in common variable immunodeficiency. Leuk Lymphoma. 2006;47:343–346.

    Article  PubMed  Google Scholar 

  431. Desar I, Keuter M, Raemaekers J, et al. Extranodal marginal zone (malt) lymphoma in common variable immunodeficiency. Neth J Med. 2006;64:136–140.

    PubMed  CAS  Google Scholar 

  432. Cunningham-rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol. 1999;92:34–48.

    Article  PubMed  CAS  Google Scholar 

  433. Polizzotto MN, McCormish JS, Dawson MA, et al. Burkitt lymphoma in the setting of common variable immunodeficiency. Ann Hematol. 2009;88(8):819–820.

    Article  PubMed  Google Scholar 

  434. Dunningan M, Yfantis H, Rapoport AP, et al. Large cell lymphoma presenting as a flare of colitis in a patient with common variable immune deficiency. Dig Dis Sci. 2007;52:830–834.

    Article  Google Scholar 

  435. Ayyiodiz O, Altintas A, Isikdogan A, Tuzcu A. Aggressive natural killer cell leukemia in a patient with common variable immunodeficiency syndrome. Gynecol Endocrinol. 2006;22:286–287.

    Article  Google Scholar 

  436. Delia M, Capalbo S, Napol A, et al. Common variable immunodeficiency patient with large granular lymphocytosis developing extranodal large B-cell lymphoma. Haematologica. 2006;91:166–167.

    Google Scholar 

  437. Le Guern V, Le Roux G, Martin A, et al. Lymphoma complicating common variable immunodeficiency with granulomatous disease: report of two cases. Eur J Haematol. 2003;71:459–463.

    Article  PubMed  Google Scholar 

  438. Ariatti C, Vivenza D, Capilo D, et al. Common-variable immunodeficiency-related lymphomas associate with mutations and rearrangements of BCL-6: pathogenetic and histogenetic implications. Hum Pathol. 2000;31:871–873.

    Article  PubMed  CAS  Google Scholar 

  439. Zenone T. Hodgkin’s disease and common variable immunodeficiency. J Clin Pathol. 1996;49:1021.

    Article  PubMed  CAS  Google Scholar 

  440. Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA. A multi-institutional survey of the Wiskott-Aldrich syndrome. J Pediatr. 1994;125:876–885.

    Article  PubMed  CAS  Google Scholar 

  441. Ochs HD, Slichter SJ, Harker LA, et al. The Wiskott-Aldrich syndrome: studies of lymphocytes, granulocytes, and platelets. Blood. 1980;55:243–252.

    PubMed  CAS  Google Scholar 

  442. Shurman SH, Candotti F. Autoimmunity in Wiskott-Aldrich syndrome. Curr Opin Rheumatol. 2003;15:446–453.

    Article  Google Scholar 

  443. Dery JM, Ochs HD, Fancke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell. 1994;78:635–644.

    Article  Google Scholar 

  444. Snapper SB, Meelu P, Nguyen D, et al. WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo. J Leukoc Biol. 2005;77:993–998.

    Article  PubMed  CAS  Google Scholar 

  445. Snapper SB, Rosen FS. The Wiskott-Aldrich syndrome protein (WASP): roles in signaling and cytoskeletal organization. Ann Rev Immunol. 1999;17:905–929.

    Article  CAS  Google Scholar 

  446. Bompard G, Caron E. Regulation of WAP/WAVE proteins: making a long story short. J Cell Biol. 2004;166:957–962.

    Article  PubMed  CAS  Google Scholar 

  447. Kolluri R, Tolias KF, Carpenter CL, et al. Direct interaction of the Wiskott-Aldrich syndrome protein with the GTPase Cdc42. Proc Natl Acad Sci U S A. 1996;93:5615–5618.

    Article  PubMed  CAS  Google Scholar 

  448. Stradal TE, Rotter K, Disanza A, et al. Regulation of actin dynamics by WASP and WAVE family proteins. Trends Cell Biol. 2004;14:303–311.

    Article  PubMed  CAS  Google Scholar 

  449. Gallego MD, de la Fuente MA, Anton IM, et al. WIP and WASP play complementary roles in T cell homing and chemotaxis to SDF-1 alpha. Int Immunol. 2006;18:221–232.

    Article  PubMed  CAS  Google Scholar 

  450. Burns SGO, Cory W, Vainchenker W, Thrasher AJ. Mechanism of WASP-mediated hematologic and immunologic disease. Blood. 2004;104:3454–3462.

    Article  PubMed  CAS  Google Scholar 

  451. Shcherbina A, Rosen FS, Remold-O’Donnell E. WASP levels in platelets and lymphocytes of Wiskott-Aldrich syndrome patients correlate with cell dysfunction. J Immunol. 1999;163:6314–6320.

    PubMed  CAS  Google Scholar 

  452. Devriendt K, Kim AS, Mathijs G, et al. Constitutively activated mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet. 2001;27:313–317.

    Article  PubMed  CAS  Google Scholar 

  453. Imai K, Morio T, Zhu Y, et al. Clinical course of patients with WASP gene mutations. Blood. 2004;103:456–464.

    Article  PubMed  CAS  Google Scholar 

  454. Imai K, Nonoyama H, Ochs HD. WASP (Wiskott-Aldrich syndrome protein) gene mutations and phenotype. Curr Opin Allergy Clin Immunol. 2003;3:427–436.

    Article  PubMed  CAS  Google Scholar 

  455. Jin Y, Mazza C, Christie JR, et al. Mutations in the Wiskott-Aldrich syndrome protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation. Blood. 2004;104:4010–4019.

    Article  PubMed  CAS  Google Scholar 

  456. Lutskiy MI, Rosin FS, Remold-O’Donnell E. Genotype-proteotype linkage in the Wiskott-Aldrich syndrome. J Immunol. 2005;175:1329–1336.

    PubMed  CAS  Google Scholar 

  457. Notarangelo LD, Miao CH, Ochs HS. Wiskott-Aldrich syndrome. Curr Opin Hematol. 2008;15:30–36.

    Article  PubMed  CAS  Google Scholar 

  458. Ariga T, Kondoh T, Yamaguchi K, et al. Spontaneous in vivo reversion of an inherited mutation in the Wiskott-Aldrich syndrome. J Immunol. 2001;166:5245–5249.

    PubMed  CAS  Google Scholar 

  459. Konno AT, Wadas SH, Shurman EK, et al. Differential contribution of Wiskott-Aldrich syndrome protein to selective advantage in T- and B-cells lineages. Blood. 2004;103:676–678.

    Article  PubMed  CAS  Google Scholar 

  460. Trifari S, Sitia G, Aiuti A, et al. Defective Th1 cytokine gene transcription in CD4+ and CD8+ T cells from Wiskott-Aldrich syndrome patients. J Immunol. 2006;177:7451–7461.

    PubMed  CAS  Google Scholar 

  461. Pulecio J, Tagliani E, Scholer A, et al. Expression of Wiskott-Aldrich syndrome protein in dendritic cells regulate synapse formation and activation of naïve CD8+ T cells. J Immunol. 2008;181:1135–1142.

    PubMed  CAS  Google Scholar 

  462. Westerberg LS, de la Fuente MA, Wermeling F, et al. WASP confers selective advantage for specific hematopoietic cell populations and serves a unique role in marginal zone B-cell homeostasis and function. Blood. 2008;112:4139–4147.

    Article  PubMed  CAS  Google Scholar 

  463. Meyer-Bahlburg A, Becker-Herman S, Humblet-Baron S, et al. Wiskott-Aldrich syndrome protein deficiency in B cells results in impaired peripheral hemostasis. Blood. 2008;112:4158–4169.

    Article  PubMed  CAS  Google Scholar 

  464. Severinson E. WASp stings mature lymphocytes. Blood. 2008;112:3921–3922.

    Article  PubMed  CAS  Google Scholar 

  465. Cotelingam JD, Witebsky FG, Hsu SM, et al. Malignant lymphoma in patients with Wiskott-Aldrich syndrome. Cancer Invest. 1985;3:515–522.

    Article  PubMed  CAS  Google Scholar 

  466. Tran H, Nourse J, Hall S, et al. Immunodeficiency-associated lymphomas. Blood Rev. 2008;22:261–281.

    Article  PubMed  Google Scholar 

  467. Sebire NJ, Haselden S, Malone M, et al. Isolated EBV lymphoproliferative disease in a child with Wiskott-Aldrich syndrome manifesting as cutaneous lymphomatoid granulomatosis and responsive to anti-CD20 immunotherpay. J Clin Pathol. 2003;56:555–557.

    Article  PubMed  CAS  Google Scholar 

  468. Kroft SH, Finn WG, Singleton TP, et al. Follicular large cell lymphoma with immunoblastic features in a child with Wiskott-Aldrich syndrome: an unusual immunodeficiency-related neoplasm not associated with Epstein-Barr virus. Am J Clin Pathol. 1998;110:95–99.

    PubMed  CAS  Google Scholar 

  469. Pasic S, Vujic D, Djuricic S, et al. Burkitt lymphoma-induced ilieocolic intussusceptions in Wiskott-Aldrich syndrome. J Pediatr Hematol Oncol. 2006;28:48–49.

    PubMed  Google Scholar 

  470. Shcherbina A, Candotti F, Rosen FS, Remold-O’Donnell E. High incidence of lymphoma in a subgroup of Wiskott-Aldrich syndrome patients. Br J Haematol. 2003;121:529–530.

    Article  PubMed  Google Scholar 

  471. Yamada M, Ohtsu M, Kobayashi I, et al. Flow cytometric analysis of Wiskott-Aldrich Syndrome (WAS) protein in lymphocytes from WAS patients and their family carriers. Blood. 1999;93:756–758.

    PubMed  CAS  Google Scholar 

  472. Kawai S, Minegishi M, Ohashi Y, et al. Flow cytometric determination of intracytoplasmic Wiskott-Aldrich syndrome protein in peripheral blood lymphocyte subpopulations. J Immunol Methods. 2002;260:195–205.

    Article  PubMed  CAS  Google Scholar 

  473. Kwan SP, Hageman TL, Radtke BE, et al. Identification of mutations in the Wiskott-Aldrich syndrome gene and characterization of a polymorphic dinucleotide repeat at DXS6940, adjacent to the disease gene. Proc Natl Acad Sci U S A. 1995;92:4707–4710.

    Article  Google Scholar 

  474. Blessing JJH, Johnson J, Zhang K. Autoimmune lymphoproliferative syndrome. GeneReviews. Available at: www.ncbi.nih.gov/bookshelf. Accessed July 9, 2007.

  475. Bleesing J, Straus SE, Fleisher TA. Autoimmune lymphoproliferative syndrome. A human disorder of abnormal lymphocyte survival. Pediatr Clin North Am. 2000;47:1291–1310.

    Article  PubMed  CAS  Google Scholar 

  476. Oliveira JB, Fleisher TA. Autoimmune lymphoproliferative syndrome. Curr Opin Allergy Immunol. 2004;4(6):497–503.

    Article  CAS  Google Scholar 

  477. Rieux-Laucat F, Le Deist F, Fischer A. Autoimmune lymphoproliferative syndromes: genetic defects of apoptotic pathways. Cell Death. 2003;10:124–133.

    Article  CAS  Google Scholar 

  478. Fleisher TA. The autoimmune lymphoproliferative syndrome: an experiment of nature involving lymphocyte apoptosis. Immunol Rev. 2008;40:87–92.

    Article  Google Scholar 

  479. Lim MS, Straus SE, Dale JK, et al. Pathological findings in human autoimmune lymphoproliferative syndrome. Am J Pathol. 1998;153:1541–1550.

    PubMed  CAS  Google Scholar 

  480. Kim YJ, Dale JK, Noel P, et al. Eosinophilia is associated with a higher mortility rate among patients with autoimmune lymphoproliferative syndrome. Am J Hematol. 2007;97:3161–3170.

    Google Scholar 

  481. Blessing JJ, Brown MR, Straus SE, et al. Immunophenotype profile in families with autoimmune lymphoproliferative syndrome. Blood. 2001;98:2466–2473.

    Article  Google Scholar 

  482. Lopatin U, Yao X, Williams RK, et al. Increases in circulating and lymphoid tissue interleukin-10 in autoimmune lymphoproliferative syndrome are associated with disease expression. Blood. 2001;97:3161–3170.

    Article  PubMed  CAS  Google Scholar 

  483. Van den Berg A, Tamminga R, de Jong D, et al. FAS gene mutation in a case of autoimmune lymphoproliferative syndrome type Ia with accumulation of gammadelta+ T cells. Am J Surg Pathol. 2003;27:546–553.

    Article  PubMed  Google Scholar 

  484. Fisher GH, Rosenberg FJ, Straus SE, et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell. 1995;81:935–946.

    Article  PubMed  CAS  Google Scholar 

  485. Rieux-Laucat F, Le Deist F, Hivroz C, et al. Mutations of Fas associated with human lymphoproliferative syndrome and autoimmunity. Science. 1995;268:1347–1349.

    Article  PubMed  CAS  Google Scholar 

  486. Ju ST, Panka DJ, Cui H, et al. Fas (CD95)FasL interactions required for programmed cell death after T-cell activation. Nature. 1995;373:444–448.

    Article  PubMed  CAS  Google Scholar 

  487. Gupta S. Molecular steps of death receptor and mitochondrial pathways of apoptosis. Life Sci. 2001;69:2957–2964.

    Article  PubMed  CAS  Google Scholar 

  488. Oliveira JB, Gupta S. Disorders of apoptosis: mechanisms for autoimmunity in primary immunodeficiency diseases. J Clin Immunol. 2008;28(Suppl 1):S20–S28.

    Article  PubMed  CAS  Google Scholar 

  489. Jackson CE, Fischer RE, Hsu AP, et al. Autoimmune lymphoproliferative syndrome with defective Fas: genotype influences penetrance. Am J Hum Genet. 1999;64:1002–1014.

    Article  PubMed  CAS  Google Scholar 

  490. Chun HJ, Zheng L, Ahmad M, et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature. 2002;419:395–399.

    Article  PubMed  CAS  Google Scholar 

  491. Maric I, Pittaluga S, Dale JK, et al. Histologic features of sinus histiocytosis with massive lymphadenopathy in patients with autoimmune lymphoproliferative syndrome. Am J Surg Pathol. 2005;29:903–911.

    Article  PubMed  Google Scholar 

  492. Poppema S, Maggio E, Van den Berg A. Development of lymphoma in autoimmune lymphoproliferative syndrome (ALPS) and its relationship to Fas bene mutations. Leuk Lymphoma. 2004;45:423–431.

    Article  PubMed  CAS  Google Scholar 

  493. Jackson CE, Puck JM. Autoimmune lymphoproliferative syndrome, a disorder of apoptosis. Curr Opin Pediatr. 1999;11:521–527.

    Article  PubMed  CAS  Google Scholar 

  494. Straus SE, Jaffe ES, Puck JM, et al. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood. 2001;98:194–200.

    Article  PubMed  CAS  Google Scholar 

  495. Peters AM, Kohfink B, Martin H, et al. defective apoptosis due to a point mutation in the death domain of CD95 associated with autoimmune lymphoproliferative syndrome, T cell lymphoma, and Hodgkin’s disease. Exp Hematol. 1999;27:868–874.

    Article  PubMed  CAS  Google Scholar 

  496. Infante AJ, Britton HA, DeNapoli T, et al. The clinical spectrum in a large kindred with autoimmune lymphoproliferative syndrome caused by a Fas mutation that impairs lymphocyte apoptosis. J Pediatr. 1998;133:629–633.

    Article  PubMed  CAS  Google Scholar 

  497. Boulanger E, Rieux-Laucat F, Picard C, et al. Diffuce large B-cell non–Hodgkin’s lymphoma in a patient with autoimmune lymphoproliferative syndrome. Br J Haematol. 2001;113:432–434.

    Article  PubMed  CAS  Google Scholar 

  498. Van den Berg A, Maggio E, Diepstra A, et al. Germline FAS gene mutation in a case of ALPS and NLP Hodgkin lymphoma. Blood. 2002;99:1492–1494.

    Article  PubMed  Google Scholar 

  499. Su HC, Lenardo MJ. Genetic defects of apoptosis and primary immunodeficiency. Immunol Allergy Clin North Am. 2008;28:329–351.

    Article  PubMed  Google Scholar 

  500. Boztug K, Welte K, Zeidler C, Klein C. Congenital neutropenia syndromes. Immunol Allergy Clin North Am. 2008;28:259–275.

    Article  PubMed  Google Scholar 

  501. Schaffer AA, Klein C. Genetic heterogeneity in severe congenital neutropenia: how many aberrant pathways can kill a neutrophil? Curr Opin Allergy Clin Immunol. 2007;7:481–494.

    Article  PubMed  Google Scholar 

  502. Welte K, Zeidler C, Dale DC. Severe congenital neutropenia. Semin Hematol. 2006;43:189–195.

    Article  PubMed  CAS  Google Scholar 

  503. Haddy TB, Rana SR, Castro O. Benign ethnic neutropenia: what is a normal absolute neutrophil count. J Lab Clin Med. 1999;133:15–22.

    Article  PubMed  CAS  Google Scholar 

  504. Grenda DS, Murakami M, Ghatak J, et al. Mutations of the ELA2 gene found in patients with severe congenital neutropenia induced the unfolded protein response and cellular apoptosis. Blood. 2007;110:4179–4187.

    Article  PubMed  CAS  Google Scholar 

  505. Grenda DS, Link DC. Mechanisms of disordered granulopoiesis in congenital neutropenia. Curr Top Dev Biol. 2006;74:133–176.

    Article  PubMed  CAS  Google Scholar 

  506. Massullo P, Druhan IJ, Bunnell BA, et al. Aberrant subcellular targeting of the G185R neutrophil elastase mutant associated with severe congenital neutropenia induces premature apoptosis of differentiating promyelocytes. Blood. 2005;105:3397–3404.

    Article  PubMed  CAS  Google Scholar 

  507. Zhuang D, Qiu Y, Kogan SC, et al. Increasead CCATT enhancer-binding protein epsilon (C/EBPepsilon) expression and premature apoptosis in myeloid cells expressing Gfi-1 N382S mutant associated with severe congenital neutropenia. J Biol Chem. 2006;281:10745–10751.

    Article  PubMed  CAS  Google Scholar 

  508. Carlson G, Aprikyan AA, Tehranchi R, et al. Kostmann syndrome: severe congenital neutropenia associated with defective expression of Bcl-2, constitutive mitochondrial release of cytochrome c, and excessive apoptosis of myeloid progenitor cells. Blood. 2004;103:3355–3361.

    Article  CAS  Google Scholar 

  509. Dale DC, Person RE, Bolyard AA, et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood. 2000;96:2317–2322.

    PubMed  CAS  Google Scholar 

  510. Horowitz MS, Duan Z, Korkmaz B, et al. Neutrophil elastase in cyclic and severe congenital neutropenia. Blood. 2007;109:1817–1824.

    Article  CAS  Google Scholar 

  511. Garwicz D, Lennartsson A, Jacobsen SE, et al. Biosynthetic profiles of neutrophil serine proteases in a human bone marrow–derived cellular myeloid differentiation model. Haematologica. 2005;90:38–44.

    PubMed  CAS  Google Scholar 

  512. Kollner I, Sodeik B, Schreek S, et al. Mutations in neutrophil elastase causing congenital neutropenia lead to cytoplasmic protein accumulation and induction of the unfolded protein response. Blood. 2006;108:493–500.

    Article  PubMed  CAS  Google Scholar 

  513. Thusberg J, Vihinen M. Bioinformatic analysis of protein structure-function relationships: case study of leukocyte elastase (ELA2) missense mutations. Hum Mutat. 2006;27:1230–1243.

    Article  PubMed  CAS  Google Scholar 

  514. Klein C, Grudzien M, Appaswamy G, et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet. 2007;39:86–92.

    Article  PubMed  CAS  Google Scholar 

  515. Person RE, Li FQ, Duan Z, et al. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet. 2003;34:308–312.

    Article  PubMed  CAS  Google Scholar 

  516. Ancliff PJ, Blundell MP, Cory GO, et al. Two novel activating mutations in the Wiskott-Aldrich syndrome protein result in congenital neutropenia. Blood. 2006;108:2182–2188.

    Article  PubMed  CAS  Google Scholar 

  517. Bostug K, Appaswamy G, Ashikov A, et al. A syndrome with congenital neutropenia and mutations in G6PC3. N Engl J Med. 2009;360:32–43.

    Article  Google Scholar 

  518. Rosenberg PS, Alter BP, Bolyard AA, et al. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long term G-CSF therapy. Blood. 2006;107:4628–4635.

    Article  PubMed  CAS  Google Scholar 

  519. Freedman MH, Alter BP. Malignant myeloid transformation in congenital forms of neutropenia. Isr Med Assoc J. 2002;4:1011–1014.

    PubMed  Google Scholar 

  520. Freedman MH, Alter BP. Risk of myelodysplastic syndrome and acute myeloid leukemia in congenital neutropenia. Semin Hematol. 2002;39:128–133.

    Article  PubMed  CAS  Google Scholar 

  521. Dale DC, Cottle TE, Fier CJ, et al. Severe chronic neutropenia: treatment and follow-up of patients in the Severe Chronic Neutropenia International Registry. Am J Hematol. 2003;72:82–93.

    Article  PubMed  Google Scholar 

  522. Rosenberg PS, Alter BP, Link DC, et al. Neutrophil elastase mutations and risk of leukaemia in severe congenital neutropenia. Br J Haematol. 2008;140:210–213.

    PubMed  CAS  Google Scholar 

  523. Link DC, Kunter G, Kasai Y, et al. Distinct patterns of mutations occurring in de novo AML versus AML arising in the setting of severe congenital neutropenia. Blood. 2007;110:1648–1655.

    Article  PubMed  CAS  Google Scholar 

  524. Zeidler C, Welte K. Kostmann syndrome and severe congenital neutropenia. Semin Hematol. 2002;39:82–88.

    Article  PubMed  CAS  Google Scholar 

  525. Roland B, Woodman RC, Jorgenson K, et al. Trisomy 21 and isodicentric chromosome 21 in Kostmann syndrome following treatment with G-CSF. Cancer Genet Cytogenet. 2001;126:78–80.

    Article  PubMed  CAS  Google Scholar 

  526. Germeshausen M, Bailmaier M, Welte K. Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: results of a long-term survey. Blood. 2007;109:93–99.

    Article  PubMed  CAS  Google Scholar 

  527. Ancliff PJ, Gale RE, Liesner R, et al. Long-term follow-up of granulocyte colony-stimulating factor receptor mutations in patients with severe congenital neutropenia: implications for leukemogenesis and therapy. Br J Haematol. 2003;120:685–690.

    Article  PubMed  CAS  Google Scholar 

  528. Bernard T, Gale RE, Evans JP, Linch DC. Mutations of the granulocyte-colony stimulating factor receptor in patients with severe congenital neutropenia are not required for transformation to acute myeloid leukemia and may be a bystander phenomenon. Br J Haematol. 1998;101:141–149.

    Article  PubMed  CAS  Google Scholar 

  529. Carlson G, Melin M, Dahl N, et al. Kostmann syndrome or infantile genetic agranulocytosis, part two: understanding the underlying genetic defects in severe congenital neutropenia. Acta Paediatr. 2007;96:813-819.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Behm, F.G. (2010). Genetic Predispositions for Hematologic and Lymphoid Disorders. In: Dunphy, C. (eds) Molecular Pathology of Hematolymphoid Diseases. Molecular Pathology Library, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5698-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5698-9_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5697-2

  • Online ISBN: 978-1-4419-5698-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics