Skip to main content

Oocyte Cryopreservation

  • Chapter
  • First Online:
  • 1071 Accesses

Abstract

Since the 1940s, the cryopreservation field has been deeply studied in order to increase the number of options available for human reproductive technologies. Initially, sperm cells were the only type to be preserved due to their size and high number available; these characteristics made the task relatively easy. Later on, with the advances made in the laboratories, embryo freezing became an available option in in vitro fertilization (IVF) clinics. In 1983, the first pregnancy was obtained from a cryopreserved embryo [1] and provided an important new option, influencing daily practice in the field of reproductive medicine. Consequently, the number of multiple pregnancies was significantly reduced and in the event that pregnancy was not achieved with a fresh cycle, cryopreserved embryos could be used in subsequent cycles without the need to undergo a new stimulation cycle. The overall efficiency was definitely improved. This new success pushed the clinicians further and the investigation on oocyte cryopreservation started. Initially, outcomes were not very encouraging, mainly because of the particular features of the oocyte compared to sperm or embryos. The oocyte, especially in the human, has unique composition in term of water content, membrane stability and intracellular structures. All of these characteristics made it very difficult to cryopreserve oocytes and for many years clinical applications have not been routinely adopted. The low survival rates and objectionable developmental competence of oocytes initially obtained after cryopreservation suggest that this technique could not be safely applied to patients. Moreover, the good results obtained with embryo cryopreservation were satisfying enough to limit research in the area of oocyte freezing for many years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature. 1983;305(5936):707–9.

    Article  PubMed  CAS  Google Scholar 

  2. Chen C. Pregnancy after human oocyte cryopreservation. Lancet. 1986;1:884–6.

    Article  PubMed  CAS  Google Scholar 

  3. Al-Hasani DK, van der Ven H, Reinecke A, et al. Cryopreservation of human oocytes Hum. Reproduction. 1987;2:695–700.

    CAS  Google Scholar 

  4. Porcu E, Fabbri R, Seracchioli R, et al. Birth of a healthy female after intracytoplasmic sperm injection of cryopreserved human oocytes. Fertil Steril. 1997;68(4):724–6.

    Article  PubMed  CAS  Google Scholar 

  5. Liu H, Lai Y, Davis O, et al. Improved pregnancy ­outcome with gonadotropin releasing hormone agonist stimulation is due to the improvement in oocyte quantity rather than quality. J Assist Reprod Genet. 1992;9:338–42.

    Article  PubMed  CAS  Google Scholar 

  6. Hugues JN, Barlow DH, Rosenwaks Z, et al. Improvement in consistency of response to ovarian stimulation with recombinant human follicle stimulating hormone resulting from a new method for calibrating the therapeutic preparation. Reprod BioMed Online. 2003;6:185–90.

    Article  PubMed  CAS  Google Scholar 

  7. Out HJ, David I, Ron-El R, et al. A randomized, double-blind clinical trial using fixed daily doses of 100 or 200 IU of recombinant FSH in ICSI cycles. Hum Reprod. 2001;16:1104–9.

    Article  PubMed  CAS  Google Scholar 

  8. Yong PY, Brett S, Baird DT, et al. A prospective randomized clinical trial comparing 150 IU and 225 IU of recombinant follicle-stimulating hormone (Gonal-F*) in a fixed-dose regimen for controlled ovarian stimulation in in vitro fertilization treatment. Fertil Steril. 2003;79:308–15.

    Article  PubMed  Google Scholar 

  9. Tesarik J, Mendoza C. Effects of exogenous LH administration during ovarian stimulation of pituitary down-regulated young oocyte donors on oocyte yield and developmental competence. Hum Reprod. 2002; 17:3129–37.

    Article  PubMed  CAS  Google Scholar 

  10. Dal Prato L, Borini A, Coticchio G, et al. Half-dose depot triptorelin in pituitary suppression for multiple ovarian stimulation in assisted reproduction technology: a randomized study. Hum Reprod. 2004;19: 2200–5.

    Article  PubMed  CAS  Google Scholar 

  11. Dal Prato L, Borini A, Travisi MR, et al. Effect of reduced dose of triptorelin at the start of ovarian stimulation on the outcome of IVF: a randomized study. Hum Reprod. 2001;16(7):1409–14.

    Article  PubMed  CAS  Google Scholar 

  12. Al-Inany HG, Abou-Setta AM, Aboulghar M. Gonadotropin-releasing hormone antagonists for assisted conception: a Cochrane review. Reprod Biomed Online. 2007;14(5):640–9.

    Article  PubMed  CAS  Google Scholar 

  13. Kolibianakis EM, Collins J, Tarlatzis BC, et al. Among patients treated for IVF with gonadotropins and GnRH analogues, is the probability of live birth dependent on the type of analogue used? A systematic review and meta-analysis. Hum Reprod Update. 2006;12(6): 651–71.

    Article  PubMed  CAS  Google Scholar 

  14. Al-Inany H, Aboulghar MA, Mansour RT, et al. Optimizing GnRH antagonist administration: meta-analysis of fixed versus flexible protocol. Reprod Biomed Online. 2005;10(5):567–70.

    Article  PubMed  CAS  Google Scholar 

  15. Patrizio P, Bianchi V, Lalioti M, et al. High rate of biological loss in assisted reproduction: it is in the seed, not in the soil. Reprod Biomd Online. 2007;14(1): 92–5.

    Article  CAS  Google Scholar 

  16. Bedford JM, Kim HH. Sperm/oocyte binding patterns and oocyte cytology in retrospective analysis of fertilization failure in vitro. Hum Reprod. 1993;8:453–63.

    PubMed  CAS  Google Scholar 

  17. Balaban B, Urman B, Sertac A, et al. Oocyte morphology does not affect fertilization rate, embryo quality and implantation rate after intracytoplasmic sperm injection. Hum Reprod. 1998;13:3431–3.

    Article  PubMed  CAS  Google Scholar 

  18. Serhal PF, Ranieri DM, Kinis M, et al. Oocyte morphology predicts outcome of intracytoplasmic sperm injection. Hum Reprod. 1997;12:1267–70.

    Article  PubMed  CAS  Google Scholar 

  19. Veeck LL. Oocyte assessment and biological performance. Ann NY Acad Sci. 1988;541:259–74.

    Article  PubMed  CAS  Google Scholar 

  20. Xia P. Intrcytoplasmic sperm injection: correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilization rate and embryo quality. Human Reprod. 1997;12:1750–5.

    Article  CAS  Google Scholar 

  21. Ebner T, Yaman C, Moser M, et al. Prognostic value of first polar body morphology on fertilization rate and embryo quality in intracytoplasmic sperm injection. Hum Reprod. 2000;15:427–30.

    Article  PubMed  CAS  Google Scholar 

  22. Ebner T, Moser M, Yaman C, et al. Prospective hatching of embryos developed from oocytes exhibiting difficult oolemma penetration during ICSI. Hum Reprod. 2002;17:1317–20.

    Article  PubMed  CAS  Google Scholar 

  23. Patrizio P, Fragouli E, Bianchi V, et al. Molecular methods for selection of the ideal oocyte. Reprod Biomed Online. 2007;15(3):346–53.

    Article  PubMed  CAS  Google Scholar 

  24. Kola I, Kirby C, Show J, et al. Vitrification of mouse oocytes results in aneuploid zygotes and malformed fetuses. Teratology. 1988;38:467–74.

    Article  PubMed  CAS  Google Scholar 

  25. Biery KA, Seidel Jr GE, Elsden RP. Cryopreservation of mouse embryos by direct plunging into liquid nitrogen. Theriogenology. 1986;25:140.

    Article  Google Scholar 

  26. Shaw JM, Diotallevi L, Trounson AO. A simple rapid dimethyl suiphoxide freezing technique for the cryopreservation of one-cell to blastocyst stage preimplantation mouse embryos. Reprod Fertil Dev. 1991;3:621.

    Article  PubMed  CAS  Google Scholar 

  27. Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at - 196°C vitrification. Nature. 1985; 313:573.

    Article  PubMed  CAS  Google Scholar 

  28. Gardner DK, Sheehan CB, Rienzi L, et al. Analysis of oocyte physiology to improve cryopreservation procedures. Theriogenology. 2007;67:64–72.

    Article  PubMed  CAS  Google Scholar 

  29. Yavin S, Arav A. Measurement of essential physical properties of vitrification solutions. Theriogenology. 2007;67(1):81–9.

    Article  PubMed  CAS  Google Scholar 

  30. Kono T, Kwon OY, Nakahara T. Development of vitrified mouse oocytes after in vitro fertilization. Cryobiology. 1991;28(1):50–4.

    Article  PubMed  CAS  Google Scholar 

  31. Liebermann J, Nawroth F, Isachenko V, et al. Potential importance of vitrification in reproductive medicine. Biol Reprod. 2002;67:1671–80.

    Article  PubMed  CAS  Google Scholar 

  32. Kuwayama M, Vajta G, Kato O, et al. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online. 2005;11:300–8.

    Article  PubMed  Google Scholar 

  33. Vajta G, Nagy ZP. Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod Biomed Online. 2006;12(6):779–96.

    Article  PubMed  Google Scholar 

  34. Gualtieri R, Iaccarino M, Mollo V, et al. Slow cooling of human oocytes: ultrastructural injuries and apoptotic status. Fertil Steril. 2009;91:1023–34.

    Article  PubMed  Google Scholar 

  35. Gook DA, Osborn SM, Johnston WI. Cryopreservation of mouse and human oocytes using 1,2-propanediol and the configuration of the meiotic spindle. Hum Reprod. 1993;8:1101–9.

    PubMed  CAS  Google Scholar 

  36. Nottola SA, Coticchio G, De Santis L, et al. Ultrastructural of human mature oocytes after slow cooling cryopreservation using different sucrose concentrations. Hum Reprod. 2007;22:1123–33.

    Article  PubMed  CAS  Google Scholar 

  37. Pickering SJ, Johnson MH. The influence of cooling on the organization of the meiotic spindle of the mouse oocyte. Hum Reprod. 1987;2:207–16.

    PubMed  CAS  Google Scholar 

  38. Almeida PA, Bolton VN. The effect of temperature fluctuation on the cytoskeletal organisation and chromosomal constitution of the human oocyte. Zygote. 1995;3:357–65.

    Article  PubMed  CAS  Google Scholar 

  39. Cobo A, Rubio C, Gerli S, et al. Use of fluorescence in situ hybridization to assess the chromosomal status of embryos obtained from cryopreserved oocytes. Fertil Steril. 2001;75:354–60.

    Article  PubMed  CAS  Google Scholar 

  40. Sato H, Ellis GW, Inouè S. Microtubular origin of mitotic spindle from birefringence: demonstration of the applicability of Wiener’s equation. J Cell Biol. 1975;67:501–17.

    Article  PubMed  CAS  Google Scholar 

  41. Rienzi L, Ubaldi F, Martinez F, et al. Relationship between meiotic spindle location with regard to polar body position and oocyte developmental potential after ICSI. Hum Reprod. 2003;18:1289–93.

    Article  PubMed  CAS  Google Scholar 

  42. De Santis L, Cino I, Rabelotti E, et al. Polar body morphology and spindle imaging as predictors of oocyte quality. Reprod Biomed Online. 2005;11:36–42.

    Article  PubMed  Google Scholar 

  43. Madaschi C, Carvalho de Souza Bonetti T, Paes de Almeida Ferreira Braga D, et al. Spindle imaging: a marker for embryo development and implantation. Fertil Steril. 2008;90:194–8.

    Article  PubMed  Google Scholar 

  44. Wang WH, Meng L, Hackett RJ, et al. Developmental ability of human oocytes with or without birefringent spindles imaged by PoloScope before insemination. Hum Reprod. 2001;16:1464–8.

    Article  PubMed  CAS  Google Scholar 

  45. Wang WH, Meng L, Hackett RJ, et al. The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes. Fertil Steril. 2001;75:348–53.

    Article  PubMed  CAS  Google Scholar 

  46. Rienzi L, Martinez F, Ubaldi F, et al. Poloscope analysis of meiotic spindle changes in living metaphase II human oocytes during the freezing and thawing procedures. Hum Reprod. 2004;19:655–9.

    Article  PubMed  CAS  Google Scholar 

  47. Bianchi V, Coticchio G, Fava L, et al. Meiotic spindle imaging in human oocytes frozen with a slow freezing procedure involving high sucrose concentration. Hum Reprod. 2005;20(4):1078–83.

    Article  PubMed  CAS  Google Scholar 

  48. Bromfield JJ, Coticchio G, Hutt K, et al. Meiotic spindle dynamics in human oocytes following slow-cooling cryopreservation. Hum Reprod. 2009;24(9): 2114–23.

    Article  PubMed  CAS  Google Scholar 

  49. Coticchio G, De Santis L, Rossi G, et al. Sucrose concentration influences the rate of human oocytes with normal spindle and chromosome configuration after slow cooling cryopreservation. Hum Reprod. 2006; 21(7):1771–6.

    Article  PubMed  CAS  Google Scholar 

  50. Ciotti P, Porcu E, Notarangelo L, et al. Meiotic spindle recovery is faster in vitrification of human oocytes compared to slow freezing. Fertil Steril. 2009;91(6): 2399–407.

    Article  PubMed  Google Scholar 

  51. Parmigiani L, Cognigni GE, Bernardi S, et al. Freezing within 2 h from oocytes retrieval increases the efficiency of human oocyte cryopreservation when using slow freezing/rapid protocol with high sucrose concentration. Hum Reprod. 2008;23(8):1771–7.

    Article  Google Scholar 

  52. Noyes N, Knopman J, Labella P, et al. Oocyte cryopreservation outcomes including pre-cryopreservation and post-thaw meiotic spindle evaluation following slow cooling and vitrification of human oocytes. Fertil Steril. 2010;94:2076–82.

    Article  Google Scholar 

  53. Lassalle B, Testart J, Renard JP. Human embryo features that influence the success of cryopreservation with the use of 1,2 propanediol. Fertil Steril. 1985;44:645–51.

    PubMed  CAS  Google Scholar 

  54. Borini A, Bonu MA, Coticchio G, et al. Pregnancies and births after oocyte cryopreservation. Fertil Steril. 2004;82:601–5.

    Article  PubMed  Google Scholar 

  55. Fabbri R, Porcu E, Marsella T, et al. Human oocyte cryopreservation: new perspectives regarding oocyte survival. Hum Reprod. 2001;16:411–6.

    Article  PubMed  CAS  Google Scholar 

  56. Borini A, Sciajno R, Bianchi V, et al. Clinical outcome of oocyte cryopreservation after slow cooling with a protocol utilizing a high sucrose concentration. Hum Reprod. 2006;21:512–7.

    Article  PubMed  CAS  Google Scholar 

  57. Levi Setti PE, Albani E, Novara PV, et al. Cryopreservation of supernumerary oocytes in IVF/ICSI cycles. Hum Reprod. 2006;21:370–5.

    Article  PubMed  CAS  Google Scholar 

  58. Bianchi V, Coticchio G, Distratis V, et al. Differential sucrose concentration during dehydration (0.2 mol/L) and rehydration (0.3 mol/L) increases the implantation rate of frozen human oocytes. Reprod Biomed Online. 2007;14:64–71.

    Article  PubMed  CAS  Google Scholar 

  59. Borini A, Levi Setti PE, Anserini P, et al. Multicenter observational study on slow-cooling oocyte cryopreservation: clinical outcome. Fertil Steril. 2010;94:1662–8.

    Article  PubMed  Google Scholar 

  60. Noyes N, Porcu E, Borini A. Over 900 oocyte cryopreservation babies born with no appearent increase in congenital anomalies. Reprod Biomed Online. 2009;18(6):769–76.

    Article  PubMed  CAS  Google Scholar 

  61. Kuleshova L, Gianaroli L, Magli C, et al. Birth following vitrification of a small number of human oocytes. Hum Reprod. 1999;14(12):3077–9.

    Article  PubMed  CAS  Google Scholar 

  62. Yoon T, Kim T, Park S, et al. Live births after vitrification of oocytes in a stimulated in vitro fertilization-embryo transfer program. Fertil Steril. 1993;79:1323–6.

    Article  Google Scholar 

  63. Katayama KP, Stehlik J, Kuwayama M, et al. High survival rate of vitrified human oocytes results in clinical pregnancy. Fertil Steril. 2003;80:223–4.

    Article  PubMed  Google Scholar 

  64. Oktay K, Cil PA, Bang H. Efficiency of oocyte cryopreservation: a meta-analysis. Fertil Steril. 2006;86:70–80.

    Article  PubMed  Google Scholar 

  65. Antinori S, Licata E, Dani G, et al. Cryotop vitrification of human oocytes results in high survival rate and healthy deliveries. Reprod Biomed Online. 2007;14:72–9.

    Article  PubMed  Google Scholar 

  66. Cobo A, Kuwayama M, Perez S, et al. Comparison of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitrified by the Cryotop method. Fertil Steril. 2008;89:1657–64.

    Article  PubMed  Google Scholar 

  67. Chian R-C, Huang J, Tan S, et al. Obstetric and perinatal outcome in 200 infants conceived from vitrified oocytes. Reprod BioMed Online. 2008;16:608–10.

    Article  PubMed  Google Scholar 

  68. Smith G, Serafini C, Fioravanti J, et al. Prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification. Fertil Steril. 2010;94:2088–95.

    Article  PubMed  Google Scholar 

  69. Grifo J, Noyes N. Delivery rate using cryopreserved oocytes is comparable to conventional in vitro fertilization using fresh oocytes: potential fertility preservation for female cancer patients. Fertil Steril. 2010;93(2):391–6.

    Article  PubMed  CAS  Google Scholar 

  70. Ubaldi F, Anniballo R, Romano S, et al. Cumulative ongoing pregnancy rate achieved with oocyte vitrification and cleavage stage transfer without embryo selection in a standard infertility program. Hum Reprod. 2010;25(5):1199–205.

    Article  PubMed  Google Scholar 

  71. Borini A, Bonu MA. Success rates from oocyte cryopreservation. In: Borini A, Coticchio G, editors. Preservation of human oocytes. London: Informa Healthcare; 2009. p. 235–45.

    Chapter  Google Scholar 

  72. Toth TL, Baka SG, Veeck LL, et al. Fertilization and in vitro development of cryopreserved human prophase I oocytes. Fertil Steril. 1994;61:891–4.

    PubMed  CAS  Google Scholar 

  73. Toth TL, Hassen WA, Lanzendorf SE, et al. Cryopreservation of human prophase I oocytes collected from unstimulated follicles. Fertil Steril. 1994;61:1077–82.

    PubMed  CAS  Google Scholar 

  74. Demirtas E. Immature oocyte retrieval in the luteal phase to preserve fertility in cancer patients. Reprod Biomed Online. 2008;17(4):520–3.

    Article  PubMed  Google Scholar 

  75. Chian C, Huang J, Gilbert L, et al. Obstetric outcomes following vitrification of in vitro and in vivo matured oocytes. Fertil Steril. 2009;91(6):2391–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Borini MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Borini, A., Bianchi, V. (2012). Oocyte Cryopreservation. In: Seli, E., Agarwal, A. (eds) Fertility Preservation. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1783-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1783-6_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1782-9

  • Online ISBN: 978-1-4419-1783-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics