Skip to main content

Impact of Radiotherapy and Chemotherapy on the Testis

  • Chapter
  • First Online:
Book cover Fertility Preservation

Abstract

Nowadays, anticancer treatments involving either chemotherapy or radiotherapy have become increasingly successful and the survival rates have dramatically improved in the last 30 years from less than 20% to nearly 80%. However, according to the doses used and the duration of the treatment, 10–100% of surviving cancer patients will show reduced semen parameters and overall 15–30% will remain sterile on the long term. Interindividual variability exists in the spermatogenetic recovery after any gonadotoxic treatment making any individual fertility prognosis virtually impossible. Furthermore, while the initial treatment is known when starting cancer therapy, eventually the treatment regimen may be changed making any assessment of the risk for sterility even more difficult. Therefore, sperm cryopreservation should be offered routinely to all male patients exposed to gonadotoxic treatments. Age must not be a discriminative parameter since different methods to obtained semen sample are available to obtain sperm from postpubertal patients. When patients have been cured, assisted reproduction, e.g., intracytoplasmic sperm injection can be used to offer patients the best chances to father their genetically own children. In prepubertal boys, testicular stem cell banking may be offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grundy R, Gosden RG, Hewitt M, et al. Fertility preservation for children treated for cancer (1): scientific advances and research dilemmas. Arch Dis Child. 2001;84(4):355–9. Review.

    Article  PubMed  CAS  Google Scholar 

  2. Hollen PJ, Hobbie WL. Establishing comprehensive specialty follow-up clinics for long-term survivors of cancer. Providing systematic physiological and psychosocial support. Support Care Cancer. 1995;3(1): 40–4.

    Article  PubMed  CAS  Google Scholar 

  3. SIGN 76. The long-term follow up of children treated for cancer. www.sign.com. Accessed Nov 2004.

  4. Fallat ME, Hutter J, American Academy of Pediatrics Committee on Bioethics, et al. Preservation of fertility in pediatric and adolescent patients with cancer. Pediatrics. 2008;121(5):e1461–9. Review.

    Article  PubMed  Google Scholar 

  5. Huyghe E, Matsuda T, Thonneau P. Increasing incidence of testicular cancer worldwide: a review. J Urol. 2003;170(1):5–11. Review.

    Article  PubMed  Google Scholar 

  6. Fosså SD, Abyholm T, Normann N, et al. Post-treatment fertility in patients with testicular cancer. III. Influence of radiotherapy in seminoma patients. Br J Urol. 1986;58(3):315–9.

    Article  PubMed  Google Scholar 

  7. Presti JC, Herr HW, Carroll PR. Fertility and testis cancer. Urol Clin North Am. 1993;20(1):173–9. Review.

    PubMed  CAS  Google Scholar 

  8. Dearnaley D, Huddart R, Horwich A. Regular review: managing testicular cancer. BMJ. 2001;322(7302): 1583–8. Review.

    Article  PubMed  CAS  Google Scholar 

  9. Laguna MP, Pizzocaro G, Klepp O, et al. EAU guidelines on testicular cancer. Eur Urol. 2001;40(2): 102–10.

    Article  PubMed  CAS  Google Scholar 

  10. Howell SJ, Shalet SM. Spermatogenesis after cancer treatment: damage and recovery. J Natl Cancer Inst Monogr. 2005;34:12–7. Review.

    Article  PubMed  CAS  Google Scholar 

  11. Pryzant RM, Meistrich ML, Wilson G, et al. Long-term reduction in sperm count after chemotherapy with and without radiation therapy for non-Hodgkin’s lymphomas. J Clin Oncol. 1993;11(2):239–47.

    PubMed  CAS  Google Scholar 

  12. da Cunha MF, Meistrich ML, Fuller LM, et al. Recovery of spermatogenesis after treatment for Hodgkin’s disease: limiting dose of MOPP chemotherapy. J Clin Oncol. 1984;2(6):571–7.

    PubMed  Google Scholar 

  13. Rowley MJ, Leach DR, Warner GA, et al. Effect of graded doses of ionizing radiation on the human testis. Radiat Res. 1974;59(3):665–78.

    Article  PubMed  CAS  Google Scholar 

  14. Meistrich ML. Male gonadal toxicity. Pediatr Blood Cancer. 2009;53(2):261–6. Review.

    Article  PubMed  Google Scholar 

  15. Sharpe RM, McKinnell C, Kivlin C, et al. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction. 2003;125(6):769–84. Review.

    Article  PubMed  CAS  Google Scholar 

  16. Orth JM, Gunsalus GL, Lamperti AA. Evidence from Sertoli cell-depleted rats indicates that spermatid number in adults depends on numbers of Sertoli cells produced during perinatal development. Endocrinology. 1988;122(3):787–94.

    Article  PubMed  CAS  Google Scholar 

  17. Sharpe RM. Regulation of spermatogenesis. In: Knobil E, Neill JD, editors. The physiology of reproduction. 2nd ed. New York: Raven Press; 1994. p. 1363–434.

    Google Scholar 

  18. Jégou B, Sharpe RM. Paracrine mechanisms in testicular control. In: de Kretser DM, editor. Molecular biology of the male reproductive system. New York: Academic; 1993. p. 271–310.

    Google Scholar 

  19. Bar-Shira Maymon B, Yogev L, Marks A, et al. Sertoli cell inactivation by cytotoxic damage to the human testis after cancer chemotherapy. Fertil Steril. 2004;81(5):1391–4.

    Article  PubMed  Google Scholar 

  20. Hutson JM, Hasthorpe S, Heyns CF. Anatomical and functional aspects of testicular descent and cryptorchidism. Endocr Rev. 1997;18(2):259–80. Review.

    Article  PubMed  CAS  Google Scholar 

  21. Sharpe RM. Hormones and testis development and the possible adverse effects of environmental chemicals. Toxicol Lett. 2001;120(1–3):221–32. Review.

    Article  PubMed  CAS  Google Scholar 

  22. Vermeulen A. The male climaterium. Ann Med. 1993;25(6):531–4.

    PubMed  CAS  Google Scholar 

  23. Howell SJ, Radford JA, Ryder WD, et al. Testicular function after cytotoxic chemotherapy: evidence of Leydig cell insufficiency. J Clin Oncol. 1999;17(5): 1493–8.

    PubMed  CAS  Google Scholar 

  24. Hansen SW, Berthelsen JG, von der Maase H. Long-term fertility and Leydig cell function in patients treated for germ cell cancer with cisplatin, vinblastine, and bleomycin versus surveillance. J Clin Oncol. 1990;8(10):1695–8.

    PubMed  CAS  Google Scholar 

  25. Palmieri G, Lotrecchiano G, Ricci G, et al. Gonadal function after multimodality treatment in men with testicular germ cell cancer. Eur Endocrinol. 1996;134(4):431–6.

    Article  CAS  Google Scholar 

  26. Stuart NS, Woodroffe CM, Grundy R, et al. Long-term toxicity of chemotherapy for testicular cancer – the cost of cure. Br J Cancer. 1990;61(3):479–84.

    Article  PubMed  CAS  Google Scholar 

  27. Holmes SJ, Whitehouse RW, Clark ST, et al. Reduced bone mineral density in men following chemotherapy for Hodgkin’s disease. Br J Cancer. 1994;70(2):371–5.

    Article  PubMed  CAS  Google Scholar 

  28. Howell SJ, Shalet SM. Effect of cancer therapy on pituitary-testicular axis. Int J Androl. 2002;25(5):269–76. Review.

    Article  PubMed  CAS  Google Scholar 

  29. Howell SJ, Radford JA, Ryder WD, Shalet SM. Testicular function after cytotoxic chemotherapy: evidence of Leydig cell insufficiency. J Clin Oncol. 1999;17(5):1493–8.

    PubMed  CAS  Google Scholar 

  30. Shalet SM, Tsatsoulis A, Whitehead E, et al. Vulnerability of the human Leydig cell to radiation damage is dependent upon age. J Endocrinol. 1989;120(1):161–5.

    Article  PubMed  CAS  Google Scholar 

  31. Shapiro E, Kinsella TJ, Makuch RW, et al. Effects of fractionated irradiation of endocrine aspects of testicular function. J Clin Oncol. 1985;3(9):1232–9.

    PubMed  CAS  Google Scholar 

  32. Müller J, Skakkebaek NE. Quantification of germ cells and seminiferous tubules by stereological examination of testicles from 50 boys who suffered from sudden death. Int J Androl. 1983;6(2):143–56.

    Article  PubMed  Google Scholar 

  33. Ehmcke J, Wistuba J, Schlatt S. Spermatogonial stem cells: questions, models and perspectives. Hum Reprod Update. 2006;12(3):275–82.

    Article  PubMed  CAS  Google Scholar 

  34. World Health Organisation. WHO manual for the standardized investigation, diagnosis and management of the infertile male. Cambridge: Cambridge University Press; 2000.

    Google Scholar 

  35. Colpi GM, Contalbi GF, Nerva F, et al. Testicular function following chemo-radiotherapy. Eur J Obstet Gynecol Reprod Biol. 2004;113 Suppl 1:S2–6. Review.

    Article  PubMed  CAS  Google Scholar 

  36. Speiser B, Rubin P, Casarett G. Aspermia following lower truncal irradiation in Hodgkin’s disease. Cancer. 1973;32(3):692–8.

    Article  PubMed  CAS  Google Scholar 

  37. Centola GM, Keller JW, Henzler M, et al. Effect of low-dose testicular irradiation on sperm count and fertility in patients with testicular seminoma. J Androl. 1994;15(6):608–13.

    PubMed  CAS  Google Scholar 

  38. Hahn EW, Feingold SM, Nisce L. Aspermia and recovery of spermatogenesis in cancer patients following incidental gonadal irradiation during treatment: a progress report. Radiology. 1976;119(1):223–5.

    PubMed  CAS  Google Scholar 

  39. Martin RH, Hildebrand K, Yamamoto J, et al. An increased frequency of human sperm chromosomal abnormalities after radiotherapy. Mutat Res. 1986;174: 219–25.

    Article  PubMed  CAS  Google Scholar 

  40. Socié G, Salooja N, Cohen A, et al. Late effects working party of the European study group for blood and marrow transplantation. Nonmalignant late effects after allogeneic stem cell transplantation. Blood. 2003;101:3373–85.

    Article  PubMed  Google Scholar 

  41. Sanders JE, Hawley J, Levy W, et al. Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total body irradiation and bone marrow transplantation. Blood. 1996;87:3045–52.

    PubMed  CAS  Google Scholar 

  42. Spitz S. The histological effects of nitrogen mustards on human tumors and tissues. Cancer. 1948;1(3):383–98.

    Article  PubMed  CAS  Google Scholar 

  43. Meistrich ML, Wilson G, Brown BW, et al. Impact of cyclophosphamide on long-term reduction in sperm count in men treated with combination chemotherapy for Ewing and soft tissue sarcomas. Cancer. 1992;70(11):2703–12.

    Article  PubMed  CAS  Google Scholar 

  44. Gandini L, Sgrò P, Lombardo F, et al. Effect of chemo- or radiotherapy on sperm parameters of testicular cancer patients. Hum Reprod. 2006;21(11):2882–9.

    Article  PubMed  CAS  Google Scholar 

  45. Schrader M, Müller M, Straub B, et al. The impact of chemotherapy on male fertility: a survey of the biologic basis and clinical aspects. Reprod Toxicol. 2001;15(6):611–7. Review.

    Article  PubMed  CAS  Google Scholar 

  46. Lee SJ, Schover LR, Partridge AH, et al. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol. 2006;24(18):2917–31. Erratum in: J Clin Oncol. 2006;24(36):5790.

    Google Scholar 

  47. Royal College of Physicians, Royal College of Radiologist, Royal College of Obstetricians and Gynaecologist. The effects of cancer treatment on reproductive functions. Guidance on management. Report of a working party. 2007. http://www.rcog.org.uk/resources/public/pdf/EffectCancerReprod.pdf

  48. Schover LR, Brey K, Lichtin A, et al. Oncologists’ attitudes and practices regarding banking sperm before cancer treatment. J Clin Oncol. 2002;20(7): 1890–7.

    Article  PubMed  Google Scholar 

  49. Anderson RA, Weddell A, Spoudeas HA, et al. Do doctors discuss fertility issues before they treat young patients with cancer? Hum Reprod. 2008;23(10):2246–51.

    Article  PubMed  Google Scholar 

  50. Meistrich ML, Zhang Z, Porter KL, Bolden-Tiller OU, Shetty G. Prevention of adverse effects of cancer treatment on the germline. In: Anderson D, Brinkworth MH, editors. Male-mediated developmental toxicity. Cambridge: Royal Society of Chemistry; 2007. p. 114–23.

    Chapter  Google Scholar 

  51. Shetty G, Meistrich M. Hormonal approaches to preservation and restoration of male fertility after cancer treatment. J Natl Cancer Inst Monogr. 2005;34:36–9. Review.

    Article  PubMed  CAS  Google Scholar 

  52. Johnson DH, Linde R, Hainsworth JD, et al. Effect of a luteinizing hormone releasing hormone agonist given during combination chemotherapy on post-therapy fertility in male patients with lymphoma: preliminary observations. Blood. 1985;65:832–6.

    PubMed  CAS  Google Scholar 

  53. Waxman JH, Ahmed R, Smith D, et al. Failure to ­preserve fertility in patients with Hodgkin’s disease. Cancer Chemother Pharmacol. 1987;19:159–62.

    Article  PubMed  CAS  Google Scholar 

  54. Redman JR, Bajorunas DR. Suppression of germ cell proliferation to prevent gonadal toxicity associated with cancer treatment. In: Workshop on psychosexual and reproductive issues affecting patients with cancer. New York: American Cancer Society; 1987. p. 90–4.

    Google Scholar 

  55. Masala A, Faedda R, Alagna S, et al. Use of testosterone to prevent cyclophosphamide-induced azoospermia. Ann Intern Med. 1997;126:292–5.

    PubMed  CAS  Google Scholar 

  56. Carson SA, Gentry WL, Smith AL, et al. Feasibility of semen collection and cryopreservation during chemotherapy. Hum Reprod. 1991;6(7):992–4.

    PubMed  CAS  Google Scholar 

  57. National Institute for Health and Clinical Excellence. Fertility assessment and treatment for people with fertility problems. 2004. www.rcog.org.uk/resources/Public/pdf/Fertility_summary.pdf

  58. Kliesch S, Behre HM, Jürgens H, et al. Cryopreservation of semen from adolescent patients with malignancies. Med Pediatr Oncol. 1996;26(1):20–7.

    Article  PubMed  CAS  Google Scholar 

  59. Bahadur G, Ling KL, Hart R, et al. Semen production in adolescent cancer patients. Hum Reprod. 2002; 17(10):2654–6.

    Article  PubMed  CAS  Google Scholar 

  60. Menon S, Rives N, Mousset-Siméon N, et al. Fertility preservation in adolescent males: experience over 22 years at Rouen University Hospital. Hum Reprod. 2009;24(1):37–44.

    Article  PubMed  CAS  Google Scholar 

  61. Tournaye H, Goossens E, Verheyen G, et al. Preserving the reproductive potential of men and boys with cancer: current concepts and future prospects. Hum Reprod Update. 2004;10(6):525–32. Review.

    Article  PubMed  Google Scholar 

  62. Ginsberg JP, Carlson CA, Lin K, Hobbie WL, et al. An experimental protocol for fertility preservation in prepubertal boys recently diagnosed with cancer: a report of acceptability and safety. Hum Reprod. 2010;25(1):37–41.

    Article  PubMed  CAS  Google Scholar 

  63. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A. 1994;91(24):11298–302.

    Article  PubMed  CAS  Google Scholar 

  64. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A. 1994;91(24): 11287–9.

    Article  Google Scholar 

  65. Jahnukainen K, Hou M, Petersen C, et al. Intratesticular transplantation of testicular cells from leukemic rats causes transmission of leukemia. Cancer Res. 2001;61(2):706–10.

    PubMed  CAS  Google Scholar 

  66. Geens M, Van de Velde H, De Block G, et al. The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Hum Reprod. 2007;22(3):733–42.

    Article  PubMed  CAS  Google Scholar 

  67. de Vries MC, Bresters D, Engberts DP, et al. Attitudes of physicians and parents towards discussing infertility risks and semen cryopreservation with male adolescents diagnosed with cancer. Pediatr Blood Cancer. 2009;53(3):386–91.

    Article  PubMed  Google Scholar 

  68. Zapzalka DM, Redmon JB, Pryor JL. A surve of oncologists regarding sperm cryopreservation and assisted reproductive techniques for male cancer patients. Cancer. 1999;86:1812–7.

    Article  PubMed  CAS  Google Scholar 

  69. Allen C, Keane D, Harrison RF. A survey of Irish consultants regarding awareness of sperm freezing and assisted reproduction. Ir Med J. 2003;96(1):23–5.

    PubMed  CAS  Google Scholar 

  70. Deepinder F, Agarwal A. Technical and ethical challenges of fertility preservation in young cancer patients. Reprod Biomed Online. 2008;16(6): 784–91.

    Article  PubMed  Google Scholar 

  71. Chen SU, Ho HN, Chen HF, et al. Pregnancy achieved by intracytoplasmic sperm injection using cryopreserved semen from a man with testicular cancer. Hum Reprod. 1996;11(12):2645–7.

    Article  PubMed  CAS  Google Scholar 

  72. Hallak J, Sharma RK, Thomas Jr AJ, et al. Why cancer patients request disposal of cryopreserved semen specimens posttherapy: a retrospective study. Fertil Steril. 1998;69(5):889–93.

    Article  PubMed  CAS  Google Scholar 

  73. Lass A, Akagbosu F, Abusheikha N, et al. A programme of semen cryopreservation for patients with malignant disease in a tertiary infertility centre: lessons from 8 years’ experience. Hum Reprod. 1998;13(11):3256–61.

    Article  PubMed  CAS  Google Scholar 

  74. Naysmith TE, Blake DE, Harvey VJ, et al. Do men undergoing sterilizing cancer treatments have a fertile future? Hum Reprod. 1998;13(11):3250–5.

    Article  PubMed  CAS  Google Scholar 

  75. Tournaye H. Storing reproduction for oncological patients. Mol Cell Endocrinol. 2000;169(1–2):133–6. Review.

    Article  PubMed  CAS  Google Scholar 

  76. Ginsburg ES, Yanushpolsky EH, Jackson KV. In vitro fertilization for cancer patients and survivors. Fertil Steril. 2001;75(4):705–10.

    Article  PubMed  CAS  Google Scholar 

  77. Horne G, Atkinson A, Brison DR, et al. Achieving pregnancy against the odds: successful implantation of frozen-thawed embryos generated by ICSI using spermatozoa banked prior to chemo/radiotherapy for Hodgkin’s disease and acute leukaemia. Hum Reprod. 2001;16(1):107–9.

    Article  PubMed  CAS  Google Scholar 

  78. Hovatta O, Foudila T, Siegberg R, et al. Pregnancy resulting from intracytoplasmic injection of spermatozoa from a frozen-thawed testicular biopsy specimen. Hum Reprod. 1996;11(11):2472–3.

    Article  PubMed  CAS  Google Scholar 

  79. Oates RD, Mulhall J, Burgess C, et al. Fertilization and pregnancy using intentionally cryopreserved testicular tissue as the sperm source for intracytoplasmic sperm injection in 10 men with non-obstructive ­azoospermia. Hum Reprod. 1997;12(4):734–9.

    Article  PubMed  CAS  Google Scholar 

  80. Byrne J, Mulvihill JJ, Connelly RR, et al. Reproductive problems and birth defects in survivors of Wilms’ tumor and their relatives. Med Pediatr Oncol. 1988;16(4):233–40.

    Article  PubMed  CAS  Google Scholar 

  81. Senturia YD, Peckham CS. Children fathered by men treated with chemotherapy for testicular cancer. Eur J Cancer. 1990;26(4):429–32.

    Article  PubMed  CAS  Google Scholar 

  82. Hawkins MM, Draper GJ, Smith RA. Cancer among 1,348 offspring of survivors of childhood cancer. Int J Cancer. 1989;43(6):975–8.

    Article  PubMed  CAS  Google Scholar 

  83. Li FP, Fine W, Jaffe N, et al. Offspring of patients treated for cancer in childhood. J Natl Cancer Inst. 1979;62(5):1193–7.

    PubMed  CAS  Google Scholar 

  84. Brandriff BF, Meistrich ML, Gordon LA, et al. Chromosomal damage in sperm of patients surviving Hodgkin’s disease following MOPP (nitrogen mustard, vincristine, procarbazine, and prednisone) therapy with and without radiotherapy. Hum Genet. 1994;93(3):295–9.

    Article  PubMed  CAS  Google Scholar 

  85. Jenderny J, Röhrborn G. Chromosome analysis of human sperm. I. First results with a modified method. Hum Genet. 1987;76(4):385–8.

    Article  PubMed  CAS  Google Scholar 

  86. Revel A, Revel-Vilk S. Pediatric fertility preservation: is it time to offer testicular tissue cryopreservation? Mol Cell Endocrinol. 2008;282(1–2):143–9. Review.

    Article  PubMed  CAS  Google Scholar 

  87. Genescà A, Benet J, Caballín MR, et al. Significance of structural chromosome aberrations in human sperm: analysis of induced aberrations. Hum Genet. 1990;85(5):495–9.

    Article  PubMed  Google Scholar 

  88. Monteil M, Rousseaux S, Chevret E, et al. Increased aneuploid frequency in spermatozoa from a Hodgkin’s disease patient after chemotherapy and radiotherapy. Cytogenet Cell Genet. 1997;76(3–4):134–8.

    Article  PubMed  CAS  Google Scholar 

  89. Robbins WA, Meistrich ML, Moore D, et al. Chemotherapy induces transient sex chromosomal and autosomal aneuploidy in human sperm. Nat Genet. 1997;16(1):74–8.

    Article  PubMed  CAS  Google Scholar 

  90. Gurgan T, Salman C, Demirol A. Pregnancy and assisted reproduction techniques in men and women after cancer treatment. Placenta. 2008;29(Suppl B): 152–9. Review.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ortega, C., Tournaye, H. (2012). Impact of Radiotherapy and Chemotherapy on the Testis. In: Seli, E., Agarwal, A. (eds) Fertility Preservation. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1783-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1783-6_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1782-9

  • Online ISBN: 978-1-4419-1783-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics