Skip to main content

Orientation Kinematics

  • Chapter
  • First Online:
Book cover Theory of Applied Robotics
  • 5874 Accesses

Abstract

We can decompose any rotation φ of a rigid body with a fixed point O, about a globally fixed axis û into three rotations about three given non coplanar axes. Furthermore, the finial orientation of a rigid body after a finite number of rotations is equivalent to a unique rotation about a unique axis. Determination of the angle and axis is called the orientation kinematics of rigid bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  • Buss, S. R., 2003, 3-D Computer Graphics: A Mathematical Introduction with OpenGL, Cambridge University Press, New York.

    MATH  Google Scholar 

  • Denavit, J., and Hartenberg, R. S., 1955, A kinematic notation for lowerpair mechanisms based on matrices, Journal of Applied Mechanics, 22 (2), 215-221.

    MATH  MathSciNet  Google Scholar 

  • Hunt, K. H., 1978, Kinematic Geometry of Mechanisms, Oxford University Press, London U.K.

    MATH  Google Scholar 

  • Mason, M. T., 2001, Mechanics of Robotic Manipulation, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Murray, R. M., Li, Z., and Sastry, S. S. S., 1994, A Mathematical Introduction to Robotic Manipulation, CRC Press, Boca Raton, Florida.

    MATH  Google Scholar 

  • Nikravesh, P., 1988, Computer-Aided Analysis of Mechanical Systems, Prentice Hall, New Jersey.

    Google Scholar 

  • Paul, B., 1963, On the composition of finite rotations, American Mathematical Monthly, 70 (8), 859-862.

    Article  MATH  MathSciNet  Google Scholar 

  • Paul, R. P., 1981, Robot Manipulators: Mathematics, Programming, and Control, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Rimrott, F. P. J., 1989, Introductory Attitude Dynamics, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Rosenberg, R.,M. 1977, Analytical Dynamics of Discrete Systems, Plenum Publishing Co., New York.

    Google Scholar 

  • Schaub, H., and Junkins, J. L., 2003, Analytical Mechanics of Space Systems, AIAA Educational Series, American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia.

    Google Scholar 

  • Spong, M.W., Hutchinson, S., and Vidyasagar, M., 2006, Robot Modeling and Control, John Wiley & Sons, New York.

    Google Scholar 

  • Suh, C. H., and Radcliff, C. W., 1978, Kinematics and Mechanisms Design, John Wiley & Sons, New York.

    Google Scholar 

  • Tsai, L. W., 1999, Robot Analysis, John Wiley & Sons, New York.

    Google Scholar 

  • Wittenburg, J., and Lilov, L., 2003, Decomposition of a finite rotation into three rotations about given axes, Multibody System Dynamics, 9, 353- 375.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza N. Jazar .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jazar, R.N. (2010). Orientation Kinematics. In: Theory of Applied Robotics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1750-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1750-8_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1749-2

  • Online ISBN: 978-1-4419-1750-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics