Skip to main content

Populus Responses to Abiotic Stress

  • Chapter
  • First Online:

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 8))

Abstract

In their natural habitats Populus trees often face rapidly as well as seasonally changing climatic conditions and especially drought and other osmotic stresses contribute globally to loss of productivity in Populus stands. Rich genetic variation in drought sensitivity and response make Populus to a valuable model genus in order to study adaptation to water stress. Here, we outline tree specific responses and the underlying hormonal signaling in response to drought stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Addicott FT (1968) Environmental factors in physiology of abscission. Plant Physiol 43:1471–1479.

    CAS  PubMed  Google Scholar 

  • Addicott FT, Lynch RS, Carns HR (1955) Auxin gradient theory of abscission regulation. Science 121:644–645.

    CAS  PubMed  Google Scholar 

  • Addicott FT, Lyon JL, Ohkuma K et al. (1968) Abscisic acid – a new name for a abscisin 2 (dormin). Science 159:1493.

    CAS  PubMed  Google Scholar 

  • Aloni R, Feigenbaum P, Kalev N, Rozovsky S (2000) Hormonal control of vascular differentiation in plants: the physiological basis of cambium ontogeny and xylem evolution. In: Savidge RA, Barnett JR, Napier R (eds) Cell and Molecular Biology of Wood Formation, pp. 223–236. Bios Scientific Publishers Ltd, Oxford.

    Google Scholar 

  • Andersson A, Keskitalo J, Sjödin A et al. (2004) A transcriptional timetable of autumn senescence. Genome Biol 5.

    Google Scholar 

  • Andersson-Gunnerås S, Hellgren JM, Björklund S et al. (2003) Asymmetric expression of a poplar ACC oxidase controls ethylene production during gravitational induction of tension wood. Plant J 34:339–349.

    PubMed  Google Scholar 

  • Aneja M, Gianfagna T, Ng E (1999) The roles of abscisic acid and ethylene in the abscission and senescence of cocoa flowers. Plant Growth Regul 27:149–155.

    CAS  Google Scholar 

  • Arend M, Fromm J (2007) Seasonal change in the drought response of wood cell development in poplar. Tree Physiol 27:985–992.

    PubMed  Google Scholar 

  • Arndt SK, Clifford SC, Wanek W, Jones H-G, Popp M (2001) Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress. Tree Physiol 21:705–715.

    CAS  PubMed  Google Scholar 

  • Ascenzi R, Gantt JS (1997) A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants. Plant Mol Biol 34:629–641.

    CAS  PubMed  Google Scholar 

  • Ascenzi R, Gantt JS (1999) Molecular genetic analysis of the drought-inducible linker histone variant in Arabidopsis thaliana. Plant Mol Biol 41:159–169.

    CAS  PubMed  Google Scholar 

  • Axelrod DI (1966) Origin of deciduous and evergreen habits in temperate forests. Evolution 20:1–15.

    Google Scholar 

  • Bartels D, Souer E (2004) Molecular responses of higher plants to dehydration. In: Hirt H, Shinozaki K (eds) Plant Responses to Abiotic Stresses, Vol 4. Topics in Current Genetics. Springer Verlag, Berlin, pp. 9–38.

    Google Scholar 

  • Bogeat-Triboulot MB, Brosché M, Renaut J et al. (2007) Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol 143:876–892.

    CAS  PubMed  Google Scholar 

  • Bonhomme L, Monclus R, Vincent D et al. (2009) Leaf proteome anaysis of eight Populus x euramericana genotypes: genetic variation in drought response and in water-use efficiency involves photosynthesis-related proteins. Proteomics 9:4121–4142.

    CAS  PubMed  Google Scholar 

  • Borchert R (1998) Responses of tropical trees to rainfall seasonality and its long-term changes. Climatic Change 39:381–393.

    Google Scholar 

  • Breda N, Granier A (1996) Intra- and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea). Annales des Sciences Forestrières 53:521–536.

    Google Scholar 

  • Brosché M, Vinocur B, Alatalo ER et al. (2005) Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol 6.

    Google Scholar 

  • Buchanan-Wollaston V (1994) Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus – identification of a gene encoding a senescence-specific metallothionein-like protein. Plant Physiol 105:839–846.

    CAS  PubMed  Google Scholar 

  • Butt A, Mousley C, Morris K et al. (1998) Differential expression of a senescence-enhanced metallothionein gene in Arabidopsis in response to isolates of Peronospora parasitica and Pseudomonas syringae. Plant J 16:209–221.

    CAS  PubMed  Google Scholar 

  • Castro-Diez P, Navarro J (2007) Water relations of seedlings of three Quercus species: variations across and within species grown in contrasting light and water regimes. Tree Physiol 27:1011–1018.

    PubMed  Google Scholar 

  • Ceulemans R, Impens I, Lemeur R, Moermans R, Samsuddin Z (1978) Water movement in the soil-poplar-atmosphere system. I. Comparative study of stomatal morphology and anatomy, and the influence of stomatal density and dimensions on the leaf diffusion characteristics in different poplar clones. Oecologia Plantarum 13:1–12.

    Google Scholar 

  • Chae HS, Kieber JJ (2005) Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci 10:291–296.

    CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Botany 103:551–560.

    CAS  Google Scholar 

  • Chen S, Li J, Wang T et al. (2002a) Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar. J Plant Growth Regul 21: 224–233.

    CAS  Google Scholar 

  • Chen S, Polle A (2010) Salinity tolerance of Populus. Plant Biol, in press.

    Google Scholar 

  • Chen SL, Wang SS, Altman A, Hüttermann A (1997) Genotypic variation in drought tolerance of poplar in relation to abscisic acid. Tree Physiol 17:797–803.

    PubMed  Google Scholar 

  • Chen SL, Wang SS, Huttermann A, Altman A (2002b) Xylem abscisic acid accelerates leaf abscission by modulating polyamine and ethylene synthesis in water-stressed intact poplar. Trees 16:16–22.

    CAS  Google Scholar 

  • Christensen A, Svensson K, Persson S et al. (2008) Functional characterization of Arabidopsis calreticulin1a: A key alleviator of endoplasmic reticulum stress. Plant Cell Physiol 49:912–924.

    CAS  PubMed  Google Scholar 

  • Cohen JD, Bandurski RS (1982) The chemistry and physiology of the bound auxins. Ann Rev Plant Physiol 33:403–430.

    CAS  Google Scholar 

  • Contento AL, Xiong Y, Bassham DC (2005) Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J 42: 598–608.

    CAS  PubMed  Google Scholar 

  • Defries RS, Hansen MC, Townshend JRG (2000) Global continuous fields of vegetation characteristics: a linear mixture model applied to multi-year 8 km AVHRR data. Int J Remote Sens 21:1389–1414.

    Google Scholar 

  • Ehlting B, Dluzniewska P, Dietrich H et al. (2007) Interaction of nitrogen nutrition and salinity in grey poplar (Populus tremula x alba). Plant Cell Environ 30:796–811.

    CAS  PubMed  Google Scholar 

  • El-Khatib RT, Hamerlynck EP, Gallardo F, Kirby EG (2004) Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol 24:729–736.

    CAS  PubMed  Google Scholar 

  • Escalante-Pérez M, Lautner S, Nehls U et al. (2009) Salt stress affects xylem differentiation of grey poplar (Populus x canescens). Planta 229:299–309.

    PubMed  Google Scholar 

  • February EC, Stock WD, Bond WJ, Le Roux D (1995) Relationships between water availability and selected vessel characteristics in Eucalyptus grandis and two hybrids. IAWA J 16:269–276.

    Google Scholar 

  • Fonti P, Garcia-Gonzalez I (2004) Suitability of chestnut earlywood vessel chronologies for ecological studies. New Phytol 163:77–86.

    Google Scholar 

  • Fort C, Muller F, Label P, Granier A, Dreyer E (1998) Stomatal conductance, growth and root signaling in Betula pendula seedlings subjected to partial soil drying. Tree Physiol 18:769–776.

    PubMed  Google Scholar 

  • Fracheboud Y, Luquez V, Björken L et al. (2009) The control of autumn Senescence in European aspen. Plant Physiol 149:1982–1991.

    CAS  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Satoh R et al. (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488.

    CAS  PubMed  Google Scholar 

  • Garcia-Gonzalez I, Eckstein D (2003) Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol 23:497–504.

    Google Scholar 

  • Gebre GM, Kuhns MR (1991) Seasonal and clonal variations in drought tolerance of Populus deltoides. Can J For Res 21:910–916.

    Google Scholar 

  • Gindaba J, Rozanov A, Negash L (2004) Response of seedlings of two Eucalyptus and three deciduous tree species from Ethiopia to severe water stress. For Ecol Manag 201:121–131.

    Google Scholar 

  • Givnish TJ (2002) Adaptive significance of evergreen vs. deciduous leaves: Solving the triple paradox. Silva Fennica 36:703–743.

    Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730.

    CAS  PubMed  Google Scholar 

  • Hacke U, Sauter JJ (1996) Drought-induced xylem dysfunction in petioles, branches, and roots of Populus balsamifera L. and Alnus glutinosa (L.) Gaertn. Plant Physiol 111:413–417.

    CAS  PubMed  Google Scholar 

  • Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst 4:97–115.

    Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevent of xylem explosion by negative pressure. Oecologia 126: 457–461.

    Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701.

    PubMed  Google Scholar 

  • Hansen MC, Defries RS, Townshend JRG, Sohlberg R (2000) Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens 21: 1331–1364.

    Google Scholar 

  • Hargrave KR, Kolb KJ, Ewers FW, Davis SD (1994) Conduit diameter and drought-induced embolism in Salvia mellifera Greene (Labiatae). New Phytol 126:695–705.

    Google Scholar 

  • Harvey HP, van den Driessche R (1997) Nutrition, xylem cavitation and drought resistance in hybrid poplar. Tree Physiol 17:647–654.

    PubMed  Google Scholar 

  • Hu L, Lu H, Liu Q, Chen X, Jiang X (2005) Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol 25:1273–1281.

    CAS  PubMed  Google Scholar 

  • Hukin D, Cochard H, Dreyer E, Le Thiec D, Bogeat-Triboulot MB (2005) Cavitation vulnerability in roots and shoots: does Populus euphratica Oliv., a poplar from arid areas of Central Asia, differ from other poplar species?. J Exp Botany 56:2003–2010.

    CAS  Google Scholar 

  • Junghans U, Polle A, Düchting P et al. (2006) Effects of salt stress on the anatomy and auxin physiology of poplar xylem. Plant Cell Environ 29:1519–1531.

    Google Scholar 

  • Keskitalo J, Bergquist G, Gardeström P, Jansson S (2005) A cellular timetable of autumn senescence. Plant Physiol 139:1635–1648.

    CAS  PubMed  Google Scholar 

  • Kishor PBK, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of delta-1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology 108:1387–1394.

    CAS  PubMed  Google Scholar 

  • Knight H, Knight M (2001) Abiotic stress signalling pathways: specificity and cross talk. Trends Plant Sci 6:262–267.

    CAS  PubMed  Google Scholar 

  • Lachaud S (1989) Participation of auxin and abscisic acid in the regulation of seasonal variations in cambial activity and xy-logenesis. Trees 3:125–137.

    Google Scholar 

  • Langer K, Ache P, Geiger D et al. (2002) Poplar potassium transporters capable of controlling K+ homeostasis and K+- de- pendent xylogenesis. Plant J 32:997–1009.

    CAS  PubMed  Google Scholar 

  • Lautner S, Ehlting B, Windeisen E et al. (2007) Calcium nutrition has a significant influence on wood formation in poplar. New Phytol 173:743–752.

    CAS  PubMed  Google Scholar 

  • Lee JH, van Montagu M, Verbruggen N (1999) A highly conserved kinase is an essential component for stress tolerance in yeast and plant cells. Proc Nat Acad Sci USA 96:5873–5877.

    CAS  PubMed  Google Scholar 

  • Liu WC, Carns HR (1961) Isolation of abscisin, an abscission acceleration substance. Science 134:384–385.

    CAS  PubMed  Google Scholar 

  • Liu Z, Dickmann DI (1996) Effects of water and nitrogen interaction on net photosynthesis, stomatal conductance, and water-use efficiency in two hybrid poplar clones. Physiol Plant 97:507–512.

    CAS  Google Scholar 

  • Liu WH, Fairbairn DJ, Reid RJ, Schachtman DP (2001) Characterization of two HKT1 homologues from Eucalyptus camaldulensis that display intrinsic osmosensing capability. Plant Physiolgy 127:283–294.

    CAS  Google Scholar 

  • Lo Gullo MA, Salleo S, Piaceri EC, Rosso R (1995) Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus cerris. Plant Cell Environ 8:661–669.

    Google Scholar 

  • Lu PL, Chen NZ, An R et al. (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol 63:289–305.

    CAS  PubMed  Google Scholar 

  • Luan S (1998) Protein phosphatases and signaling cascades in plants. Trends Plant Sci 3: 271–275.

    Google Scholar 

  • Luo ZB, Langenfeld-Heyser R, Calfapietra C, Polle A (2005) Influ- ence of free air CO2 enrichment (EUROFACE) and nitrogen fer- tilisation on the anatomy of juvenile wood of three poplar spe- cies after coppicing. Trees 19:109–118.

    Google Scholar 

  • Luo ZB, Li K, Jiang XN, Polle A (2009) The ectomycorrhizal fungus (Paxillus involutus) and hydrogels affect drought tolerance of Populus euphratica. Ann For Sci 106. DOI: 10.1051/forest:2008073.

    Google Scholar 

  • Luo Z, Polle A (2009) Wood composition and energy content in a poplar short rotation plantation on fertilized agricultural land in a future CO2 atmosphere. Glob Chang Biol 15:38–47.

    Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A et al. (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068.

    CAS  PubMed  Google Scholar 

  • Marron N, Delay D, Petit JM et al. (2002) Physiological traits of two Populus × euramericana clones, ‘Luisa Avanzo’ and ‘Dor- skamp’, during a water stress and re-watering cycle. Tree Physiol 22:849–858.

    CAS  PubMed  Google Scholar 

  • Marron N, Dreyer E, Boudouresque E et al. (2003) Impact of suc- cessive drought and rewatering cycles on growth and specific leaf area of two Populus × canadensis (Moench) clones, ‘Dor- skamp’ and ‘Luisa-Avanzo’. Tree Physiol 23:1225–1235.

    PubMed  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997.

    CAS  PubMed  Google Scholar 

  • Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unrav elling cell wall formation in the woody dicot stem. Plant Mol Biol 47:239–274.

    CAS  PubMed  Google Scholar 

  • Mellerowicz EJ, Sundberg B (2008) Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Curr Opin Biotechnol 11:293–300.

    CAS  Google Scholar 

  • Mir G, Domenech J, Huguet G et al. (2004) A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. J Exp Botany 55:2483–2493.

    CAS  Google Scholar 

  • Monclus R, Dreyer E, Delmotte FM et al. (2006) Productivity, leaf traits and carbon isotope discrimination in 29 Populus deltoids ×P. nigra clones. New Phytol 167:53–62.

    PubMed  Google Scholar 

  • Monclus R, Dreyer E, Villar M et al. (2006) Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides×Populus nigra. New Phytol 169:765–777.

    PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681.

    CAS  Google Scholar 

  • Nilsson J, Karlberg A, Antti H et al. (2008) Dissecting the molecu- lar basis of the regulation of wood formation by auxin in hybrid aspen. The Plant Cell 20:843–855.

    CAS  PubMed  Google Scholar 

  • Noaves E, Osorio L, Drost DR et al. (2009) Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytol 182:878–890.

    Google Scholar 

  • Ogaya R, Penuelas J (2006) Contrasting foliar responses to drought in Quercus ilex and Phillyrea latifolia. Biologia Plantarum 50:373–382.

    Google Scholar 

  • Ohkuma K, Smith OE, Lyon JL, Addicott FT (1963) Abscisin 2, an abscission-accelerating substance from young cotton fruit. Science 142:1592–1593.

    CAS  PubMed  Google Scholar 

  • Olsson ASB, Engström P, Söderman E (2004) The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol 55:663–677.

    CAS  PubMed  Google Scholar 

  • Ottow EA, Brinker M, Teichmann T et al. (2005) Populus euphratica displays apoplastic sodium accumulation and develops leaf succulence under salt stress. Plant Physiol 139:1362–1372.

    Google Scholar 

  • Pallardy SG, Kozlowski TT (1981) Water relations in Populus clones. Ecology 62:159–169.

    Google Scholar 

  • Passioura JB (2002) Environmental biology and crop improvement. Funct Plant Biol 29: 537–546.

    Google Scholar 

  • Passioura JB, Fry SC (1992) Turgor and cell expansion: beyond the Lockhart Equation. Aust J Plant Physiol 19:565–576.

    Google Scholar 

  • Patterson SE (2001) Cutting loose. Abscission and dehiscence in Arabidopsis. Plant Physiol 126:494–500.

    CAS  PubMed  Google Scholar 

  • Persson S, Wyatt SE, Love J et al. (2001) The Ca2+ status of the endoplasmic reticulum is altered by induction of calreticulin expression in transgenic plants. Plant Physiol 126:1092–1104.

    CAS  PubMed  Google Scholar 

  • Peuke AD, Schraml C, Hartung W, Rennenberg H (2002) Identification of drought-sensitive beech ecotypes by physiological parameters. New Phytol 154:373–387.

    CAS  Google Scholar 

  • Plomion C, Lalanne C, Claverol S et al. (2006) Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins. Proteomics 6:6509–6527.

    CAS  PubMed  Google Scholar 

  • Popko J, Hänsch R, Mendel RR, Polle A, Teichmann T (2010) The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol, in press.

    Google Scholar 

  • Rathinasabapathi B (2000) Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann Botany 86:709–716.

    CAS  Google Scholar 

  • Rizhsky L, Liang HJ, Shuman J et al. (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696.

    CAS  PubMed  Google Scholar 

  • Roberts JA, Elliott KA, Gonzalez-Carranza ZH (2002) Abscission, dehiscence, and other cell separation processes. Ann Rev Plant Biol 53:131–158.

    CAS  Google Scholar 

  • Rood SB, Patino S, Coombs K, Tyree MT (2000) Branch sacrifice: cavitation-associated drought adaptation of riparian cottonwoods. Trees 14:248–257.

    Google Scholar 

  • Rorat T (2006) Plant dehydrins – Tissue location, structure and function. Cell Mol Biol Lett 11:536–556.

    CAS  PubMed  Google Scholar 

  • Ruonala R, Rinne PLH, Baghour M et al. (2006) Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. Plant J 46:628–640.

    CAS  PubMed  Google Scholar 

  • Sargent JA, Osborne DJ, Dunford SM (1984) Cell-separation and its hormonal control during fruit abscission in the gramineae. J Exp Botany 35:1663–1674.

    CAS  Google Scholar 

  • Sass U, Eckstein D (1995) The variability of vessel size in beech (Fagus Sylvatica L) and its ecophysiological interpretation. Trees 9:247–252.

    Google Scholar 

  • Sauter J (2000) Photosynthate allocation to the vascular cambium: facts and problems. In: Savidge RA, Barnett JR, Napier R (eds) Cell and Molecular Biology of Wood Formatiom, pp. 71–84. BIOS Scientific Publishers, Oxford, U.K.

    Google Scholar 

  • Schär C, Vidale PL, Lüthi D et al. (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336.

    PubMed  Google Scholar 

  • Searson MJ, Thomas DS, Montagu KD, Conroy JP (2004) Wood density and anatomy of water-limited Eucalyptus. Tree Physiol 24:1295–1302.

    PubMed  Google Scholar 

  • Shen B, Hohmann S, Jensen RG, Bohnert HJ (1999) Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 121: 45–52.

    CAS  PubMed  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997a) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113:1177–1183.

    CAS  PubMed  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997b) Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol 115:1211–1219.

    Google Scholar 

  • Sinclair TR (2000) Model analysis of plant traits leading to prolonged crop survival during severe drought. Field Crop Res 68:211–217.

    Google Scholar 

  • Sofo A, Dichio B, Xiloyannis C, Masia A (2004) Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. Physiol Plant 121:58–65.

    CAS  PubMed  Google Scholar 

  • Sperry JS, Saliendra NZ (1994) Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant cell Environ 17:1233–1241.

    Google Scholar 

  • Sperry JS, Tyree MT (1988) Mechanism of water-stress in-duced xylem embolism. Plant Physiol 88:581–587.

    CAS  PubMed  Google Scholar 

  • Street NR, Skogström O, Sjödin A et al. (2006) The genetics and genomics of the drought response in Populus. Plant J 48:321–341.

    CAS  PubMed  Google Scholar 

  • Swenson NG, Enquist BJ (2007) Ecological and evolutionary deter- minants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am J Botany 94:451–459.

    Google Scholar 

  • Taiz L, Zeiger E (2002) Plant Physiology, p. 531. Sinauer Associates Publishers, Sunderland, MA.

    Google Scholar 

  • Taylor JE, Whitelaw CA (2001) Signals in abscission. New Phytol 151:323–339.

    CAS  Google Scholar 

  • Teichmann T, Bolu-Arianto WH, Olbrich A et al. (2008) GH3:GUS depicts cell-specific developmental patterns and stress-induced changes in wood anatomy in the poplar stem. Tree Physiol 28:1305–1315.

    CAS  PubMed  Google Scholar 

  • Tyree MT, Cochard H, Cruiziat P, Sinclair B, Ameglio T (1993) Drought-induced leaf shedding in walnut – evidence for vulnerability segmentation. Plant Cell Environ 16:879–882.

    Google Scholar 

  • Tyree M, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer-Verlag, New York.

    Google Scholar 

  • Uno Y, Furihata T, Abe H et al. (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Nat Acad Sci USA 97:11632–11637.

    CAS  PubMed  Google Scholar 

  • Urao T, Yakubov B, Satoh R et al. (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. The Plant Cell 11:1743–1754.

    CAS  PubMed  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:1–10.

    Google Scholar 

  • Watanabe S, Katsumi K, Yuji I, Sasaki S (2001) Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell Tissue Organ Cult 63:199–206.

    Google Scholar 

  • Westoby M, Wright IJ (2006) Land plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268.

    PubMed  Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210.

    CAS  PubMed  Google Scholar 

  • Wind C, Arend M, Fromm J (2004) Potassium-dependent cambial growth in poplar. Plant Biol 6:30–37.

    CAS  PubMed  Google Scholar 

  • Xiao XW, Yang F, Zhang S, Korpelainen H, Li CY (2009) Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Physiol Plant 136: 150–168.

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Ann Rev Plant Biol 57:781–803.

    CAS  Google Scholar 

  • Yin C, Duan B, Wang X, Li C (2004) Morphological and physiological responses of two contrasting poplar species to drought stress and exogenous abscisic acid application. Plant Sci 167:1091–1097.

    CAS  Google Scholar 

  • Yoo RH, Park CY, Kim JC et al. (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem 280:3697–3706.

    CAS  PubMed  Google Scholar 

  • Zhang X, Zang R, Li C (2004) Population differences in physiological and morphological adaptations of Populus davidiana seedlings in response to progressive drought stress. Plant Sci 166:791–797.

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the German Science foundation for supporting AP via Poplar Research Group Germany (PRG) and UF (Fi1668/1), to the European communities for funding ENERGYPOPLAR (QLK5-CT-2000-01377) and to the Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft (BMVEL) for a travel grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fischer, U., Polle, A. (2010). Populus Responses to Abiotic Stress. In: Jansson, S., Bhalerao, R., Groover, A. (eds) Genetics and Genomics of Populus. Plant Genetics and Genomics: Crops and Models, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1541-2_11

Download citation

Publish with us

Policies and ethics