Skip to main content

Chemical Oxidation and Reduction for chlorinated Solvent Remediation

  • Chapter
  • First Online:
In Situ Remediation of Chlorinated Solvent Plumes

Part of the book series: SERDP/ESTCP Environmental Remediation Technology ((SERDP/ESTCP))

Abstract

In situ chemical oxidation (ISCO) is the intentional use of chemical oxidants to destroy or degrade chemical contaminants of concern, including chlorinated solvents. The typical end products for chlorinated solvents treated with ISCO are carbon dioxide and chloride ion. In situ chemical reduction (ISCR) is the intentional use of chemical reductants to transform or degrade chemical contaminants, including chlorinated solvents. The end products for ISCR treatment of chlorinated solvents vary from completely dechlorinated compounds (i.e., ethene from trichloroethene [TCE]) to carbon dioxide and chloride ion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnold WA, Roberts AJ. 2000. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ Sci Technol 34:1794–1805.

    Article  CAS  Google Scholar 

  • ASTM (American Society for Testing and Materials). 2007. Standard Test Method for Estimating the Permanganate Natural Oxidant Demand of Soil and Aquifer Solids. ASTM D7262-07. ASTM, West Conshohocken, PA, USA.

    Google Scholar 

  • Baciocchi R, Boni MR, DAprile L. 2004. Application of hydrogen peroxide lifetime as an indicator of TCE Fenton-like oxidation in soils. J Hazard Mater B107:97–102.

    Article  Google Scholar 

  • Balazs GB, Cooper JF, Lewis PR, Adamson GM. 2000. Emerging Technologies in Hazardous Waste Management, 8th ed. Tedder and Pohland, Kluwer Academic/Plenum Publishers, New York, NY, USA.

    Google Scholar 

  • Block PA, Brown RA, Robinson D. 2004. Novel Activation Technologies for Sodium Persulfate In Situ Chemical Oxidation. Proceedings, Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May.

    Google Scholar 

  • Bozzini C, Simpkin T, Sale T, Hood D, Lowder R. 2006. DNAPL Remediation at Camp Lejeune Using ZVI-Clay Soil Mixing. Proceedings, Fifth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 22–25, Paper No. C-44.

    Google Scholar 

  • Brown RA. 2004. Super Charging Zero Valent Iron: Combining a Soluble Chemical Reductant with Zero Valent Iron. Proceedings,Third International Conference on Oxidation and Reduction for Treatment of Soil and Groundwater, San Diego, CA, USA, October.

    Google Scholar 

  • Brown RA. 2005. In Situ Chemical Reduction, An Evolving Technology. Proceedings, ConSoil 2005, Bordeaux, France, October 3–7.

    Google Scholar 

  • Brown RA, Nelson CH. 1994. Adapting Ozonation for Soil and Groundwater Cleanup. Chem Eng November:EE18-EE22.

    Google Scholar 

  • Brown RA, Norris RD. 1986. Method for Decontaminating a Permeable Subterranean Formation. U.S. Patent No. http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=%2Fnetahtml%25%2FPTO%25%2Fsearch-bool.html&r=1&f=G&l=50&d=PALL#x0026;RefSrch=yes#x0026;Query=PN%2F4591443 - h0#h0 http://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF#x0026;p=1&u=%2Fnetahtml%25%2FPTO%25%2Fsearch-bool.html&r=1&f=G#x0026;l=50&d=PALL#x0026;RefSrch=yes#x0026;Query=PN%2F4591443-h2#h24,591,443.

    Google Scholar 

  • Brown RA, Robinson D. 2004. Response to Naturally Occurring Organic Material: Permanganate Versus Persulfate. Proceeding, Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 24–27, Paper 2A-06.

    Google Scholar 

  • Brown RA, Norris RD, Westray M. 1986. In Situ Treatment of Groundwater. Proceedings, Haz Pro 86, Baltimore, MD, USA, April 1–3.

    Google Scholar 

  • Brown RA, Robinson D, Skladany G, Loeper J. 2003. Response to Naturally Occurring Organic Material: Permanganate Versus Persulfate. Proceedings, ConSoil 2003, Ghent, Belgium, May 12–16.

    Google Scholar 

  • Brown RA, Block P, Watts RJ, Teel AL. 2006. Contaminant Specific Persulfate Activation. Proceedings, Fifth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 22–25, Paper No. D-73.

    Google Scholar 

  • Bruell CJ. 2001. Kinetics of Thermally Activated Persulfate Oxidation of Trichloroethylene (TCE) and 1,1,1- Trichloroethane (TCA). Proceedings, First International Conference on Oxidation and Reduction Technologies for In-Situ Treatment of Soil and Groundwater, Niagara Falls, Ontario, Canada, June 25–29.

    Google Scholar 

  • Campbell TJ, Burris DR, Roberts AL, Wells JR. 1997. Trichloroethylene and tetrachloroethylene reduction in a metallic iron-water vapor batch system. Environ Toxicol Chem 16:625–630.

    CAS  Google Scholar 

  • Carus Corporation. 2007a. Permanganates: General Information. http://www.caruschem.com/permanganate.htm?sec=permanganate.

  • Carus Corporation. 2007b. Organic Oxidation. http://www.caruschem.com/oxidation.htm.

  • Chemburkar A, Warner J, Skladany GJ, Brown RA. 2006. Use of Chemical Reductants to Stimulate Abiotic Reductive Pathways. Proceedings, Fifth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 22–25, Paper No. D-02.

    Google Scholar 

  • Conrad SH, Glass RJ, Peplinski WJ. 2002. Bench-scale visualization of DNAPL remediation processes in analog heterogeneous aquifers: Surfactant floods and in situ oxidation using permanganate. J Contam Hydrol 58:13–49.

    Article  CAS  Google Scholar 

  • Department of the Navy. 1999. Report of Findings Concerning UST Occurrence at Building 8049, MCALF, Bogue, Cateret County, NC. Naval Facilities Command, Atlantic Division, April 13.

    Google Scholar 

  • Dolfing J, VanEckert D, Meuller J. 2006. Thermodynamics of Low Eh Reactions. Proceedings, Fifth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 22–25, Paper No. D-08.

    Google Scholar 

  • Dugan PJ, Siegrist RL, Crimi ML. 2005. Coupling Surfactants/Cosolvents with Permanganate for DNAPL Removal: Comparison of Co-Injection and Sequential Application. Proceedings, ORTs-4 Conference, Chicago, IL, USA. October 24–27.

    Google Scholar 

  • Elsner M. 2002. Reductive Dehalogenation of Chlorinated Hydrocarbons by Surface-Bound Fe(II), Kinetic And Mechanistic Aspects. Diss ETH No. 14 955. Swiss Federal Institute of Technology, Zürich, Switzerland.

    Google Scholar 

  • ESTCP (Environmental Security Technology Certification Program). 1999. Technology Status Review: In Situ Oxidation. ESTCP, Arlington, VA, USA. November. 42 p.

    Google Scholar 

  • Fenton HJH. 1894. Oxidation of tartaric acid in presence of iron. J Chem Soc 65:899–910.

    Article  CAS  Google Scholar 

  • Ferrey M, Wilson JT. 2002. Complete Natural Attenuation of PCE and TCE Without the Accumulation of Vinyl Chloride. Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 20–23, Paper No. 2D-02.

    Google Scholar 

  • Ferrey ML, Wilkin RT, Ford RG, Wilson JT. 2004. Nonbiological removal of cis-dichloroethylene and 1,1-dichloroethylene in aquifer sediment containing magnetite. Environ Sci Technol 38:1746–1752.

    Article  CAS  Google Scholar 

  • FMC. 1969. Hydrogen Peroxide Physical Properties. Technical Bulletin #67. FMC, Princeton NJ, USA. January.

    Google Scholar 

  • FMC. 2007. Hydrogen Peroxide Resource Center,www.envsolutions.fmc.com/HydrogenPeroxide/ResourceCenter/tabid/351/Default.aspx. Accessed June 11, 2009.

  • FMC. 2009a. MSDS and Tech Data Sheets. www.fmcchemicals.com/TechDataSheetsMSDS/Persulfates/tabid/1446/Default.aspx. Accessed June 21, 2009.

  • FMC. 2009b. Klozur® Activated Persulfate. www.envsolutions.fmc.com/Klozur/tabid/355/Default.aspx. Accessed June 21, 2009.

  • FMC. 2009c. Klozur® Resource Center. www.envsolutions.fmc.com/Klozur/ResourceCenter/tabid/356/Default.aspx. Accessed June 21, 2009.

  • Frazier JD, Fiacco Jr RJ, Pac T, Lewis R, Flattery J, Madera EP. 2004. Physical Distribution of Injected Oxidants Within Saturated Soils for Three Injection Strategies. Proceedings, Third International Conference on Oxidation and Reduction Technologies for In Situ Treatment of Soil and Groundwater, San Diego, CA, USA, October 24–28.

    Google Scholar 

  • Gates DD, Siegrist RL. 1995. In situ chemical oxidation of trichloroethylene using hydrogen peroxide. J Environ Eng 121:639–644.

    Article  CAS  Google Scholar 

  • Gillham RW. 1993. Cleaning Halogenated Contaminants from Groundwater. U.S. Patent No. 5,266,213.

    Google Scholar 

  • Guay DF, Cole BJW, Fort Jr RC, Genco JM, Hausman MC. 2000. Mechanisms of oxidative degradation of carbohydrates during oxygen delignification. I. Reaction of photochemically generated hydroxyl radicals with methyl b-D-glucoside. J Wood Chem Technol 20:375–394.

    Article  CAS  Google Scholar 

  • Hoag GE, Chhedda PV, Woody BA, Dobbs GM. 2000. Chemical Oxidation of Volatile Organic Compounds. U.S. Patent No. 6,019,548.

    Google Scholar 

  • Hoag GE, Chhedda PV, Woody BA, Dobbs GM. 2002. Chemical Oxidation of Volatile Organic Compounds. U.S. Patent No. 6,474,908.

    Google Scholar 

  • House DA. 1962. Kinetics and mechanism of oxidations by peroxydisulfate. Chem Rev 62:185–203.

    Article  CAS  Google Scholar 

  • Huang K. 2004. Treatment of TCE—Contaminated Groundwater Using Potassium Permanganate Oxidation. MSc Thesis, National Sun-Yat Sen University, Taiwan, Republic of China.

    Google Scholar 

  • Isotec. 2007. Modified Fenton’s Reagent. http://www.insituoxidation.com/modified-fentons.htm. Accessed June 11, 2009.

  • Jiayang CS, Makram T, Venosa AD. 1996. Abiotic reduction of 2,4-dinitrotoluene in the presence of sulfide minerals under anoxic conditions. Water Sci Technol 34:25–33.

    Google Scholar 

  • Johnson TL, Scherer MM, Tratnyek PG. 1996. Kinetics of halogenated organic compound degradation by iron metal. Environ Sci Technol 30:2634–2640.

    Article  CAS  Google Scholar 

  • Kennedy LG, Whallon A, Everett JW. 2006. Biogeochemical Reductive Dechlorination in Organic Mulch Permeable Reactive Barriers Under Natural and Engineered Conditions. Proceedings, Fifth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 22–25, Paper No. C-52.

    Google Scholar 

  • Knight D. 2005. Hydraulic Fracturing Delivery of EHCâ„¢. Proceedings, ORTs-4 Conference, Chicago, IL, USA. October 24–27.

    Google Scholar 

  • Kriegman-King MR. Reinhard M. 1994. Transformation of carbon tetrachloride by pyrite in aqueous solution. Environ Sci Technol 28:692–700.

    Article  Google Scholar 

  • Lee MD, Lieberman MT, Beckwith W, Borden RC, Everett J, Kennedy L. 2002. Pilots to Enhance Trichloroethene Reductive Dechlorination and Ferrous Sulfide Abiotic Transformation. Proceedings, Seventh International Conference on In Situ and On Site Bioremediation, San Diego, CA, USA, Paper No. K-14.

    Google Scholar 

  • Lenntech. 2007a. Ozone Overview. http://www.lenntech.com/systems/ozone/overview/ozone-overview.htm. Accessed June 11, 2009.

  • Lenntech. 2007b. Ozone Reaction Mechanisms. http://www.lenntech.com/library/ozone/reaction/ozone-reaction-mechanisms.htm. Accessed June 11, 2009.

  • Lenntech. 2007c. Ozone Decomposition. http://www.lenntech.com/library/ozone/decomposition/ozone-decomposition.htm. Accessed June 11, 2009.

  • Leung SW, Watts RJ, Miller GC. 1992. Degradation of perchloroethylene by Fenton’s reagent: Speciation and pathway. J Environ Qual 21:377–381.

    Article  CAS  Google Scholar 

  • Li XD, Schwartz FW. 2004. In Situ Chemical Oxidation of Contaminated Ground Water: Permanganate Reactive Barrier System for the Long-Term Treatment Of Contaminants. In Proceedings, Environmental and Waste Management: Advancements Through the Environmental Management Science Program, American Chemical Society, Anaheim, CA, USA, March 28–April 1.

    Google Scholar 

  • Lowry GV. 2007. Groundwater Remediation Using Nanoparticles. In Wiesner M, Bottero F, eds, Environmental Nanotechnology: Applications and Impacts of Nanomaterials. McGraw-Hill, New York, NY, USA, pp 297–333.

    Google Scholar 

  • Masten SJ, Davies SHR. 1994. The use of ozone to degrade organic contaminants in wastewaters. Environ Sci Technol 28:180–185.

    Article  Google Scholar 

  • Matheson LJ, Tratnyek RG. 1994. Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28:2045–2053.

    Article  CAS  Google Scholar 

  • Montgomery JH. 1996. Groundwater Chemicals Desk Reference. CRC Press, Boca Raton, FL, USA. 1345 p.

    Google Scholar 

  • Mueller J. 2004. Reductive Dechlorination of Organic Solvents in Groundwater Using Controlled-Release Carbon and ZVI. Proceedings, Third International Conference on Oxidation and Reduction Technologies for In-Situ Treatment of Soil and Groundwater, San Diego, CA, USA.

    Google Scholar 

  • NASA (U.S. National Aeronautics and Space Administration). 2007. Emulsified Zero-Valent Iron. http://nasa.rti.org/ksc/Remediation/ezvi.cfm. Accessed June 11, 2009.

  • NRC (National Research Council). 2003. Natural Attenuation for Groundwater Remediation. National Academies Press, Washington, DC, USA.

    Google Scholar 

  • Orth WS, Gillham RW. 1996. Dechlorination of trichloroethene in aqueous solution using Fe0. Environ Sci Technol 30:66–71.

    Article  CAS  Google Scholar 

  • Ozone Solutions, Inc. 2007. Ozone Properties. http://www.ozoneapplications.com/info/ozone_properties.htm.

  • Petigara BR, Blough NV, Mignerey AC. 2002. Mechanisms of hydrogen peroxide decomposition in soils. Environ Sci Technol 36:639–645.

    Article  CAS  Google Scholar 

  • Pignatello JJ, Sun Y. 1992. Chemical treatment of pesticide wastes. Evaluation of iron(III) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circumneutral pH. J Agr Food Chem 40:322–327.

    Article  Google Scholar 

  • Post JE. 1999. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc Natl Acad Sci USA 96:3447–3454.

    Article  CAS  Google Scholar 

  • Pugh JR. 1999. In Situ Remediation of Soils Containing Organic Contaminants Using the Electromigration of Peroxysulfate Ions. U.S. Patent No. 5,976,348.

    Google Scholar 

  • Ravikmur JX, Gurol M. 1994. Chemical oxidation of chlorinated organics by hydrogen peroxide in the presence of sand. Environ Sci Technol 28:394–400.

    Article  Google Scholar 

  • Raymond RL, Brown RA, Norris RD, ONeill ET. 1986. Stimulation of Biooxidation Processes in Subterranean Formations. U.S. Patent No. 4,588,506.

    Google Scholar 

  • Redox Tech. 2007. In Situ Soil Blending. http://www.redox-tech.com/in_situ_blending.htm. Accessed June 11, 2009.

  • Renato B, Rosaria BM, Daprile L. 2004. Application of H2O2 lifetime as an indicator of TCE fenton-like oxidation in soils. J Hazard Mater 107:97–102.

    Article  Google Scholar 

  • Rice RG. 1981. Ozone for the Treatment of Hazardous Materials. American Institute of Chemical Engineers (AIChE) Symposium Series 77(209):79–107.

    CAS  Google Scholar 

  • Richards P. 1998. USACE Design Guide 110-345-117, Chapter 2, pp 12–18.

    Google Scholar 

  • Robinson D, Skladany G, Brown RA. 2002. Increasing Ozone Efficiency by Pulsed Operation. Proceedings, ORTs-2 Conference, Toronto, Ontario, Canada, November 17–21.

    Google Scholar 

  • Scherer MM. 2005. Abiotic Mechanisms Involved in Monitored Natural Attenuation. Presented at SERDP/ESTCP Partners in Environmental Technology Technical Symposium & Workshop, Washington, DC, USA, November.

    Google Scholar 

  • Schnarr M, Truax C, Farquhar G, Hood E, Gonullu T, Stickney B. 1998. Laboratory and controlled field experiments using potassium permanganate to remediate trichloroethylene and perchloroethylene DNAPLs in porous media, J Contam Hydrol 29:205–224.

    Article  CAS  Google Scholar 

  • Schnell D. 2004. Injection of Emulsified Zero Valent Iron for DNAPL Treatment. Proceedings, ORTs-3 Conference, San Diego, CA, USA. October 24–28.

    Google Scholar 

  • Seech AG. 1995. Method for Dehalogenation and Degradation of Halogenated Organic Contaminants. U.S. Patent No. 5,411,664.

    Google Scholar 

  • Sethi DS, Sessa FC, Kinsman LJ, Block PA. 2009. Treatment of Environmental Contaminants. U.S. Patent 7,524,141.

    Google Scholar 

  • Siegrist RL, Lowe KS, Murdoch LC, Case TL, Pickering DA. 1999. In situ oxidation by fracture emplaced reactive solids. J Environ Eng 125:429–440.

    Article  CAS  Google Scholar 

  • Siegrist RL, Urynowicz MA, West OR, Crimi ML, Lowe KS. 2001. Principles and Practices of In Situ Chemical Oxidation Using Permanganate. Battelle Press, Columbus, OH, USA. 336 p.

    Google Scholar 

  • Siegrist RL, Crimi ML, Munakata-Marr J, Illangasekare T, Lowe K, Van Cuyk S, Dugan P, Heiderscheidt J, Jackson S, Petri B, Sahl J, Seitz S. 2006. Reaction and Transport Processes Controlling In Situ Chemical Oxidation of DNAPLs. SERDP Project CU-1290 Final Report. SERDP, Arlington, VA, USA. November. http://www.estcp.org/viewfile.cfm?Doc=ER%2D1290%2DFR%2Epdf. Accessed June 21, 2009.

  • Skladany G, Brown RA. 2006. Mechanisms of the In Situ Ozonation of Recalcitrant Organics. Proceedings, Fifth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 22–25, Paper No. A-74.

    Google Scholar 

  • Stevenson FJ. 1982. Humus Chemistry: Genesis, Composition, Reactions. John Wiley and Sons, New York, NY, USA.

    Google Scholar 

  • Sweeny KH. 1980. Treatment of Reducible Halohydrocarbon Containing Aqueous Stream. U.S. Patent No. 4,219,419.

    Google Scholar 

  • Szecsody JE, Fruchter JS, Williams MD, Vermeul VR, Sklarew D. 2004. In situ chemical reduction of aquifer sediments: Enhancement of reactive iron phases and TCE dechlorination. Environ Sci Technol 38:4656–4663

    Article  CAS  Google Scholar 

  • Teel AL, Finn DD, Schmidt JT, Cutler LM, Watts RJ. 2007. Rates of trace mineral-catalyzed decomposition of hydrogen peroxide. J Environ Eng 133:853–858.

    Article  CAS  Google Scholar 

  • The Texas State Historical Association. 2001. The Handbook of Texas Online, Uranium Mining. http://www.tshaonline.org/handbook/online/articles/UU/dku1.html. Accessed June 26, 2009.

  • Thomson NR, Xu X, Sra K. 2006. An Improved Understanding of In Situ Chemical Oxidation. Project CU1289 Interim Report. Strategic Environmental Research and Development Program (SERDP), Arlington, VA, USA, November.

    Google Scholar 

  • Truax CT. 1993. Investigation of the In-Situ Potassium Permanganate Oxidation of Residual DNAPLs Located below the Groundwater Table. PhD Dissertation, University of Waterloo, Waterloo, Ontario, Canada.

    Google Scholar 

  • US Peroxide. 2007a. Reference Library Peroxide Applications: Fenton’s Reagent. http://www.h2o2.com/applications/industrialwastewater/fentonsreagent.html. Accessed June 11, 2009.

  • US Peroxide. 2007b. Introduction to Hydrogen Peroxide. http://www.h2o2.com/intro/properties.html. Accessed June 11, 2009.

  • USEPA (U.S. Environmental Protection Agency). 1995. In Situ Remediation Technology Status Report: EPA Treatment Walls. EPA 542-K-94-004. April.

    Google Scholar 

  • Vella PA, Veronda B. 1994. Oxidation of trichloroethylene: A comparison of potassium permanganate and Fenton’s reagent. Third International Symposium on Chemical Oxidation. In In Situ Chemical Oxidation for the Nineties, Vol 3. Technomic Publishing Co., Inc. Lancaster, PA, USA, pp. 62–73.

    Google Scholar 

  • Vermeul VR, Williams MD, Evans Jr JC, JR, Szecsody JE, Bjornstad BN, Liikala TL. 2000. In Situ Redox Manipulation Proof-of-Principle Test at the Fort Lewis Logistics Center. PNNL-13357 Final Report, Pacific Northwest National Laboratory, Richland, WA, USA.

    Google Scholar 

  • Verschueren K. 2001. Handbood of Environmental Data on Organic Chemicals, 4th ed. Wiley Interscience, New York, NY, USA. 2416 p.

    Google Scholar 

  • Vogel TM, Criddle CS, McCarty PL. 1987. Transformations of halogenated aliphatic compounds. Environ Sci Technol 21:722–736.

    Article  CAS  Google Scholar 

  • Waldemer RH, Tratnyek PG. 2006a. Kinetics of contaminant degradation by permanganate. Environ Sci Technol 40:1055–1061.

    Article  CAS  Google Scholar 

  • Waldemer PH, Tratnyek PG. 2006b. In Situ Chemical Oxidation. Oregon Graduate Institute, Center for Groundwater Research web page, Figure 4. http://cgr.ebs.ogi.edu/isco/. Accessed June 26, 2009.

  • Ward CH, Thomas JM, Fiorenza S, Rifai HS, Bedient PB, Armstrong JM, Wilson JT, Raymond RL. 1988. A Quantitative Demonstration of the Raymond Process for In Situ Biorestoration of Contaminated Aquifers. Proceedings, National Water Well Association (NWWA)/American Petroleum Institute (API) Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection, and Restoration, 2:723–743.

    Google Scholar 

  • Wiedemeier TH, Swanson MA, Moutouz DE, Gordon EK, Wilson JT, Wilson BH, Kampbell DH, Haas PE, Miller RN, Hansen JE, Chapelle FH. 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. EPA/600/R-98/128. National Risk Management Research Laboratory, Office of Research and Development, USEPA, Ada, OK, USA, September.

    Google Scholar 

  • Wilson JT. 2003. Abiotic Reactions May Be the Most Important Mechanism in Natural Attenuation of Chlorinated Solvents. AFCEE Technology Transfer Workshop, Brooks City-Base, San Antonio, TX, USA. February 24–27.

    Google Scholar 

  • Watts RJ. 2006. Improved Understanding of Fenton-like Reactions for the In Situ Remediation of Contaminated Groundwater Including Treatment of Sorbed Contaminants and Destruction of DNAPLs. Project CU-1288 Final Report. SERDP, Arlington, VA, USA. September.

    Google Scholar 

  • Zhao L, Davis Jr JG, Young VY. 1990. Effect of dispersed manganese oxides on the decomposition of permanganate solutions. Langmuir 6:168–172.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brown, R.A. (2010). Chemical Oxidation and Reduction for chlorinated Solvent Remediation. In: Stroo, H., Ward, C. (eds) In Situ Remediation of Chlorinated Solvent Plumes. SERDP/ESTCP Environmental Remediation Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1401-9_15

Download citation

Publish with us

Policies and ethics