Skip to main content

Circadian Neural Networks

  • Chapter
  • First Online:
  • 1753 Accesses

Part of the book series: Protein Reviews ((PRON,volume 12))

Abstract

In contrast to the detailed descriptions of intracellular mechanisms for circadian rhythm generation across disparate species, our understanding of the rules for connecting and synchronizing the circadian oscillators is comparatively sleight. Here, we review the recent advances from model organisms which have highlighted the key cells and pathways that participate in circadian timekeeping. We limit this review to discussions of neuronal circadian clocks, their inputs and outputs. We organize the chapter as we see the archetypal circadian system is structured: neurons form rhythm-generating nodes which are connected in order that they synchronize to one another and produce coherent output timing signals. These networked circadian oscillators entrain to environmental timing cues through input pathways and coordinately drive rhythmic behaviors through output pathways. We highlight evidence for rhythmic modulation of the input pathways (gates or Zeitnehmers) and the other mechanisms which affect the coordination of the circadian network. We conclude by featuring those areas we believe offer good opportunities to advance the main lines of inquiry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tei H, Okamura H, Shigeyoshi Y, Fukuhara C, Ozawa R, Hirose M et al (1997) Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389:512–516

    Article  PubMed  CAS  Google Scholar 

  2. Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC (1997) RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90:1003–1011

    Article  PubMed  CAS  Google Scholar 

  3. Yu W, Hardin PE (2006) Circadian oscillators of Drosophila and mammals. J Cell Sci 119:4793–4795

    Article  PubMed  CAS  Google Scholar 

  4. Van Gelder RN, Herzog ED, Schwartz WJ, Taghert PH (2003) Circadian rhythms: in the loop at last. Science 300:1534–1535

    Article  PubMed  CAS  Google Scholar 

  5. Renn SC, Park JH, Rosbash M, Hall JC, Taghert PH (1999) A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99:791–802

    Article  PubMed  CAS  Google Scholar 

  6. Taghert PH, Shafer OT (2006) Mechanisms of clock output in the Drosophila circadian pacemaker system. J Biol Rhythms 21:445–457

    Article  PubMed  CAS  Google Scholar 

  7. Vosko AM, Schroeder A, Loh DH, Colwell CS (2007) Vasoactive intestinal peptide and the mammalian circadian system. Gen Comp Endocrinol 152:165–175

    Article  PubMed  CAS  Google Scholar 

  8. Li JD, Hu WP, Boehmer L, Cheng MY, Lee AG, Jilek A et al (2006) Attenuated circadian rhythms in mice lacking the prokineticin 2 gene. J Neurosci 26:11615–11623

    Article  PubMed  CAS  Google Scholar 

  9. Antle MC, Silver R (2005) Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci 28:145–151

    Article  PubMed  CAS  Google Scholar 

  10. LeSauter J, Silver R (1999) Localization of a suprachiasmatic nucleus subregion regulating locomotor rhythmicity. J Neurosci 19:5574–5585

    PubMed  CAS  Google Scholar 

  11. Moore RY, Silver R (1998) Suprachiasmatic nucleus organization. Chronobiol Int 15:475–487

    Article  PubMed  CAS  Google Scholar 

  12. Nitabach MN, Taghert PH (2008) Organization of the Drosophila circadian control circuit. Curr Biol 18:R84–R93

    Article  PubMed  CAS  Google Scholar 

  13. Michel S, Geusz ME, Zaritsky JJ, Block GD (1993) Circadian rhythm in membrane conductance expressed in isolated neurons. Science 259:239–241

    Article  PubMed  CAS  Google Scholar 

  14. Shafer OT, Helfrich-Forster C, Renn SC, Taghert PH (2006) Reevaluation of Drosophila melanogaster’s neuronal circadian pacemakers reveals new neuronal classes. J Comp Neurol 498:180–193

    Article  PubMed  Google Scholar 

  15. Helfrich-Forster C (2005) Organization of endogenous clocks in insects. Biochem Soc Trans 33:957–961

    Article  PubMed  CAS  Google Scholar 

  16. Zhao J, Kilman VL, Keegan KP, Peng Y, Emery P, Rosbash M et al (2003) Drosophila clock can generate ectopic circadian clocks. Cell 113:755–766

    Article  PubMed  CAS  Google Scholar 

  17. Stoleru D, Peng Y, Agosto J, Rosbash M (2004) Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431:862–868

    Article  PubMed  CAS  Google Scholar 

  18. Murad A, Emery-Le M, Emery P (2007) A subset of dorsal neurons modulates circadian behavior and light responses in Drosophila. Neuron 53:689–701

    Article  PubMed  CAS  Google Scholar 

  19. Stoleru D, Nawathean P, Fernandez ML, Menet JS, Ceriani MF, Rosbash M (2007) The Drosophila circadian network is a seasonal timer. Cell 129:207–219

    Article  PubMed  CAS  Google Scholar 

  20. Tanoue S, Krishnan P, Chatterjee A, Hardin PE (2008) G protein-coupled receptor kinase 2 is required for rhythmic olfactory responses in Drosophila. Curr Biol 18:803–807

    Article  PubMed  CAS  Google Scholar 

  21. Tanoue S, Krishnan P, Krishnan B, Dryer SE, Hardin PE (2004) Circadian clocks in antennal neurons are necessary and sufficient for olfaction rhythms in Drosophila. Curr Biol 14:638–649

    Article  PubMed  CAS  Google Scholar 

  22. Plautz JD, Kaneko M, Hall JC, Kay SA (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278:1632–1635

    Article  PubMed  CAS  Google Scholar 

  23. Kowalska E, Brown SA (2007) Peripheral clocks: keeping up with the master clock. Cold Spring Harb Symp Quant Biol 72:301–305

    Article  PubMed  CAS  Google Scholar 

  24. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  PubMed  CAS  Google Scholar 

  25. Hastings MH, Maywood ES, Reddy AB (2008) Two decades of circadian time. J Neuroendocrinol 20:812–819

    Article  PubMed  CAS  Google Scholar 

  26. Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69:1583–1586

    Article  PubMed  CAS  Google Scholar 

  27. Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiamatic lesions in rat. Brain Res 42:201–206

    Article  PubMed  CAS  Google Scholar 

  28. Guo H, Brewer JM, Lehman MN, Bittman EL (2006) Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker. J Neurosci 26:6406–6412

    Article  PubMed  CAS  Google Scholar 

  29. Meyer-Bernstein EL, Jetton AE, Matsumoto SI, Markuns JF, Lehman MN, Bittman EL (1999) Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140:207–218

    Article  PubMed  CAS  Google Scholar 

  30. LeSauter J, Silver R (1998) Output signals of the SCN. Chronobiol Int 15:535–550

    Article  PubMed  CAS  Google Scholar 

  31. Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978

    Article  PubMed  CAS  Google Scholar 

  32. Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706

    Article  PubMed  CAS  Google Scholar 

  33. Ikeda M, Sugiyama T, Wallace CS, Gompf HS, Yoshioka T, Miyawaki A et al (2003) Circadian dynamics of cytosolic and nuclear Ca(2+) in single suprachiasmatic nucleus neurons. Neuron 38:253–263

    Article  PubMed  CAS  Google Scholar 

  34. Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M et al (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302:1408–1412

    Article  PubMed  CAS  Google Scholar 

  35. Abe M, Herzog ED, Yamazaki S, Straume M, Tei H, Sakaki Y et al (2002) Circadian rhythms in isolated brain regions. J Neurosci 22:350–356

    PubMed  CAS  Google Scholar 

  36. Chaudhury D, Wang LM, Colwell CS (2005) Circadian regulation of hippocampal long-term potentiation. J Biol Rhythms 20:225–236

    Article  PubMed  Google Scholar 

  37. Yang Z, Emerson M, Su HS, Sehgal A (1998) Response of the timeless protein to light correlates with behavioral entrainment and suggests a nonvisual pathway for circadian photoreception. Neuron 21:215–223

    Article  PubMed  CAS  Google Scholar 

  38. Shafer OT, Rosbash M, Truman JW (2002) Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster. J Neurosci 22:5946–5954

    PubMed  CAS  Google Scholar 

  39. Peng Y, Stoleru D, Levine JD, Hall JC, Rosbash M (2003) Drosophila free-running rhythms require intercellular communication. PLoS Biol 1:13

    Article  Google Scholar 

  40. Lin Y, Stormo GD, Taghert PH (2004) The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system. J Neurosci 24:7951–7957

    Article  PubMed  CAS  Google Scholar 

  41. Lear BC, Merrill CE, Lin JM, Schroeder A, Zhang L, Allada R (2005) A G protein-coupled receptor, groom-of-PDF, is required for PDF neuron action in circadian behavior. Neuron 48:221–227

    Article  PubMed  CAS  Google Scholar 

  42. Wu Y, Cao G, Pavlicek B, Luo X, Nitabach MN (2008) Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin. PLoS Biol 6:e273

    Article  PubMed  CAS  Google Scholar 

  43. Nitabach MN, Blau J, Holmes TC (2002) Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 109:485–495

    Article  PubMed  CAS  Google Scholar 

  44. Cao G, Nitabach MN (2008) Circadian control of membrane excitability in Drosophila melanogaster lateral ventral clock neurons. J Neurosci 28:6493–6501

    Article  PubMed  CAS  Google Scholar 

  45. Yoshii T, Wulbeck C, Sehadova H, Veleri S, Bichler D, Stanewsky R et al (2009) The neuropeptide pigment-dispersing factor adjusts period and phase of Drosophila’s clock. J Neurosci 29:2597–2610

    Article  PubMed  CAS  Google Scholar 

  46. Lin Y, Han M, Shimada B, Wang L, Gibler TM, Amarakone A et al (2002) Influence of the period-dependent circadian clock on diurnal, circadian, and aperiodic gene expression in Drosophila melanogaster. Proc Natl Acad Sci U S A 99:9562–9567

    Article  PubMed  CAS  Google Scholar 

  47. Liu C, Weaver DR, Strogatz SH, Reppert SM (1997) Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei. Cell 91:855–860

    Article  PubMed  CAS  Google Scholar 

  48. Herzog ED, Takahashi JS, Block GD (1998) Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nat Neurosci 1:708–713

    Article  PubMed  CAS  Google Scholar 

  49. Honma S, Shirakawa T, Katsuno Y, Namihira M, Honma K-I (1998) Circadian periods of single suprachiasmatic neurons in rats. Neurosci Lett 250:157–160

    Article  PubMed  CAS  Google Scholar 

  50. Ciarleglio CM, Gamble KL, Axley JC, Strauss BR, Cohen JY, Colwell CS et al (2009) Population encoding by circadian clock neurons organizes circadian behavior. J Neurosci 29:1670–1676

    Article  PubMed  CAS  Google Scholar 

  51. Maywood ES, Reddy AB, Wong GK, O’Neill JS, O’Brien JA, McMahon DG et al (2006) Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol 16:599–605

    Article  PubMed  CAS  Google Scholar 

  52. Inagaki N, Honma S, Ono D, Tanahashi Y, Honma KI (2007) Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity. Proc Natl Acad Sci U S A 104:7664–7669

    Article  PubMed  CAS  Google Scholar 

  53. Jagota A, De la Iglesia HO, Schwartz WJ (2000) Morning and evening circadian oscillations in the suprachiasmatic nucleus in vitro. Nat Neurosci 3:372–376

    Article  PubMed  CAS  Google Scholar 

  54. Hamada T, LeSauter J, Venuti JM, Silver R (2001) Expression of period genes: rhythmic and non-rhythmic compartments of the suprachiasmatic nucleus pacemaker. J Neurosci 21:7742–7750

    PubMed  CAS  Google Scholar 

  55. Yan L, Hochstetler KJ, Silver R, Bult-Ito A (2003) Phase shifts and Per gene expression in mouse suprachiasmatic nucleus. Neuroreport 14:1247–1251

    Article  PubMed  CAS  Google Scholar 

  56. Jobst EE, Allen CN (2002) Calbindin neurons in the hamster suprachiasmatic nucleus do not exhibit a circadian variation in spontaneous firing rate. Eur J NeuroSci 16:2469–2474

    Article  PubMed  Google Scholar 

  57. Lee HS, Nelms JL, Nguyen M, Silver R, Lehman MN (2003) The eye is necessary for a circadian rhythm in the suprachiasmatic nucleus. Nat Neurosci 6:111–112

    Article  PubMed  CAS  Google Scholar 

  58. Aton SJ, Herzog ED (2005) Come together, right...now: synchronization of rhythms in a mammalian circadian clock. Neuron 48:531–534

    Article  PubMed  CAS  Google Scholar 

  59. Brown TM, Piggins HD (2007) Electrophysiology of the suprachiasmatic circadian clock. Prog Neurobiol 82:229–255

    Article  PubMed  CAS  Google Scholar 

  60. Kriegsfeld LJ, LeSauter J, Silver R (2004) Targeted microlesions reveal novel organization of the hamster suprachiasmatic nucleus. J Neurosci 24:2449–2457

    Article  PubMed  CAS  Google Scholar 

  61. Kriegsfeld LJ, Mei DF, Yan L, Witkovsky P, LeSauter J, Hamada T et al (2008) Targeted mutation of the calbindin D28K gene disrupts circadian rhythmicity and entrainment. Eur J NeuroSci 27:2907–2921

    Article  PubMed  Google Scholar 

  62. Roenneberg T, Chua EJ, Bernardo R, Mendoza E (2008) Modelling biological rhythms. Curr Biol 18:R826–R835

    Article  PubMed  CAS  Google Scholar 

  63. Bernard S, Gonze D, Cajavec B, Herzel H, Kramer A (2007) Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus. PLoS Comput Biol 3:e68

    Article  PubMed  CAS  Google Scholar 

  64. To TL, Henson MA, Herzog ED, Doyle FJ III (2007) A molecular model for intercellular synchronization in the mammalian circadian clock. Biophys J 92:3792–3803

    Article  PubMed  CAS  Google Scholar 

  65. Antle MC, Foley DK, Foley NC, Silver R (2003) Gates and oscillators: a network model of the brain clock. J Biol Rhythms 18:339–350

    Article  PubMed  Google Scholar 

  66. Antle MC, Foley NC, Foley DK, Silver R (2007) Gates and oscillators II: zeitgebers and the network model of the brain clock. J Biol Rhythms 22:14–25

    Article  PubMed  Google Scholar 

  67. Herzog ED (2007) Neurons and networks in daily rhythms. Nat Rev Neurosci 8:790–802

    Article  PubMed  CAS  Google Scholar 

  68. Schmidt C, Collette F, Cajochen C, Peigneux P (2007) A time to think: circadian rhythms in human cognition. Cogn Neuropsychol 24:755–789

    Article  PubMed  Google Scholar 

  69. Kuhlman SJ, McMahon DG (2006) Encoding the ins and outs of circadian pacemaking. J Biol Rhythms 21:470–481

    Article  PubMed  CAS  Google Scholar 

  70. Prinz AA, Thirumalai V, Marder E (2003) The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. J Neurosci 23:943–954

    PubMed  CAS  Google Scholar 

  71. Traub RD, Kopell N, Bibbig A, Buhl EH, LeBeau FE, Whittington MA (2001) Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J Neurosci 21:9478–9486

    PubMed  CAS  Google Scholar 

  72. Goldman MS, Golowasch J, Marder E, Abbott LF (2001) Global structure, robustness, and modulation of neuronal models. J Neurosci 21:5229–5238

    PubMed  CAS  Google Scholar 

  73. Blanchardon E, Grima B, Klarsfeld A, Chelot E, Hardin PE, Preat T et al (2001) Defining the role of Drosophila lateral neurons in the control of circadian rhythms in motor activity and eclosion by targeted genetic ablation and PERIOD protein overexpression. Eur J NeuroSci 13:871–888

    Article  PubMed  CAS  Google Scholar 

  74. Hyun S, Lee Y, Hong ST, Bang S, Paik D, Kang J et al (2005) Drosophila GPCR Han is a receptor for the circadian clock neuropeptide PDF. Neuron 48:267–278

    Article  PubMed  CAS  Google Scholar 

  75. Mertens I, Vandingenen A, Johnson EC, Shafer OT, Li W, Trigg JS et al (2005) PDF receptor signaling in Drosophila contributes to both circadian and geotactic behaviors. Neuron 48:213–219

    Article  PubMed  CAS  Google Scholar 

  76. Shafer OT, Kim DJ, Dunbar-Yaffe R, Nikolaev VO, Lohse MJ, Taghert PH (2008) Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. Neuron 58:223–237

    Article  PubMed  CAS  Google Scholar 

  77. Parisky KM, Agosto J, Pulver SR, Shang Y, Kuklin E, Hodge JJ et al (2008) PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron 60:672–682

    Article  PubMed  CAS  Google Scholar 

  78. Shang Y, Griffith LC, Rosbash M (2008) Feature Article: Light-arousal and circadian photoreception circuits intersect at the large PDF cells of the Drosophila brain. Proc Natl Acad Sci U S A 105:19587–19594

    Article  PubMed  Google Scholar 

  79. Chung BY, Kilman VL, Keath JR, Pitman JL, Allada R (2009) The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila. Curr Biol 19:386–390

    Article  PubMed  CAS  Google Scholar 

  80. Albus H, Vansteensel MJ, Michel S, Block GD, Meijer JH (2005) A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr Biol 15:886–893

    Article  PubMed  CAS  Google Scholar 

  81. Aton SJ, Huettner JE, Straume M, Herzog ED (2006) GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons. Proc Natl Acad Sci U S A 103:19188–19193

    Article  PubMed  CAS  Google Scholar 

  82. Block GD, Geusz M, Khalsa SBS, Michel S, Whitmore D (1996) Circadian rhythm generation, expression and entrainment in a molluscan model system. Prog Brain Res 111:93–102

    Article  PubMed  CAS  Google Scholar 

  83. Long MA, Jutras MJ, Connors BW, Burwell RD (2005) Electrical synapses coordinate activity in the suprachiasmatic nucleus. Nat Neurosci 8:61–66

    Article  PubMed  CAS  Google Scholar 

  84. Ashmore LJ, Sehgal A (2003) A fly’s eye view of circadian entrainment. J Biol Rhythms 18:206–216

    Article  PubMed  Google Scholar 

  85. Benito J, Houl JH, Roman GW, Hardin PE (2008) The blue-light photoreceptor CRYPTOCHROME is expressed in a subset of circadian oscillator neurons in the Drosophila CNS. J Biol Rhythms 23:296–307

    Article  PubMed  Google Scholar 

  86. Yoshii T, Todo T, Wulbeck C, Stanewsky R, Helfrich-Forster C (2008) Cryptochrome is present in the compound eyes and a subset of Drosophila’s clock neurons. J Comp Neurol 508:952–966

    Article  PubMed  CAS  Google Scholar 

  87. Rieger D, Stanewsky R, Helfrich-Forster C (2003) Cryptochrome, compound eyes, Hofbauer-Buchner eyelets, and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster. J Biol Rhythms 18:377–391

    Article  PubMed  CAS  Google Scholar 

  88. Miyasako Y, Umezaki Y, Tomioka K (2007) Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of Drosophila circadian locomotor rhythms. J Biol Rhythms 22:115–126

    Article  PubMed  Google Scholar 

  89. Glaser FT, Stanewsky R (2007) Synchronization of the Drosophila circadian clock by temperature cycles. Cold Spring Harb Symp Quant Biol 72:233–242

    Article  PubMed  CAS  Google Scholar 

  90. Low KH, Lim C, Ko HW, Edery I (2008) Natural variation in the splice site strength of a clock gene and species-specific thermal adaptation. Neuron 60:1054–1067

    Article  PubMed  CAS  Google Scholar 

  91. Pittendrigh CS, Bruce VG, Kaus P (1958) On the significance of transients in daily rhythms. Proc Natl Acad Sci U S A 44:965–973

    Article  PubMed  CAS  Google Scholar 

  92. Yoshii T, Funada Y, Ibuki-Ishibashi T, Matsumoto A, Tanimura T, Tomioka K (2004) Drosophila cry(b) mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light. J Insect Physiol 50:479–488

    Article  PubMed  CAS  Google Scholar 

  93. Rieger D, Shafer OT, Tomioka K, Helfrich-Forster C (2006) Functional analysis of circadian pacemaker neurons in Drosophila melanogaster. J Neurosci 26:2531–2543

    Article  PubMed  CAS  Google Scholar 

  94. Herzog ED, Huckfeldt RM (2003) Circadian entrainment to temperature, but not light, in the isolated suprachiasmatic nucleus. J Neurophysiol 90:763–770

    Article  PubMed  Google Scholar 

  95. Brown S, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12:1574

    Article  PubMed  CAS  Google Scholar 

  96. Stephan FK (2002) The “other” circadian system: food as a Zeitgeber. J Biol Rhythms 17:284–292

    PubMed  Google Scholar 

  97. Oishi K, Shiota M, Sakamoto K, Kasamatsu M, Ishida N (2004) Feeding is not a more potent Zeitgeber than the light-dark cycle in Drosophila. Neuroreport 15:739–743

    Article  PubMed  Google Scholar 

  98. Schibler U (2009) The 2008 pittendrigh/aschoff lecture: peripheral phase coordination in the Mammalian circadian timing system. J Biol Rhythms 24:3–15

    Article  PubMed  CAS  Google Scholar 

  99. Mistlberger RE (2006) Circadian rhythms: perturbing a food-entrained clock. Curr Biol 16:R968–R969

    Article  PubMed  CAS  Google Scholar 

  100. Storch KF, Weitz CJ (2009) Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock. Proc Natl Acad Sci U S A 106:6808–6813

    Article  PubMed  Google Scholar 

  101. Waddington LE, Harbour VL, Barry-Shaw J, Renteria DL, Robinson B, Stewart J et al (2006) Restricted access to food, but not sucrose, saccharine, or salt, synchronizes the expression of Period2 protein in the limbic forebrain. Neuroscience 144:402–411

    Article  CAS  Google Scholar 

  102. Williams JA, Sehgal A (2001) Molecular components of the circadian system in Drosophila. Ann Rev Physiol 63:729–755

    Article  CAS  Google Scholar 

  103. Gerhold LM, Wise PM (2006) Vasoactive intestinal polypeptide regulates dynamic changes in astrocyte morphometry: impact on gonadotropin releasing hormone neurons. Endocrinology 147:2197–21202

    Article  PubMed  CAS  Google Scholar 

  104. Kennett JE, Poletini MO, Freeman ME (2008) Vasoactive intestinal polypeptide modulates the estradiol-induced prolactin surge by entraining oxytocin neuronal activity. Brain Res 1196:65–73

    Article  PubMed  CAS  Google Scholar 

  105. Loh DH, Abad C, Colwell CS, Waschek JA (2008) Vasoactive intestinal peptide is critical for circadian regulation of glucocorticoids. Neuroendocrinology 88:246–255

    Article  PubMed  CAS  Google Scholar 

  106. Chaudhury D, Loh DH, Dragich JM, Hagopian A, Colwell CS (2008) Select cognitive deficits in vasoactive intestinal peptide deficient mice. BMC Neurosci 9:63

    Article  PubMed  CAS  Google Scholar 

  107. McWatters HG, Bastow RM, Hall A, Millar AJ (2000) The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature 408:716–720

    Article  PubMed  CAS  Google Scholar 

  108. Akashi M, Hayasaka N, Yamazaki S, Node K (2008) Mitogen-activated protein kinase is a functional component of the autonomous circadian system in the suprachiasmatic nucleus. J Neurosci 28:4619–4623

    Article  PubMed  CAS  Google Scholar 

  109. Shinohara K, Honma S, Katsuno Y, Abe H, Honma K-I (1995) Two distinct oscillators in the rat suprachiasmatic nucleus in vitro. Proc Natl Acad Sci U S A 92:7396–7400

    Article  PubMed  CAS  Google Scholar 

  110. Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8:476–483

    PubMed  CAS  Google Scholar 

  111. Hughes AT, Fahey B, Cutler DJ, Coogan AN, Piggins HD (2004) Aberrant gating of photic input to the suprachiasmatic circadian pacemaker of mice lacking the VPAC2 receptor. J Neurosci 24:3522–3526

    Article  PubMed  CAS  Google Scholar 

  112. Ewer J, Frisch B, Hamblen-Coyle MJ, Rosbash M, Hall JC (1992) Expression of the period clock gene within different cell types in the brain of Drosophila adults and mosaic analysis of these cells’ influence on circadian behavioral rhythms. J Neurosci 12:3321–3349

    PubMed  CAS  Google Scholar 

  113. Suh J, Jackson FR (2007) Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 55:435–447

    Article  PubMed  CAS  Google Scholar 

  114. Prolo LM, Takahashi JS, Herzog ED (2005) Circadian rhythm generation and entrainment in astrocytes. J Neurosci 25:404–408

    Article  PubMed  CAS  Google Scholar 

  115. Grima B, Chélot E, Xia R, Rouyer F (2004) Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431: 869–873

    Google Scholar 

  116. Yang Z, Sehgal A (2001) Role of molecular oscillations in generating behavioral rhythms in Drosophila. Neuron 29:453–467

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik D. Herzog .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Herzog, E.D., Taghert, P.H. (2010). Circadian Neural Networks. In: Albrecht, U. (eds) The Circadian Clock. Protein Reviews, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1262-6_8

Download citation

Publish with us

Policies and ethics