Skip to main content

Alkaline Membrane Fuel Cells

  • Reference work entry

Definition

The disruptive approach of applying alkaline anion-exchange membranes (AEMs) in alkaline membrane fuel cells (AMFCs) potentially meets several of the challenges facing other approaches to low temperature fuel cells, including the otherwise high catalyst and fuel costs. Thus, the move to alkaline conditions at the electrodes opens the potential use of a range of low cost non-precious-metal catalysts, as opposed to the otherwise necessary use of platinum-group-metal (PGM) based catalysts. Further, it becomes possible to consider hydrogen fuels containing substantial amounts of impurities, whereas an acidic membrane approach (that in proton exchange membrane fuel cell s, PEMFCs) requires high-purity gases and PGM catalysts.

Introduction

The first entry in the AMFC area was published in 2005 [1], since when activity and interest have continued to increase steeply internationally. Zeng and Varcoe have recently reviewed the developing patent literature [2]. Some researchers have...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AEM:

Alkaline (anion) exchange membrane.

AFC:

Alkaline fuel cell

AMFC:

Alkaline membrane fuel cell (also known as APEMFC)

DMFC:

Direct methanol fuel cell

MEA:

Membrane electrode assembly

OCV:

Open circuit voltage

PEM:

Proton-exchange membrane

PEMFC:

Proton-exchange membrane fuel cell

QA:

Quaternary ammonium

RG-AEM:

Radiation-grafted alkaline (anion) exchange membrane

Bibliography

Primary Literature

  1. Varcoe JR, Slade RCT (2005) Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5:189–200

    Article  CAS  Google Scholar 

  2. Zeng R, Varcoe JR (2011) Alkaline anion exchange membranes for fuel cells – a patent review. Recent Pat Chem Eng 4:93–115

    Article  CAS  Google Scholar 

  3. Schulze M, Gülzow E (2004) Degradation of nickel anodes in alkaline fuel cells. J Power Sources 127:252–263

    Article  CAS  Google Scholar 

  4. Wagner N, Schulze M, Gülzow E (2004) Long term investigations of silver cathodes for alkaline fuel cells. J Power Sources 127:264–272

    Article  CAS  Google Scholar 

  5. McLean GF, Niet T, Prince-Richard S, Djilali N (2002) An assessment of alkaline fuel cell technology. Int J Hydrogen Energy 27:507–526

    Article  CAS  Google Scholar 

  6. Cifrain M, Kordesch KV (2004) Advances, aging mechanism and lifetime in AFCs with circulating electrolytes. J Power Sources 127:234–242

    Article  CAS  Google Scholar 

  7. Gülzow E, Schulze M (2004) Long-term operation of AFC electrodes with CO2 containing gases. J Power Sources 127:243–251

    Article  CAS  Google Scholar 

  8. Zeng R, Poynton SD, Kizewski JP, Slade RCT, Varcoe JR (2010) A novel reference electrode for application in alkaline polymer electrolyte membrane fuel cells. Electrochem Commun 12:823–8355

    Article  CAS  Google Scholar 

  9. Yanagi H, Fukuta K (2008) Anion exchange membrane and ionomer for alkaline membrane fuel cells (AMFCs). Electrochem Soc Trans 16:257–262

    CAS  Google Scholar 

  10. Kizewski JP, Mudri NH, Zeng R, Poynton SD, Slade RCT, Varcoe JR (2010) Alkaline electrolytes and reference electrodes for alkaline polymer electrolyte membrane fuel cells. Electrochem Soc Trans 33:27–35

    CAS  Google Scholar 

  11. Yan JL, Hickner MA (2010) Anion exchange membranes by bromination of benzylmethyl–containing poly(sulfone)s. Macromolecules 43:2349–2356

    Article  CAS  Google Scholar 

  12. Adams LA, Poynton SD, Tamain C, Slade RCT, Varcoe JR (2008) A carbon dioxide tolerant aqueous–electrolyte–free anion–exchange membrane alkaline fuel cell. Chem Sus Chem 1:79–81

    CAS  Google Scholar 

  13. Zagorodni AA, Kotova DL, Selemenev VF (2002) Infrared spectroscopy of ion exchange resins: chemical deterioration of the resins. React Funct Polym 53:157–171

    Article  CAS  Google Scholar 

  14. Neagu V, Bunia I, Plesca I (2000) Ionic polymers – VI. Chemical stability of strong base anion exchangers in aggressive media. Polym Degrad Stab 70:463–468

    Article  Google Scholar 

  15. Sata T, Tsujimoto M, Yamaguchi T, Matsusaki K (1996) Change of anion exchange membranes in an aqueous sodium hydroxide solution at high temperature. J Membr Sci 112:161–170

    Article  CAS  Google Scholar 

  16. Soda T, Kaisha K (1972) Anion exchange membranes and their production. GB Patent 1401997

    Google Scholar 

  17. Hansen RD, Wheaton RM (1966) Separation of acid from polymers by dialysis with anion exchange membrane. US Patent 3244620

    Google Scholar 

  18. Imoto R, Kosaka Y, Shimizu A (1966) Process for manufacturing anion-exchange membranes from a graft copoloymer of SBR and a vinylpyridine reacted with an epoxy resin. US Patent 3258435

    Google Scholar 

  19. Hansen RD, Wheaton RM (1966) Separation of acid by dialysis with anion-exchange membranes. US Patent 3272737

    Google Scholar 

  20. Süser A (1973) Preparation of anion exchange membranes from cellulose sheets. US Patent 3714010

    Google Scholar 

  21. Scott, Rosedale, Moulton, Taylor, Gough (1990) Anion exchange membranes. Patent EP0382439

    Google Scholar 

  22. Altmeier P (1995) Stark basische anionenaustauschermembranen und verfahren zu deren herstellung. Patent WO9506083

    Google Scholar 

  23. Altmeier P (1998) Strongly alkaline anion exchange membranes and process for producing the same. US Patent 5746917

    Google Scholar 

  24. Ehrikhovich KJ, Viktorovna SN, Aleksandrovich FJ, Semenovich GS, Mikhajlovich AJ, Vladimirovna SI, Alekseevna JN, Fedorovich TS (1997) Method for production of anion-exchange membranes having high penetrability to chloride ion. Patent RU2074204

    Google Scholar 

  25. Jurevich TD (2007) Method for modifying anion-exchange membranes MA-40. Patent RU2303835

    Google Scholar 

  26. Aminabhavi T, Kulkarni PV, Kariduraganavar MY (2009) Ion exchange membranes, methods and processes for production thereof and uses in specific applications. US Patent 7544278

    Google Scholar 

  27. Danks TN, Slade RCT, Varcoe JR (2002) Comparison of PVDF– and FEP–based radiation–grafted alkaline anion–exchange membranes for use in low temperature portable DMFCs. J Mater Chem 12:3371–3373

    Article  CAS  Google Scholar 

  28. Danks TN, Slade RCT, Varcoe JR (2003) Alkaline anion–exchange radiation–grafted membranes for possible electrochemical application in fuel cells. J Mater Chem 13:712–721

    Article  CAS  Google Scholar 

  29. Herman H, Slade RCT, Varcoe JR (2003) The radiation–grafting of vinylbenzyl chloride onto poly(hexafluoropropylene–co–tetrafluoroethylene) films with subsequent conversion to alkaline anion–exchange membranes: optimisation of the experimental conditions and characterization. J Membr Sci 218:147–163

    Article  CAS  Google Scholar 

  30. Tzanetakis N, Varcoe J, Slade RS, Scott K (2003) Salt splitting with radiation grafted PVDF anion–exchange membrane. Electrochem Commun 5:115–119

    Article  CAS  Google Scholar 

  31. Tzanetakis N, Varcoe JR, Slade RCT, Scott K (2005) Radiation–grafted PVDF anion exchange membrane for salt splitting. Desalination 174:257–265

    Article  CAS  Google Scholar 

  32. Slade RCT, Varcoe JR (2005) Investigations of conductivity in FEP–based radiation–grafted alkaline anion–exchange membranes. Solid State Ionics 176:585–597

    Article  CAS  Google Scholar 

  33. Varcoe JR, Slade RCT (2006) An electron–beam–grafted ETFE alkaline anion–exchange membrane in metal–cation–free solid–state alkaline fuel cells. Electrochem Commun 8:839–843

    Article  CAS  Google Scholar 

  34. Varcoe JR, Slade RCT, Yee ELH, Poynton SD, Driscoll DJ, Apperley DC (2007) Poly(ethylene–co–tetrafluoroethylene)–derived radiation–grafted anion–exchange membrane with properties specifically tailored for application in metal–cation–free alkaline polymer electrolyte fuel cells. Chem Mater 19:2686–2693

    Article  CAS  Google Scholar 

  35. Chempath S, Einsla BR, Pratt LR, Macomber CS, Boncella JM, Rau JA, Pivovar BS (2008) Mechanism of tetra alkyl ammonium head group degradation in alkaline fuel cell membranes. J Phys Chem C 112:3179–3182

    Article  CAS  Google Scholar 

  36. Piana M, Boccia M, Filpi A, Flammia E, Miller HA, Orsini M, Salusti F, Santiccioloi S, Ciardelli F, Pucci A (2010) H2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non–platinum group metal cathode catalyst. J Power Sources 195:5875–5881

    Article  CAS  Google Scholar 

  37. Li YS, Zhao TS, Liang ZX (2009) Performance of alkaline electrolyte–membrane–based direct ethanol fuel cells. J Power Sources 187:387–392

    Article  CAS  Google Scholar 

  38. Kim JH, Kim HK, Hwang KT, Lee JY (2010) Performance of air–breathing direct methanol fuel cell with anion–exchange membrane. Int J Hydrogen Energy 35:768–773

    Article  CAS  Google Scholar 

  39. Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2005) Alkaline direct alcohol fuel cells using an anion exchange membrane. J Power Sources 150:27–31

    Article  CAS  Google Scholar 

  40. Li YS, Zhao TS, Liang ZX (2009) Effect of polymer binders in anode catalyst layer on performance of alkaline direct ethanol fuel cells. J Power Sources 190:223–229

    Article  CAS  Google Scholar 

  41. Fujiwara N, Siroma Z, Yamazaki SI, Ioroi T, Senoh H, Yasuda K (2008) Direct ethanol fuel cells using an anion exchange membrane. J Power Sources 185:621–626

    Article  CAS  Google Scholar 

  42. Bunazawa H, Yamazaki Y (2008) Influence of anion ionomer content and silver cathode catalyst on the performance of alkaline membrane electrode assemblies (MEAs) for direct methanol fuel cells (DMFCs). J Power Sources 182:48–51

    Article  CAS  Google Scholar 

  43. Marx D, Chandra A, Tuckerman ME (2010) Aqueous basic solutions: hydroxide solvation, structural diffusion, and comparison to the hydrated proton. Chem Rev 110:2174–2216

    Article  CAS  Google Scholar 

  44. Hibbs MR, Hickner MA, Alam TM, McIntyre SK, Fujimoto CH, Cornelius CJ (2008) Transport properties of hydroxide and proton conducting membranes. Chem Mater 20:2566–2573

    Article  CAS  Google Scholar 

  45. Robertson NJ, Kostalik HA IV, Clark TJ, Mutolo PF, Abruna HD, Coates GW (2010) Tunable high performance cross–linked alkaline anion exchange membranes for fuel cell applications. J Am Chem Soc 132:3400–3404

    Article  CAS  Google Scholar 

  46. Tanaka M, Koike M, Miyatake K, Watanabe M (2010) Anion conductive aromatic ionomers containing fluorenyl groups. Macromolecules 43:2657–2659

    Article  CAS  Google Scholar 

  47. Wang JH, Li SH, Zhang SB (2010) Novel hydroxide–conducting polyelectrolyte composed of a poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications. Macromolecules 43:3890–3896

    Article  CAS  Google Scholar 

  48. Guo ML, Fang J, Xu HK, Li W, Lu XH, Lan CH, Li KY (2010) Synthesis and characterization of novel anion exchange membranes based on imidazolium–type ionic liquid for alkaline fuel cells. J Membr Sci 362:97–104

    Article  CAS  Google Scholar 

  49. Wang JH, Zhao Z, Gong FX, Li SH, Zhang SB (2009) Synthesis of soluble poly(arylene ether sulfone) ionomers with pendant quaternary ammonium groups for anion exchange membranes. Macromolecules 42:8711–8717

    Article  CAS  Google Scholar 

  50. Tripathi BP, Kumar M, Shahi VK (2010) Organic–inorganic hybrid alkaline membranes by epoxide ring opening for direct methanol fuel cell applications. J Membr Sci 360:90–101

    Article  CAS  Google Scholar 

  51. Clark TJ, Robertson NJ, Kostalik HA IV, Lobkovsky EB, Mutolo PF, Abruna HD, Coates GW (2009) A ring–opening metathesis polymerization route to alkaline anion exchange membranes: development of hydroxide–conducting thin films from an ammonium–functionalized monomer. J Am Chem Soc 131:12888–12889

    Article  CAS  Google Scholar 

  52. Shevchenko VV, Gumennaya MA (2010) Synthesis and properties of anion-exchange membranes for fuel cells. Theor Exp Chem 46:139–152

    Article  CAS  Google Scholar 

  53. Varcoe JR, Poynton SD, Slade RCT (2009) In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – fundamentals, technology and applications, vol 5, Advances in electocatalysis, materials, diagnostics and durability. Wiley, Chichester, pp 322–336

    Google Scholar 

  54. Zhou J, Unlu M, Vega J, Kohl P (2009) Anionic polysulfoneionomers and membranes containing fluorenyl groups for anionic fuel cells. J Power Sources 190:285–292

    Article  CAS  Google Scholar 

  55. Fang J, Shen PK (2006) Quaternizedpoly(phthalazinon ether sulfone ketone) membrane for anion exchange membrane fuel cells. J Membr Sci 285:317–322

    Article  CAS  Google Scholar 

  56. Zeng QH, Liu QL, Broadwell I, Zhu AM, Xiong Y, Tu XP (2010) Anion exchange membranes based onquaternized polystyrene–block–poly(ethylene–ran–butylene)–block–polystyrene for direct methanol alkaline fuel cells. J Membr Sci 349:237–243

    Article  CAS  Google Scholar 

  57. Hou HY, Sun GQ, He RH, Wu ZM, Sun BY (2008) Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell. J Power Sources 182:95–99

    Article  CAS  Google Scholar 

  58. Hou HY, Sun GQ, He RH, Sun BY, Jin W, Liu H, Xin Q (2008) Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell. Int J Hydrogen Energy 33:7172–7176

    CAS  Google Scholar 

  59. Modestov AD, Tarasevich MR, Leykin AY, Filimonov VY (2009) MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non–platinum electrodes. J Power Sources 188:502–506

    Article  CAS  Google Scholar 

  60. Xing B, Savadogo O (2000) Hydrogen oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline–doped polybenzimidazole (PBI). Electrochem Commun 2:697–702

    Article  CAS  Google Scholar 

  61. Savadogo O (2004) Emerging membranes for electrochemical systems. Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications. J Power Sources 127:135–161

    Article  CAS  Google Scholar 

  62. Yang CC, Lin CT, Chiu SJ (2008) Preparation of the PVA/HAP composite polymer membrane for alkaline DMFC application. Desalination 233:137–146

    Article  CAS  Google Scholar 

  63. Yang CC, Chiu SJ, Chien WC, Chiu SS (2010) Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells. J Power Sources 195:2212–2219

    Article  CAS  Google Scholar 

  64. Yang CC, Chiu SJ, Lee KT, Chien WC, Lin CT, Huang CA (2008) Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. J Power Sources 184:44–51

    Article  CAS  Google Scholar 

  65. Yang CC (2007) Synthesis and characterization of the cross–linked PVA/TiO2 composite polymer membrane for alkaline DMFC. J Membr Sci 288:51–60

    Article  CAS  Google Scholar 

  66. Wan Y, Peppley B, Creber KAM, Bui VT, Halliop E (2006) Preliminary evaluation of an alkaline chitosan–based membrane fuel cell. J Power Sources 162:105–113

    Article  CAS  Google Scholar 

  67. Wan Y, Creber KAM, Peppley B, Bui VT (2006) Chitosan–based electrolyte composite membranes II. Mechanical properties and ionic conductivity. J Membr Sci 284:331–338

    Article  CAS  Google Scholar 

  68. Wan Y, Creber KAM, Peppley B, Bui VT (2006) Chitosan–based solid electrolyte composite membranes I. Preparation and characterization. J Membr Sci 280:666–674

    Article  CAS  Google Scholar 

  69. Vassal N, Salmon E, Fauvarque JF (2000) Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH–co–EO). Electrochim Acta 45:1527–1532

    Article  CAS  Google Scholar 

  70. Yang CC, Chiu SJ, Chien WC (2006) Development of alkaline direct methanol fuel cells based on cross–linked PVA polymer membranes. J Power Sources 162:21–29

    Article  CAS  Google Scholar 

  71. Fauvarque JF (1996) Alkaline solid polymer electrolyte, electrode and electrochemical generator containing such as electrolyte. US Patent 5569559

    Google Scholar 

  72. Varcoe JR, Slade RCT, Lam How Yee E (2006) An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion–exchange membranes in fuel cells. Chem Commun :1428–29

    Google Scholar 

  73. Lu SF, Pan J, Huang AB, Zhuang L, Lu JT (2008) Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc Natl Acad Sci 105:20611–20614

    Article  CAS  Google Scholar 

  74. Park JS, Park SH, Yim SD, Yoon YG, Lee WY, Kim CS (2008) Performance of solid alkaline fuel cells employing anion–exchange membranes. J Power Sources 178:620–626

    Article  CAS  Google Scholar 

  75. Tang DP, Pan J, Lu SF, Zhuang L, Lu JT (2010) Alkaline polymer electrolyte fuel cells: principle, challenges, and recent progress. Sci China Chem 53:357–364

    Article  CAS  Google Scholar 

  76. Gu S, Cai R, Luo T, Chen ZW, Sun MW, Liu Y, He GH, Yan YS (2009) A soluble and highly conductive ionomer for high–performance hydroxide exchange membrane fuel cells. Angew Chem Int Ed 48:6499–6502

    Article  CAS  Google Scholar 

  77. Asazawa K, Yamada K, Tanaka H (2007) Fuel cell. Patent EP1843416

    Google Scholar 

  78. Tanaka H, Yamada K, Asazawa K (2004) Fuel cell. Patent EP1460705

    Google Scholar 

  79. Asazawa K, Yamada K, Tanaka H (2009) Fuel cell. Patent EP2133946

    Google Scholar 

  80. Poynton SD, Kizewski JP, Slade RCT, Varcoe JR (2010) Novel electrolyte membranes and non–Pt catalysts for low temperature fuel cells. Solid State Ionics 181:219–222

    Article  CAS  Google Scholar 

  81. Ramaswamy N, Mukerjee S (2010) Electrocatalysis of oxygen reduction on non-precious metallic centers at high pH environments. ECS Trans 33:1777–1785

    Article  CAS  Google Scholar 

  82. Asazawa K, Yamamoto K, Yamada K, Tanaka H, Matsumura D, Tamura K, Nishihata Y, Atanassov P (2010) XAFS analysis of unpyrolyzedCoPPyC oxygen reduction catalyst for anion-exchange membrane fuel cells (AMFC). Electrochem Soc Trans 33:1751–1755

    CAS  Google Scholar 

  83. Jeong B, Uhm S, Lee J (2010) Iron-cobalt modified electrospun carbon nanofibers as oxygen reduction catalysts in alkaline fuel cells. Electrochem Soc Trans 33:1757–1767

    CAS  Google Scholar 

  84. Li XG, Popov BN, Kawahara T, Yanagi H (2010) Recent advances in non-precious metal catalysts for oxygen reduction reaction in fuel cells. Electrochem Soc Trans 33:1769–1776

    CAS  Google Scholar 

  85. Takeguchi T, Takahashi H, Yamanaka T, Nakamura A, Ueda W (2010) Development of direct-ethanol anion-conducting solid alkaline inorganic fuel cell. Electrochem Soc Trans 33:1847–1851

    CAS  Google Scholar 

  86. Nakamura A, Takahashi H, Takeguchi T, Yamanaka T, Wang Q, Uchimoto Y, Ueda W (2010) Effect of reduction temperature of Fe-Co-Ni/C catalyst on the solid alkaline fuel cell performance. Electrochem Soc Trans 33:1817–1821

    CAS  Google Scholar 

  87. Wang Y, Li L, Hu L, Zhuang L, Lu J, Xu B (2003) A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochem Commun 5:662–666

    Article  CAS  Google Scholar 

  88. Yu EH, Krewer U, Scott K (2010) Principles and materials aspects of direct alkaline alcohol fuel cells. Energies 3:1499–1528

    Article  CAS  Google Scholar 

  89. Scherer GG, Büchi FN, Gupta G (Paul Scherrer Institut, Switzerland) (1997) US Patent 5656386

    Google Scholar 

  90. Stone C, Steck A (Ballard Power Systems Inc., Canada) (2002) US Patent 6359019

    Google Scholar 

  91. Stone C, Steck A (Ballard Power Systems Inc., Canada) (2000) PCT Patent 01/58576

    Google Scholar 

  92. Fauvarque J-F (CNAM Paris and Electricité de France) (1996) US Patent 5569559

    Google Scholar 

  93. Yao W, Tsai T, Chang Y-M, Chen M (Reveo Inc., USA) (2001) US Patent 6183914

    Google Scholar 

  94. Yao W, Tsai T, Chang Y-M, Chen M (Reveo Inc., USA) (2000) PCT Patent 00/16422

    Google Scholar 

  95. Yao W, Tsai T, Chang Y-M, Chen M (Reveo Inc., USA) (2000) Patent EP1116291

    Google Scholar 

  96. Jaouen F (ABB AB and Volvo, Sweden) (2002) PCT Patent 02/35633

    Google Scholar 

  97. Lu J, Zhuang L (Wuhan University) (2003) Patent CN1402370

    Google Scholar 

  98. Divisek J (Forschungszentrum Jülich, Germany) (2001) PCT Patent 01/61776

    Google Scholar 

  99. Divisek J (Forschungszentrum Jülich, Germany) (2001) Patent EP1256142

    Google Scholar 

  100. Yu J, Yi B, Xing D, Liu F, Shao Z, Fu Y, Zhang H (2003) Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells. Phys Chem Chem Phys 5:611–615

    Article  CAS  Google Scholar 

  101. Hübner G, Roduner E (1999) EPR investigation of \( {\text{H}}{{\text{Q}}^\bullet } \) radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes. J Mater Chem 9:409–418

    Article  Google Scholar 

  102. Panchenko A, Dilger H, Möller E, Sixt T, Roduner E (2004) In situ EPR investigation of polymer electrolyte membrane degradation in fuel cell applications. J Power Sources 127:325–330

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom for contracts with our team in the area of development of alkaline membrane technology for alkaline membrane fuel cells and associated electrical energy generation: GR/S60709/01, EP/F027524/1, EP/G009929/2 and EP/H025340/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. T. Slade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Slade, R.C.T., Kizewski, J.P., Poynton, S.D., Zeng, R., Varcoe, J.R. (2012). Alkaline Membrane Fuel Cells. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_154

Download citation

Publish with us

Policies and ethics