Skip to main content

Protein–Nanodiamond Complexes for Cellular Surgery

Nanodiamond and Its Bioapplications Using the Spectroscopic Properties as Probe for Biolabeling

  • Chapter
  • First Online:
Book cover Nanodiamonds

Abstract

Nanodiamonds have attracted great attentions lately for their superb physical/chemical properties and promising bio/medical applications. This versatile material in its nanoscale exhibits little cytotoxicity in the cellular level and is considered to be most biocompatible among carbon derivatives. Its surface can be easily modified; so, various functional groups can be generated to allow conjugation of various biomolecules of interest for applications. Nanodiamonds thus provide a convenient platform for bio and medical applications. Among the various useful characteristics of nanodiamods, their spectroscopic properties, such as Raman and fluorescence, are ideal for use as a biocompatible marker to probe the biointeractions. In this chapter, the possibilities of using nanodiamond as a probe for biolabeling/cellular surgery are discussed. For this purpose, functionalization and characterization methods of nanodiamond surfaces are developed. The interaction of proteins with targeted bioobjects are investigated in various models to test the feasibility of ND to use as nano-bio-probe. Further applications using the developed nano-bio-probe as a surgical tool in the nano scale is also proposed. This developed methods of using nanodiamond as a nano-bio-probe will provide a biocompatible biolabel in bio and medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poh WC, Loh KP, Zhang WD, Triparthy S, Ye JS, Sheu FS (2004) Langmuir 20:5484–5492

    Article  Google Scholar 

  2. Carlise JA (2004) Nat Mater 3:668–669

    Article  Google Scholar 

  3. Wang J (2005) Electroanalysis 17:7–14

    Article  Google Scholar 

  4. Sotiropoulou SG, Gavalas V, Vamvakaki V, Chaniotakis NA (2003) Biosens Bioelectron 18:211–215

    Article  Google Scholar 

  5. Ushizawa KS, Mitsumori Y, Machinami T, Ueda T, Ando T (2002) Chem Phys Lett 351:105–108

    Article  Google Scholar 

  6. Chung P-H, Perevedentseva E, Tu J-S, Chang CC, Cheng C-L (2006) Diam Relat Mater 15:622–625

    Article  Google Scholar 

  7. Cheng C-L, Chen C-F, Shaio W-C, Tsai D-S, Chen K-H (2005) Diam Relat Mater 14:1455–1462

    Article  Google Scholar 

  8. Huang H, Pierstorff E, Osawa E, Ho D (2007) Nano Lett 7:3305–3314

    Article  Google Scholar 

  9. Huang H, Pierstorff E, Osawa E, Ho D (2008) ACS Nano 2:203–212

    Article  Google Scholar 

  10. Krüger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii AE, Vul’ AYa, Ōsawa E (2005) Carbon 43:1722–1730

    Article  Google Scholar 

  11. Zhong YL, Loh KP, Midya A, Chen ZK (2008) Chem Mater 20:3137–3144

    Article  Google Scholar 

  12. Clare TL, Clare BH, Nichols BM, Abbott NL, Hamers RJ (2005) Langmuir 21:6344–6355

    Article  Google Scholar 

  13. Yang W, Auciello O, Butler JE, Cai W, Carlisle JA, Gerbi JE, Gruen DM, Knickerbocker T, Lasseter TL, Russell JN, Smith LM, Hamers RJ (2002) Nat Mater 1:253–257

    Article  Google Scholar 

  14. Knickerbocker T, Strother T, Schwartz MP, Russell JN, Butler J Jr, Smith LM, Hamers RJ (2003) Langmuir 19:1938–1942

    Article  Google Scholar 

  15. Tu J-S, Perevedentseva E, Chung P-H, Cheng C-L (2006) J Chem Phys 125:174713–174717

    Article  Google Scholar 

  16. Warheit DB (2004) Mater Today 7:32–35

    Article  Google Scholar 

  17. Colvin VL (2003) Nat Biotechnol 21:1166–1170

    Article  Google Scholar 

  18. Nel A, Xia T, Mädler L, Li N (2006) Science 311:622–627

    Article  Google Scholar 

  19. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Environ Sci Technol 39:1378–1383

    Article  Google Scholar 

  20. Schrand AM, Huang H, Carlson C, Schlager JJ, Ōsawa E, Hussain SM, Dai L (2007) J Phys Chem B 111:2–7

    Article  Google Scholar 

  21. Liu K-K, Cheng C-L, Chang CC, Chao J-I (2007) Nanotechnology 18:325102

    Article  Google Scholar 

  22. Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC (2005) J Am Chem Soc 127:17604–17605

    Article  Google Scholar 

  23. Mulvaney SP, Musick MD, Keating CD, Natan MJ (2003) Langmuir 19:4784–4790

    Article  Google Scholar 

  24. Chao J-I, Perevedentseva E, Chung P-H, Liu K-K, Cheng C-Y, Chang CC, Cheng C-L (2007) Biophys J 93:2199–2208

    Article  Google Scholar 

  25. Krueger A, Ozawa M, Jarre G, Liang Y, Stegk J, Lu L (2007) Phys Stat Sol A 204:2881–2887

    Article  Google Scholar 

  26. Huang LCL, Chang H-C (2004) Langmuir 20:5879–5884

    Article  Google Scholar 

  27. Kulakova II (2004) Phys Solid State 46:636–643

    Article  Google Scholar 

  28. Huang TS, Tzeng Y, Liu YK, Chen YC, Walker KR, Guntupalli R, Liu C (2004) Diam Relat Mater 13:1098–1102

    Article  Google Scholar 

  29. Puzyr’ AP, Pozdnyakova IO, Bondar’ VS (2004) Phys Solid State 46:761–763

    Article  Google Scholar 

  30. Kossovsky N, Gelman A, Hnatyszyn HJ, Rajguru S, Garrell RL, Torbati S, Freitas SSF, Chow G-M (1995) Bioconjug Chem 6:507–511

    Article  Google Scholar 

  31. Roach P, Farrar D, Perry CC (2005) J Am Chem Soc 127:8168–8173

    Article  Google Scholar 

  32. Ando T, Inoue S, Ishii M, Kamo M, Sato Y, Yamada O, Nakano T (1993) J Chem Soc Faraday Trans 89:749–751

    Article  Google Scholar 

  33. Xu X, Yu Z, Zhu Y, Wang B (2005) J Solid State Chem 178:688–693

    Article  Google Scholar 

  34. Diomaev AK, Braiman MS (1995) J Am Chem Soc 117:10572–10574

    Article  Google Scholar 

  35. Nie B, Stutzman J, Xie A (2005) Biophys J 88:2833–2847

    Article  Google Scholar 

  36. ElMiloudy K, Benygzer M, Djadoun S, Sbirrazzuoli N, Geribaldi S (2005) Macromol Symp 230:39–50

    Article  Google Scholar 

  37. Dong J, Ozaki Y, Nakashima K (1997) Macromolecules 30:1111 Sukhishvili S, Granik S (2002) Macromolecules 35: 301; Kim B, Peppas N (2002) Macromolecules 35: 9545

    Article  Google Scholar 

  38. Chen Y-R, Chang H-C, Cheng C-L, Wang C-C, Jiang JC (2003) J Chem Phys 119:10626–10632

    Article  Google Scholar 

  39. Diomaev AK (2001) Biochemistry (Moscow) 66:1269–1276

    Article  Google Scholar 

  40. Chu C-D, Perevedentseva E, Yeh V, Cai S-J, Tu J-S, Cheng C-L (2009) Diam Relat Mater 18:76–81

    Article  Google Scholar 

  41. Ivanov-Omskii VI, Andreev AA, Frolova GS (1999) Phys Solid State 33:569–573 in Russian

    Google Scholar 

  42. Coates J (2000) In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 10815–10873

    Google Scholar 

  43. Tran NE, Lambrakos SG (2005) Nanotechnology 16:639–646

    Article  Google Scholar 

  44. Chen CW, Lee MH (2004) Nanotechnology 15:480–484

    Article  MathSciNet  Google Scholar 

  45. Ravagnan L, Piseri P, Bruzzi M, Miglio S, Bongiorno G, Baserga A, Casari CS, Bassi AL, Lenardi C, Yamaguchi Y, Wakabayashi T, Bottani CE, Milani P (2007) Phys Rev Lett 98:216103

    Article  Google Scholar 

  46. Casari CS, Bassi AL, Ravagnan L, Siviero F, Lenardi C, Piseri P, Bongiorno G, Bottani CE, Milani P (2004) Phys Rev B 69:075422

    Article  Google Scholar 

  47. Dischler B, Bubenzer A, Koidl P (1983) Solid State Commun 48:105–108

    Article  Google Scholar 

  48. Ravagnan L, Siviero F, Lenardi C, Piseri P, Barborini E, Milani P, Casari CS, Bassi AL, Bottani CE (2002) Phys Rev Lett 89:285506

    Article  Google Scholar 

  49. Butenko YV, Kuznetsov VL, Paukshtis EA, Stadnichenko AI, Mazov IN, Moseenkov SI, Boronin AI, Kosheev SV (2006) Fuller Nanotub Carbon Nanostruct 14:557–564

    Article  Google Scholar 

  50. Chung P-H, Perevedentseva E, Cheng C-L (2007) Surf Sci 601:3866–3870

    Article  Google Scholar 

  51. Davies G, Lawson SC, Collins AT, Mainwood A, Sharp S (1992) Phys Rev B 46:13157–13170

    Article  Google Scholar 

  52. Iakoubovskii K, Adriaenssens GJ (2000) Phys Rev B 61(15):10174–10182

    Article  Google Scholar 

  53. Prawer S, Devir AD, Balfour LS, Kalish R (1995) Appl Opt 34:636–640

    Article  Google Scholar 

  54. Mita Y (1996) Phys Rev B 53:11360

    Article  Google Scholar 

  55. Jelezko F, Tietz C, Gruber A, Popa I, Nizovtsev A, Kilin S, Wrachtrup J (2001) Single Mol 2:255–260

    Article  Google Scholar 

  56. Yu S-J, Kang M-W, Chang H-C, Chen K-M, Yu Y-C (2005) J Am Chem Soc 127:17605

    Google Scholar 

  57. Zhao FL, Gong Z, Liang SD, Xu NS, Deng SZ, Chen J, Wang HZ (2004) Appl Phys Lett 85:914

    Article  Google Scholar 

  58. Kompan ME, Terukov EI, Gordeev SK (1997) Fiz Tverd Tela (Phys Solid State) 39:2156

    Google Scholar 

  59. Aleksenski AE, Osipov VY, Vul’ AY, Ber BY, Smirnov AB, Melekhin VG, Adriaenssens GJ, Iakoubovskii K (2001) Phys Solid State 43:145–150

    Article  Google Scholar 

  60. Gildenblat GS, Grot SA, Badzian A (1991) Proc IEEE 79:647–668

    Article  Google Scholar 

  61. Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C (1997) Science 276:2012–2014

    Article  Google Scholar 

  62. Chang HC, Chen KC, Kwok S (2006) Astrophysics J. 639:L63–L66

    Article  Google Scholar 

  63. Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) Protein Sci 4:2411–2423

    Article  Google Scholar 

  64. Pócsik I, Koós M (2001) Diam Relat Mater 10:161–167

    Article  Google Scholar 

  65. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) Nat Biotechnol 22:969–976

    Article  Google Scholar 

  66. Uchida H, Banba S, Wada M, Matsumoto K, Ikeda M, Naito N, Tanaka E, Honjo M (1999) J Mol Endocrinol 23:347–353

    Article  Google Scholar 

  67. Beattie J, Phillips K, Shand JH, Brocklehurst S, Flint DJ, Allan GJ (2002) Mol Cell Biochem 238:137–143

    Article  Google Scholar 

  68. Chang C-C, Tsai C-T, Chang C-Y (2002) Protein Eng 15:437–441

    Article  Google Scholar 

  69. Chang CC, Cheng MS, Su YC, Kan LS (2003) J Biomol Struct Dyn 21:247–255

    Google Scholar 

  70. Grabarek Z, Gergely J (1990) Anal Biochem 185:131–135

    Article  Google Scholar 

  71. Perevedentseva E, Cheng C-Y, Chung P-H, Tu J-S, Hsieh Y-H, Cheng C-L (2007) Nanotechnology 18:315102 7pp

    Article  Google Scholar 

  72. Mol JA, Garderen EV, Selman PJ, Wolfswinkel J, Rijinberk A, Rutteman GR (1995) J Clin Invest 95:2028–2034

    Article  Google Scholar 

  73. Ilkbahar YN, Wu K, Thordarson G, Talamantes F (1995) Endocrinology 136:386–392

    Article  Google Scholar 

  74. Lobie PE (1999) In: Bengtsson BA (ed) Signal transduction through the growth hormone receptor, growth hormone. Kluwer Academic Publishers, Boston, pp 17–35

    Google Scholar 

  75. Feldman M, Ruan W, Cunningham BC, Wells JA, Kleinberg DL (1993) Endocrinology 133:1602–1608

    Article  Google Scholar 

  76. Wu X, Wan M, Li G, Xu Z, Chen C, Liu F, Li J (2006) Eur J Cancer 42:888–894

    Article  Google Scholar 

  77. Banerjee HN, Zhang L (2007) Mol Cell Biochem 295:237–240

    Article  Google Scholar 

  78. Knight DS, White WB (1989) J Mater Res 4:385–393

    Article  Google Scholar 

  79. Havel HA, Chao RS, Haskell RJ, Thamann TJ (1989) Anal Chem 61:642–650

    Article  Google Scholar 

  80. Notinger I, Verrier S, Haque S, Polak JM, Hench LL (2003) Biopolymers 72:230–240

    Article  Google Scholar 

  81. Cheng C-Y, Perevedentsevs E, Tu J-S, Chung P-H, Cheng C-L, Liu K-K, Chao J-I, Chen P-H, Chang C-C (2007) Appl Phys Lett 90:163903

    Article  Google Scholar 

  82. Colosi P, Wong K, Leong SR, Wood WI (1993) J Biochem Mol Biol 268:12617–12623

    Google Scholar 

  83. Zhou Z, Wang G, Xu Z (2006) Appl Phys Lett 88:034104

    Article  Google Scholar 

  84. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) J Phys Condens Matter 14:R597–R624

    Article  Google Scholar 

  85. Lin K-W, Cheng C-L, Chang H-C (1998) Chem Mater 10:1735–1737

    Article  Google Scholar 

  86. Chang C-C, Chen P-H, Chu H-L, Lee T-C, Chou C-C, Chao J-I, Su C-Y, Chen J-S, Tsai J-S, Tsai C-M, Ho Y-P, Sun K-W, Cheng C-L, Chen F-R (2008) Appl Phys Lett 93:033905

    Article  Google Scholar 

  87. Garderen EV, Schalken JA (2002) Mol Cell Endocrinol 197:153–165

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Pei-Hsin Chen for Cell culture; Ching-Chung Chou for laser treatment, ND–GH complex synthesis; Hsueh-Liang Chu for growth hormone preparation; Tzu-Cheng Lee for some of ND functionalization works. The authors also appreciate the financial support of this research by National Science Council of Taiwan, ROC in a National Nano Science and Technology program under Grant No. NSC-(95-97)-2120-M-259-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chao, J.I. et al. (2010). Protein–Nanodiamond Complexes for Cellular Surgery. In: Ho, D. (eds) Nanodiamonds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0531-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0531-4_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0530-7

  • Online ISBN: 978-1-4419-0531-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics