Skip to main content

Design of Nanodiamond Based Drug Delivery Patch for Cancer Therapeutics and Imaging Applications

  • Chapter
  • First Online:
Nanodiamonds

Abstract

The onset and recurrence of cancer is one of the major biomedical quandaries of our time. Currently, surgically removed tumors often leave behind a residual cancer cell population. As not all cancer cells can be detected to ensure complete tumor removal, systemic and widespread chemotherapy is usually injected into the ­bloodstream to attempt to target the remaining cancer cells. This can result in ­devastating side effects because the cancer drugs flow freely throughout the bloodstream with a reduced ability to target-specific regions. This treatment kills both healthy and unhealthy cells, and thus the quality of life of cancer patients is significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int ed 40:4128–4158

    Article  Google Scholar 

  2. Michalet X, Pinaud FF, Bentolila LA, Tsay M, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells and in vivo imaging. Diagnostics and beyond. Science 307:538–544

    Article  Google Scholar 

  3. Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862

    Article  Google Scholar 

  4. Jeong B, Bae YH, Kim SW (2000) Drug release from biodegradable injective thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J Control Rel 63:155–163

    Article  Google Scholar 

  5. Gombotz WR, Pettit DK (1995) Biodegradable polymers for protein and peptide drug delivery. Bioconj Chem 6:332–351

    Article  Google Scholar 

  6. Huang H, Pierstorff E, Osawa E, Ho D (2007) Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett 7:3305–3314

    Article  Google Scholar 

  7. Huang H, Pierstorff E, Osawa E, Ho D (2008) Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm. ACS Nano 2:203–212

    Article  Google Scholar 

  8. Osawa E (2007) Recent progress and perspectives in single-digit nanodiamond. Diamond Relat Mater 16(12):2018–2022

    Article  Google Scholar 

  9. Dolmatov VY (2006) Applications of detonation nanodiamond. Ultrananocryst; Diamond, 477–527

    Google Scholar 

  10. Yeap WS, Tan YY, Loh KP (2008) Using detonation nanodiamond for the specific capture of glycoproteins. Anal Chem 80:4659–4665

    Article  Google Scholar 

  11. Sakurai H, Ebihara N, Osawa E, Takahashi M, Fujinami M, Oguma K (2006) Adsorption characteristics of a nanodiamond for oxoacid anions and their application to the selective preconcentration of tungstate in water samples. Anal Sci 22:357–362

    Article  Google Scholar 

  12. Krueger A, Stegk J, Liang Y, Lu L, Jarre G (2008) Biotinylated nanodiamond: simple and efficient functionalization of detonation diamond. Langmuir 24(8):4200–4204

    Article  Google Scholar 

  13. Krueger A, Liang Y, Jarre G, Stegk J (2006) Surface functionalization of detonation diamond suitable for biological applications. J Mater Chem 16(24):2322–2328

    Article  Google Scholar 

  14. Barnard AS (2006) Theory and modeling of nanocarbon phase stability. Diamond and Related Materials 15(2–3):285–291

    Article  Google Scholar 

  15. Barnard AS (2008) Self-assembly in nanodiamond agglutinates. J Mater Chem 18(34):4038–4041

    Article  Google Scholar 

  16. Mielke SL, Belytschko T, Schatz GC (2007) Nanoscale fracture mechanics. Annu Rev Phys Chem 58:185–209

    Article  Google Scholar 

  17. Paci JT, Belytschko T, Schatz GC (2006) Mechanical properties of ultrananocrystalline diamond prepared in a nitrogen-rich plasma: a theoretical study. Phys Rev B 74:184112-1–184112-9

    Google Scholar 

  18. Osawa E (2008) Monodisperse single nanodiamond particulates. Pure Appl Chem 80(7):1365–1379

    Article  Google Scholar 

  19. Barnard AS, Vlasov II, Ralchenko VG (2009) Predicting the distribution and stability of photoactive defect centers in nanodiamond biomarkers. J Mater Chem 19(3):360–365

    Article  Google Scholar 

  20. Barnard AS, Sternberg M (2008) Vacancy induced structural changes in diamond nanoparticles. Journal of Computational and Theoretical Nanoscience 5(11):2089–2095

    Article  Google Scholar 

  21. Chang Y-R, Lee H-Y, Chen K, Chang C-C, Tsai D-S, Fu C-C, Lim T-S, Tzeng Y-K, Fang C-Y, Han C-C, Chang H-C, Fann W (2008) Mass production and dynamic imaging of fluorescent nanodiamonds. Nature Nanotechnology 3(5):284–288

    Article  Google Scholar 

  22. Fu C-C, Lee H-Y, Chen K, Lim T-S, Wu H-Y, Lin P-K, Wei P-K, Tsao P-H, Chang H-C, Fann W (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci USA 104(3):727–732

    Article  Google Scholar 

  23. Sumant AV, Grierson DS, Gerbi JE, Birrell J, Lanke UD, Auciello O, Carlisle JA, Carpick RW (2005) Toward the ultimate tribological interface: surface chemical optimization and nanoscale single asperity properties of ultrananocrystalline diamond. Adv Mat 17:1039–1045

    Article  Google Scholar 

  24. Naguib NN, Elam JW, Birrell J, Wang J, Grierson DS, Kabius B, Hiller JM, Sumant AV, Carpick RW, Auciello O, Carlisle JA (2006) The use of tungsten interlayers to enhance the initial nucleation and conformality of ultrananocrystalline diamond (UNCD) thin films. Chem Phys Lett 430:345–50

    Article  Google Scholar 

  25. Sumant AV, Gilbert PUPA, Grierson DS, Konicek AR, Abrecht M, Butler JE, Feygelson T, Rotter SS, Carpick RW (2007) Surface composition, bonding, and morphology in the nucleation and growth of ultra-thin, high quality nanocrystalline diamond films. Diam Rel Mat 16:718–24

    Article  Google Scholar 

  26. Lee W, Jang S, Kim MJ, Myoung J-M (2008) Interfacial interactions and dispersion relations in carbon-aluminium nanocomposite systems. Nanotechnology 19:285701-1–285701-13

    Google Scholar 

  27. Steager EB, Kim C-B, Kim MJ (2008) Temperature effects on swarming flagellated bacteria in microfluidic environments. J Heat Transfer 130:080908–1

    Article  Google Scholar 

  28. Kim YS, Liao KS, Jan CJ, Bergbreiter DE, Grunlan JC (2006) “Conductive thin films on functionalized polyethylene particles. Chem Mat 18:2997–3004

    Article  Google Scholar 

  29. Jan CJ, Walton MD, McConnell EP, Jang WS, Kim YS, Grunlan JC (2006) Carbon black thin films with tunable resistance and optical transparency. Carbon 44:1974–1981

    Article  Google Scholar 

  30. Ho YP, Chen HH, Leong KW, Wang TH (2006) Evaluating the intracellular stability and unpacking of DNA nanocomplexes by quantum dots-FRET. J Control Rel 116:83–89

    Article  Google Scholar 

  31. Zhang J, Zimmer JW, Howe RT, Maboudian R (2008) Characterization of boron-doped micro- and nanocrystalline diamond films deposited by wafer-scale hot filament chemical vapor deposition for MEMS applications. Diam and Rel Mat 17:23–28

    Article  Google Scholar 

  32. Discher BM, Won YY, Ege DS, Lee JC, Bates FS, Discher DE, Hammer DA (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284:1143–1146

    Article  Google Scholar 

  33. Yang Y, Zeng C, Lee LJ (2004) Three-dimensional assembly of polymer microstructures at low temperatures. Adv Mat 16:560–564

    Article  Google Scholar 

  34. Qi L, Gao X (2008) Quantum dot − amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. ACS Nano , DOI: 10.1021/nn800280r

  35. Discher DE, Ahmed F (2006) Polymersomes. Ann Rev Bio Eng 8:323–341

    Article  Google Scholar 

  36. Geng Y, Discher DE (2005) Hydrolytic shortening of polycaprolactone-block-(polyethylene oxide) worm micelles. J Am Chem Soc 127:12780–12781

    Article  Google Scholar 

  37. Ahmed F, Discher DE (2004) Controlled release from polymersome vesicles blended with PEO-PLA or related hydrolysable copolymer. J Control Rel 96:37–53

    Article  Google Scholar 

  38. Discher DE, Eisenberg A (2002) Polymer Vesicles Science 297:967–973

    Google Scholar 

  39. Lam R, Chen M, Pierstorff E, Huang H, Osawa E, Ho D (2008) Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution. ACS Nano 2:2095–2102

    Article  Google Scholar 

  40. Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Article  Google Scholar 

  41. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297:787–792

    Article  Google Scholar 

  42. Bianco A, Prato M (2003) Can carbon nanotubes be considered usefull tools for biological applications? Adv Mat 15:1765–1768

    Article  Google Scholar 

  43. Bowden T, Tabor D (1961) Friction and lubrication in solids, Japanese edition. Maruzen, Tokyo, p 27

    Google Scholar 

  44. S Mori, A Kanno, H Nanao, I Minami, E O¯sawa, Tribological performance of nanodiamond for water lubrication, Proceedings of the 3 rd International Symposium on Detonation Nanodiamonds: Technology, Properties and Applications, July 1–4, 2008, St. Petersburg, Russia, p. 21–28, Ioffe Physico-Technical Institute

    Google Scholar 

  45. O¯sawa E, Ho D, Huang H, Korobov MV, Rozhkova NN (2009) “Consequences of strong and diverse electrostatic potential field on the surface of detonation nanodiamond particles,”Diam Rel Mater, 18, doi.org/10.1016/j.diamond.2009.01.025 .

  46. Qian D, Liu WK, Zheng Q (2008) Concurrent quantum/continuum coupling analysis of nanostructures. Comput Methods Appl Mech Eng 197(41–42):3291–3323

    Article  MATH  MathSciNet  Google Scholar 

  47. Kopacz AM, Liu WK, Liu ShuQ (2008) Simulation and prediction of endothelial cell adhesion modulated by molecular engineering. Comput Meth Appl Mech Eng 197(25–28):2340–2352

    Article  MATH  MathSciNet  Google Scholar 

  48. Liu Y, Kieseok Oh, Bai JG, Chang C-L, Yeo W, Chung J-H, Lee K-H, Liu WK (2008) Manipulation of nanoparticles and biomolecules by electric field and surface tension. Comput Meth Appl Mech Eng 197(25–28):2156–2172

    Article  MATH  Google Scholar 

  49. Liu WK, Jun S, Qian D (2008) Computational nanomechanics of materials. Journal of Computational and Theoretical Nanoscience 5(970–996):2008

    Google Scholar 

  50. Liu WK, Kim Do Wan, Tang S (2007) Mathematical foundations of the immersed finite element method. Computational Mechanics 39(3):211–222

    Article  MATH  MathSciNet  Google Scholar 

  51. WK Liu, Liu Y, Farrell D, et al (2006) Immersed finite element method and applications to biological systems. Comp Meth Appl Mech Eng, 195(1722-1749),

    Google Scholar 

  52. Liu WK, Sukky J, Qian D (2006) Computational nanomechanics of materials, Handbook of theoretical and computational nanotechnology, M Reith and W Schommers (Eds). 4, 132–191, American Scientific Publishers

    Google Scholar 

  53. Liu WK, Park HS, Qian D, Karpov EG, Kadowaki H, Wagner GJ (2006) Bridging scale methods for nanomechanics and materials. Comput Meth Appl Mech Eng 195(13–16):1407–1421

    Article  MATH  MathSciNet  Google Scholar 

  54. Liu WK, Park HS, Qian D, Karpov EG, Kadowaki H, Wagner GJ (2006) Bridging scale methods for nanomechanics and materials. Computer method in applied mechanics and engineering 195:1404–1421

    MathSciNet  Google Scholar 

  55. Park HS, Karpov EG, Liu WK (2005) Non-reflecting boundary conditions for atomistic, continuum and coupled atomistic/continuum simulations. Int J Numer Meth Eng 64:237–259

    Article  MATH  MathSciNet  Google Scholar 

  56. WK Liu, HS Park, D Qian, EG Karpov, H Kadowaki, GJ Wagner. Bridging Scale Methods for Nanomechanics and Materials”, accepted for publication in Comput Meth Appl Mech Eng 2005, special issue in honor of the 60th birthday of Prof. T.J.R. Hughes.

    Google Scholar 

  57. Park HS, Karpov EG, Klein PA, Liu WK (2005) The bridging scale for two-dimensional atomistic/continuum coupling. Phil Mag 85(1):79–113

    Article  Google Scholar 

  58. Park HS, Karpov EG, Liu WK, Klein PA (2005) The bridging scale for two-dimensional atomistic/continuum coupling. Phil Mag 85(1):79–113

    Article  Google Scholar 

  59. Park HS, Karpov EG, Klein PA, Liu WK (2005) Three-dimensional bridging scale analysis of dynamic fracture. J Comput Phys 207:588–609

    Article  MATH  Google Scholar 

  60. Applied Mechanics and Enineering. 198 (15-16), pp 1327–1337, March 2009

    Google Scholar 

  61. Barnard AS, Russo SP, Snook IK (2005) J Comput Theor Nanosci 2:180

    Article  Google Scholar 

  62. AS Barnard, SP Russo, IK Snook (2003) J Chem Phys 118, 5094; AS Barnard, SP Russo, IK Snook (2003) Phys Rev B 68, 073406

    Google Scholar 

  63. AS Barnard, SP Russo, IK Snook (2003) Philos Mag Lett 83, 39; AS Barnard, SP Russo, IK Snook (2004) Diamond Relat Mater 12, 1867

    Google Scholar 

  64. Barnard AS, Zapol PJ (2004) Chem Phys 121:4276

    Google Scholar 

  65. AS Barnard, SP Russo, IK Snook (2003) Phys Rev B 68, 073406

    Article  Google Scholar 

  66. AS Barnard, SP Russo, IK Snook (2003) Int J Mod Phys B 17 (21) 3865

    Article  Google Scholar 

  67. Barnard AS, Sternberg M (2007) J Mater Chem 17:4811

    Article  Google Scholar 

  68. Barnard AS (2008) J Mater Chem 18:4038

    Article  Google Scholar 

  69. Harold P Bovenkerk, Thomas R Anthony, James F Fleischer, William F Banholzer, CVD diamond by alternating chemical reactions, US patent 5,302,231, 12 april 1994

    Google Scholar 

  70. Dieter M Gruen, Thomas G McCauley, Dan Zhou, Alan R Krauss, Tailoring nanocrystalline diamond film properties US patent, 6,592,839, 15 July 2003

    Google Scholar 

  71. Li H, Tao Xu, Chen J, Zhou H, Liu H (2003) Preparation and characterization of hydrogenated diamond-like carbon films in a dual DC-RF plasma system. J Phys D: Appl Phys 36:3183–3190

    Article  Google Scholar 

  72. Synthesis and Application of Nano-crystalline Diamond Thin Film, KISTI reports, 2005

    Google Scholar 

  73. Baik E-S, Baik Y-J, Lee SW, Jeon D (2000) Fabrication of diamond nano-whiskers. Thin Solid Films 377–378:295–298

    Article  Google Scholar 

  74. Remes Z, Kromka A, Vanecek M, Grinevich A, Hartmannova H, Kmoch S (2007) The RF plasma surface chemical modification of nanodiamond films grown on glass and silicon at low temperature. Diamond & Related Materials 16:671–674

    Article  Google Scholar 

  75. Hirakuri KK, Minorikawa T, Friedbacher G, Grasserbauer M (1997) Thin film characterization of diamond-like carbon films prepared by r.f. plasma chemical vapor deposition. Thin Solid Films 302:5–11

    Article  Google Scholar 

  76. Krueger A (2008) New carbon materials. Chem Eur J 14:1382–1390

    Article  Google Scholar 

  77. www.kurzweilai.net/meme/frame.html?main=/articles/art0632.html: How to make nano diamond.

  78. Hall P (1992) The bootstrap and edgeworth expansion. Springer Series in Statistics. Springer-Verlog, New York

    Google Scholar 

  79. Kennedy MC, A O’Hagan (2001) Bayesian calibration of computer models. Journal of the Royal Statistical Society Series B 63, 425–464.

    Article  MATH  MathSciNet  Google Scholar 

  80. Xiong Y, Chen W, Tsui K-L, Apley D (2009) A better understanding of model updating strategies in validating engineering models. Comput Meth Appl Mech Eng 198(15–16):1327–1337

    Article  Google Scholar 

  81. Krüger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii AE, Ya. Vul A, Osawa E (2005) Unusually tight aggregation in detonation nanodiamond: Identification and disintegration. Carbon 43:1722–1730

    Article  Google Scholar 

  82. Panich AM, Shames AI, Vieth HM, Osawa E, Takahashi M, Ya Vul A (2006) Nuclear magnetic resonance study of ultrananocrystalline diamonds. Eur Phys J B 52:397–402

    Article  Google Scholar 

  83. M Gruen, Shenderova O (2005) Synthesis, properties and applications of ultrananocrystalline nanodiamond. Springer, USA. 217–230

    Google Scholar 

  84. Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) Nature mater 2:338

    Article  Google Scholar 

  85. Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, Mclean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ (2003) Science 302:1545

    Article  Google Scholar 

  86. Hwang ES, Cao C, Hong S, Jung HJ, Cha CY, Choi JB, Kim YJ, Baik S (2006) Nanotechnol 17:3442

    Article  Google Scholar 

  87. Chengfan Cao, Jung Heon Kim, Ye-Jin Kwon, Young-Jin Kim, Eung-Soo Hwang and Seunghyun Baik (2009) An immunoassay using biotinylated single walled carbon nanotubes as Raman biomarkers, Accepted to Analyst.

    Google Scholar 

  88. Cheng C-Y, Perevedentseva E, Tu J-S, Chung P-H, Cheng C-L, Liu K-K, Chao J-I, Chen P-H, Chang C-C (2007) Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling. Appl Phys Lett 90:163903 (SCI)

    Article  Google Scholar 

  89. Hunter RJ (1981) Zeta potential in colloidal science. Academic, London

    Google Scholar 

  90. Wing Kam Liu, Ashfaq Adnan, Adrian Kopacz, Roadmap for nanodiamond-based drug delivery design for cancer therapeutics and diagnostics, 10th US National Congress On Computational Mechanics, Columbus, OH, 2009

    Google Scholar 

  91. Wing Kam Liu, Ashfaq Adnan, Adrian Kopacz (2009) Design of nanodiamond-enabled drug delivery system by simulation based science & engineering, ASME International Mechanical Engineering Congress & Exposition, Lake Buena Vista, Florida – November 13–19.

    Google Scholar 

  92. Wing Kam Liu, Multiscale design of nanodiamond-based drug delivery system for engineered medicine, coupled problems 2009, Computational Methods For Coupled Problems In Science And Engineering, 8–10 June 2009, Ischia Island, Italy.

    Google Scholar 

  93. Wing Kam Liu, Ashfaq Adnan, Adrian Kopacz, Nanoscale Science In Therapeutic And Diagnostic Applications 2009 ASME International Mechanical Engineering Congress & Exposition, Lake Buena Vista, Florida – November 13–19, 2009.

    Google Scholar 

  94. Adnan A, Kam Liu Wing (2009) Mechanics of pH mediated adsorption/desorption of doxorubicin drug from functionalized nanodiamond. 10th US National Congress On Computational Mechanics, Columbus, OH

    Google Scholar 

  95. Kopacz A, Adnan A, Kam Liu W (2009) Functionalized & self-assembled nanodiamonds for diagnostic and therapeutic applications. 10th US National Congress On Computational Mechanics, Columbus, OH

    Google Scholar 

  96. Wing Kam Liu, Ashfaq Adnan (2009) Nanoscale science in therapeutic and diagnostic applications. 10th US National Congress On Computational Mechanics, Columbus, OH

    Google Scholar 

  97. Ashfaq Adnan, Wing Kam Liu (2009) Mechanics of pH controlled loading and release of chemotherapeutics from functionalized nanodiamond, 2009 ASME International Mechanical Engineering Congress & Exposition, Lake Buena Vista, Florida – November 13–19, 2009

    Google Scholar 

  98. Michelle Hallikainen, Ashfaq Adnan, Wing Kam Liu, Predicting nanodiamond structure and surface charge distribution using molecular dynamics and Bayesian statistics. 10th US National Congress On Computational Mechanics, Columbus, OH, 2009

    Google Scholar 

  99. Adrian Kopacz, Ashfaq Adnan, Wing Kam Liu (2009) Equilibrium functionalization and self-assembly of nanodiamond as a platform for engineered medicine”, 2009 ASME International Mechanical Engineering Congress & Exposition, Lake Buena Vista, Florida – November 13–19, 2009

    Google Scholar 

  100. Paul Arendt, Wei Chen, Wing Kam Liu, Ashfaq Adnan, Multiscale design of a simplified nanodiamond based drug delivery system. 10th US National Congress On Computational Mechanics, Columbus, OH, 2009

    Google Scholar 

  101. Wing Kam Liu, Ashfaq Adnan, Adrian Kopacz, Young-Jin Kim, Moon Ki Kim, Multiscale design of nanodiamond-based drug delivery system for cancer therapeutics and diagnostics. 2nd International Symposium On Computational Mechanics (ISCM II) and 12th International Conference On Enhancement And Promotion Of Computational Methods In Engineering And Science (EPMESC XII), November 30 – December 3, 2009, Hong Kong – Macau

    Google Scholar 

Download references

Acknowledgment

Financial Support from the US National Science Foundation and the World Class University program (R33-10079) under the Ministry of Education, Science and Technology, Republic of Korea, are greatly appreciated.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, W.K. et al. (2010). Design of Nanodiamond Based Drug Delivery Patch for Cancer Therapeutics and Imaging Applications. In: Ho, D. (eds) Nanodiamonds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0531-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0531-4_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0530-7

  • Online ISBN: 978-1-4419-0531-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics