Skip to main content

Animal Models of Drug Dependence: Motivational Perspective

  • Chapter
  • First Online:
Addiction Medicine

Abstract

Drug addiction, also known as substance Dependence, is a chronically relapsing disorder characterized by (i) compulsion to seek and take the drug, (ii) loss of control in limiting intake, and, as defined by the present author, (iii) emergence of a negative emotional state (e.g., dysphoria, anxiety, or irritability) when access to the drug is prevented (defined here as dependence with a lower case “d”). A composite addiction cycle comprising three stages—preoccupation/anticipation, binge/intoxication, and withdrawal/negative affect—in which negative reinforcement and compulsivity dominate the terminal stages, is proposed to account for many of the symptoms of addiction. The purpose of this review is to focus on the role of animal models of the negative emotional state of the withdrawal/negative affect stage of the addiction cycle that have relevance to the motivational changes driving the compulsivity of addiction. Animal models of dependence are explored in the context of face and construct validity and include models for the negative emotional state of acute withdrawal (e.g., anxiety-like measures, aversive-like responses, and increases in reward thresholds) and models of excessive drug intake driven by dependence (e.g., extended-access self-administration and withdrawal-induced drinking). Neuropharmacological substrates for the negative emotional states and excessive drug seeking associated with dependence are hypothesized to include decreases in reward function, recruitment of brain stress (or anti-reward) systems, and dysregulation of anti-stress systems. Animal models of excessive drug intake associated with negative reinforcement provide a novel perspective on addiction and novel targets for restoring motivational homeostasis in addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed SH, Kenny PJ, Koob GF et al (2002) Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nat Neurosci 5:625–626

    PubMed  CAS  Google Scholar 

  2. Ahmed SH, Koob GF (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science 282:298–300

    Article  PubMed  CAS  Google Scholar 

  3. Ahmed SH, Koob GF (1999) Long-lasting increase in the set point for cocaine self-administration after escalation in rats. Psychopharmacology 146:303–312

    Article  PubMed  CAS  Google Scholar 

  4. Ahmed SH, Walker JR, Koob GF (2000) Persistent increase in the motivation to take heroin in rats with a history of drug escalation. Neuropsychopharmacology 22:413–421

    Article  PubMed  CAS  Google Scholar 

  5. Alling C, Balldin J, Bokstrom K et al (1982) Studies on duration of a late recovery period after chronic abuse of ethanol: a cross-sectional study of biochemical and psychiatric indicators. Acta Psychiatr Scand 66:384–397

    Article  PubMed  CAS  Google Scholar 

  6. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric, Washington, DC

    Google Scholar 

  7. Annis HM, Sklar SM, Moser AE (1998) Gender in relation to relapse crisis situations, coping, and outcome among treated alcoholics. Addict Behav 23:127–131

    Article  PubMed  CAS  Google Scholar 

  8. Aston-Jones G, Delfs JM, Druhan J et al (1999) The bed nucleus of the stria terminalis: a target site for noradrenergic actions in opiate withdrawal. In: McGinty JF (ed) Advancing from the ventral striatum to the extended amygdala: implications for neuropsychiatry and drug abuse. Annals of the New York academy of sciences, vol 877. New York Academy of Sciences, New York, pp 486–498

    Google Scholar 

  9. Azar MR, Jones BC, Schulteis G (2003) Conditioned place aversion is a highly sensitive index of acute opioid dependence and withdrawal. Psychopharmacology 170:42–50

    Article  PubMed  CAS  Google Scholar 

  10. Baldwin HA, Koob GF (1993) Rapid induction of conditioned opiate withdrawal in the rat. Neuropsychopharmacology 8:15–21

    PubMed  CAS  Google Scholar 

  11. Baldwin HA, Rassnick S, Rivier J et al (1991) CRF antagonist reverses the “anxiogenic” response to ethanol withdrawal in the rat. Psychopharmacology 103:227–232

    Article  PubMed  CAS  Google Scholar 

  12. Barr AM, Phillips AG (1999) Withdrawal following repeated exposure to d-amphetamine decreases responding for a sucrose solution as measured by a progressive ratio schedule of reinforcement. Psychopharmacology 141:99–106

    Article  PubMed  CAS  Google Scholar 

  13. Basso AM, Spina M, Rivier J et al (1999) Corticotropin-releasing factor antagonist attenuates the “anxiogenic-like” effect in the defensive burying paradigm but not in the elevated plus-maze following chronic cocaine in rats. Psychopharmacology 145:21–30

    Article  PubMed  CAS  Google Scholar 

  14. Becker HC (1994) Positive relationship between the number of prior ethanol withdrawal episodes and the severity of subsequent withdrawal seizures. Psychopharmacology 116:26–32

    Article  PubMed  CAS  Google Scholar 

  15. Becker HC, Hale RL (1989) Ethanol-induced locomotor stimulation in C57BL/6 mice following RO15–4513 administration. Psychopharmacology 99:333–336

    Article  PubMed  CAS  Google Scholar 

  16. Bedford JA, Bailey LP, Wilson MC (1978) Cocaine reinforced progressive ratio performance in the rhesus monkey. Pharmacol Biochem Behav 9:631–638

    Article  PubMed  CAS  Google Scholar 

  17. Begleiter H (1975) Ethanol consumption subsequent to physical dependence. In: Gross MM (ed) Alcohol intoxication and withdrawal: experimental studies II. Advances in experimental medicine and biology, vol 59. Plenum, New York, pp 373–378

    Google Scholar 

  18. Branchey M, Rauscher G, Kissin B (1971) Modifications in the response to alcohol following the establishment of physical dependence. Psychopharmacologia 22:314–322

    Article  PubMed  CAS  Google Scholar 

  19. Breese GR, Overstreet DH, Knapp DJ et al (2005) Prior multiple ethanol withdrawals enhance stress-induced anxiety-like behavior: inhibition by CRF1- and benzodiazepine-receptor antagonists and a 5-HT1a-receptor agonist. Neuropsychopharmacology 30:1662–1669

    Article  PubMed  CAS  Google Scholar 

  20. Breiter HC, Gollub RL, Weisskoff RM et al (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19:591–611

    Article  PubMed  CAS  Google Scholar 

  21. Chen SA, O’Dell L, Hoefer M et al (2006) Unlimited access to heroin self-administration: independent motivational markers of opiate dependence. Neuropsychopharmacology 31:2692–2707 [corrigedum: 31:2802]

    Article  PubMed  CAS  Google Scholar 

  22. Chung T, Martin CS (2001) Classification and course of alcohol problems among adolescents in addictions treatment programs. Alcohol Clin Exp Res 25:1734–1742

    Article  PubMed  CAS  Google Scholar 

  23. Cicero TJ (1979) A critique of animal analogs of alcoholism. In: Majchrowicz E, Noble EP (eds) Biochemistry and pharmacology of ethanol, vol 2. Plenum, New York, pp 533–560.

    Chapter  Google Scholar 

  24. Crowley TJ, Macdonald MJ, Whitmore EA et al (1998) Cannabis dependence, withdrawal, and reinforcing effects among adolescents with conduct symptoms and substance use disorders. Drug Alcohol Depend 50:27–37

    Article  PubMed  CAS  Google Scholar 

  25. Delfs JM, Zhu Y, Druhan JP et al (2000) Noradrenaline in the ventral forebrain is critical for opiate withdrawal-induced aversion. Nature 403:430–434

    Article  PubMed  CAS  Google Scholar 

  26. Deroche V, Le Moal M, Piazza PV (1999) Cocaine self-administration increases the incentive motivational properties of the drug in rats. Eur J Neurosci 11:2731–2736

    Article  PubMed  CAS  Google Scholar 

  27. Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305:1014–1017

    Article  PubMed  CAS  Google Scholar 

  28. Deutsch JA, Koopmans HS (1973) Preference enhancement for alcohol by passive exposure. Science 179:1242–1243

    Article  PubMed  CAS  Google Scholar 

  29. Deutsch JA, Walton NY (1977) A rat alcoholism model in a free choice situation. Behav Biol 19:349–360

    Article  PubMed  CAS  Google Scholar 

  30. Epping-Jordan MP, Watkins SS, Koob GF et al (1998) Dramatic decreases in brain reward function during nicotine withdrawal. Nature 393:76–79

    Article  PubMed  CAS  Google Scholar 

  31. Fidler TL, Clews TW, Cunningham CL (2006) Reestablishing an intragastric ethanol self-infusion model in rats. Alcohol Clin Exp Res 30:414–428

    Article  PubMed  Google Scholar 

  32. Funk CK, O’Dell LE, Crawford EF et al (2006) Corticotropin-releasing factor within the central nucleus of the amygdala mediates enhanced ethanol self-administration in withdrawn, ethanol-dependent rats. J Neurosci 26:11324–11332

    Article  PubMed  CAS  Google Scholar 

  33. Funk CK, Zorrilla EP, Lee MJ et al (2007) Corticotropin-releasing factor 1 antagonists selectively reduce ethanol self-administration in ethanol-dependent rats. Biol Psychiatry 61:78–86

    Article  PubMed  CAS  Google Scholar 

  34. Gardner EL, Vorel SR (1998) Cannabinoid transmission and reward-related events. Neurobiol Dis 5:502–533

    Article  PubMed  CAS  Google Scholar 

  35. Gehlert DR, Cippitelli A, Thorsell A et al (2007) 3-(4-Chloro-2-morpholin-4-yl-thiazol-5-yl)-8-(1-ethylpropyl)-2,6-dimethyl-imidazo[1,2-b]pyridazine: a novel brain-penetrant, orally available corticotropin-releasing factor receptor 1 antagonist with efficacy in animal models of alcoholism. J Neurosci 27:2718–2726

    Article  PubMed  CAS  Google Scholar 

  36. Gellert VF, Holtzman SG (1978) Development and maintenance of morphine tolerance and dependence in the rat by scheduled access to morphine drinking solutions. J Pharmacol Exp Ther 205:536–546

    PubMed  CAS  Google Scholar 

  37. George O, Ghozland S, Azar MR et al (2007) CRF-CRF1 system activation mediates withdrawal-induced increases in nicotine self-administration in nicotine-dependent rats. Proc Natl Acad Sci USA 104:17198–17203

    Article  PubMed  CAS  Google Scholar 

  38. Gilpin NW, Misra K, Koob GF (2008) Neuropeptide Y in the central nucleus of the amygdala suppresses dependence-induced increases in alcohol drinking. Pharmacol Biochem Behav 90:475–480

    Article  PubMed  CAS  Google Scholar 

  39. Goeders NE (2002) Stress and cocaine addiction. J Pharmacol Exp Ther 301:785–789

    Article  PubMed  CAS  Google Scholar 

  40. Goldstein DB (1983) Pharmacology of alcohol. Oxford University, New York

    Google Scholar 

  41. Greenwell TN, Funk CK, Cottone P et al (2009) Corticotropin-releasing factor-1 receptor antagonists decrease heroin self-administration in long-, but not short-access rats. Addict Biol 14:130–143

    Article  PubMed  CAS  Google Scholar 

  42. Greenwell TN, Walker BM, Cottone P et al (2009) The α1 adrenergic receptor antagonist prazosin reduces heroin self-administration in rats with extended access to heroin administration. Pharmacol Biochem Behav 91:295–302

    Article  PubMed  CAS  Google Scholar 

  43. Hand TH, Koob GF, Stinus L et al (1988) Aversive properties of opiate receptor blockade: evidence for exclusively central mediation in naive and morphine-dependent rats. Brain Res 474:364–368

    Article  PubMed  CAS  Google Scholar 

  44. Harris GC, Aston-Jones G (1993) β-Adrenergic antagonists attenuate withdrawal anxiety in cocaine- and morphine-dependent rats. Psychopharmacology 113:131–136

    Article  PubMed  CAS  Google Scholar 

  45. Heinrichs SC, Koob GF (2004) Corticotropin-releasing factor in brain: a role in activation, arousal, and affect regulation. J Pharmacol Exp Ther 311:427–440

    Article  PubMed  CAS  Google Scholar 

  46. Heinrichs SC, Menzaghi F, Schulteis G et al (1995) Suppression of corticotropin-releasing factor in the amygdala attenuates aversive consequences of morphine withdrawal. Behav Pharmacol 6:74–80

    Article  PubMed  CAS  Google Scholar 

  47. Hernandez G, Hamdani S, Rajabi H et al (2006) Prolonged rewarding stimulation of the rat medial forebrain bundle: neurochemical and behavioral consequences. Behav Neurosci 120:888–904

    Article  PubMed  CAS  Google Scholar 

  48. Hershon HI (1977) Alcohol withdrawal symptoms and drinking behavior. J Stud Alcohol 38:953–971

    PubMed  CAS  Google Scholar 

  49. Himmelsbach CK (1943) Can the euphoric, analgetic, and physical dependence effects of drugs be separated? IV. With reference to physical dependence. Fed Proc 2:201–203

    CAS  Google Scholar 

  50. Hunter BE, Walker DW, Riley JN (1974) Dissociation between physical dependence and volitional ethanol consumption: role of multiple withdrawal episodes. Pharmacol Biochem Behav 2:523–529

    Article  PubMed  CAS  Google Scholar 

  51. Izenwasser S, Kornetsky C (1992) Brain-stimulation reward: a method for assessing the neurochemical baes of drug-induced euphoria. In: Watson RR (ed) Drugs of abuse and neurobiology. CRC, Boca Raton, FL, pp 1–21

    Google Scholar 

  52. Kenny PJ, Chen SA, Kitamura O et al (2006) Conditioned withdrawal drives heroin consumption and decreases reward sensitivity. J Neurosci 26:5894–5900

    Article  PubMed  CAS  Google Scholar 

  53. Kenny PJ, Polis I, Koob GF et al (2003) Low dose cocaine self-administration transiently increases but high dose cocaine persistently decreases brain reward function in rats. Eur J Neurosci 17:191–195

    Article  PubMed  Google Scholar 

  54. Kitamura O, Wee S, Specio SE et al (2006) Escalation of methamphetamine self-administration in rats: a dose-effect function. Psychopharmacology 186:48–53

    Article  PubMed  CAS  Google Scholar 

  55. Knapp DJ, Overstreet DH, Moy SS et al (2004) SB242084, flumazenil, and CRA1000 block ethanol withdrawal-induced anxiety in rats. Alcohol 32:101–111

    Article  PubMed  CAS  Google Scholar 

  56. Koob GF (2003) Neuroadaptive mechanisms of addiction: studies on the extended amygdala. Eur Neuropsychopharmacol 13:442–452

    Article  PubMed  CAS  Google Scholar 

  57. Koob GF (2004) Allostatic view of motivation: implications for psychopathology. In: Bevins RA, Bardo MT (eds) Motivational factors in the etiology of drug abuse. Nebraska Symposium on Motivation, vol 50. University of Nebraska, Lincoln NE, pp 1–18

    Google Scholar 

  58. Koob GF (2008) A role for brain stress systems in addiction. Neuron 59:11–34

    Article  PubMed  CAS  Google Scholar 

  59. Koob GF (2008) Neurobiology of addiction. In: Galanter M, Kleber HD (eds) Textbook of substance abuse treatment, 4th edn. American Psychiatric, Washington, DC, pp 3–16

    Google Scholar 

  60. Koob GF (2009) New dimensions in human laboratory models of addiction. Addict Biol 14:1–8

    Article  PubMed  Google Scholar 

  61. Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–723

    Article  PubMed  CAS  Google Scholar 

  62. Koob GF, Kreek MJ (2007) Stress, dysregulation of drug reward pathways, and the transition to drug dependence. Am J Psychiatry 164:1149–1159

    Article  PubMed  Google Scholar 

  63. Koob GF, Le Moal M (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278:52–58

    Article  PubMed  CAS  Google Scholar 

  64. Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24:97–129

    Article  PubMed  CAS  Google Scholar 

  65. Koob GF, Le Moal M (2005) Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci 8:1442–1444

    Article  PubMed  CAS  Google Scholar 

  66. Koob GF, Le Moal M (2008) Addiction and the brain antireward system. Annu Rev Psychol 59:29–53

    Article  PubMed  Google Scholar 

  67. Koob GF, Lloyd GK, Mason BJ (2009) Medications development for treatment of drug addiction: a Rosetta stone approach. Nat Rev Drug Discov 8:500–515

    Article  PubMed  CAS  Google Scholar 

  68. Kornetsky C, Esposito RU (1979) Euphorigenic drugs: effects on the reward pathways of the brain. Fed Proc 38:2473–2476

    PubMed  CAS  Google Scholar 

  69. Land BB, Bruchas MR, Lemos JC et al (2008) The dysphoric component of stress is encoded by activation of the dynorphin κ-opioid system. J Neurosci 28:407–414

    Article  PubMed  CAS  Google Scholar 

  70. Lowman C, Allen J, Stout RL (1996) Replication and extension of Marlatt’s taxonomy of relapse precipitants: overview of procedures and results. Addiction 91(suppl):s51–s71

    Article  PubMed  Google Scholar 

  71. Majchrowicz E (1975) Induction of physical dependence upon ethanol and the associated behavioral changes in rats. Psychopharmacologia 43:245–254

    Article  PubMed  CAS  Google Scholar 

  72. Mantsch JR, Yuferov V, Mathieu-Kia AM et al (2004) Effects of extended access to high versus low cocaine doses on self-administration, cocaine-induced reinstatement and brain mRNA levels in rats. Psychopharmacology 175:26–36

    Article  PubMed  CAS  Google Scholar 

  73. Markou A, Koob GF (1991) Post-cocaine anhedonia: an animal model of cocaine withdrawal, Neuropsychopharmacology 4:17–26

    PubMed  CAS  Google Scholar 

  74. Martin-Solch C, Magyar S, Kunig G et al (2001) Changes in brain activation associated with reward processing in smokers and nonsmokers: a positron emission tomography study. Exp Brain Res 139:278–286.

    Article  PubMed  CAS  Google Scholar 

  75. Martin WR, Eades CG (1964) A comparison between acute and chronic physical dependence in the chronic spinal dog. J Pharmacol Exp Ther 146:385–394

    PubMed  CAS  Google Scholar 

  76. Martin WR, Wikler A, Eades CG et al (1963) Tolerance to and physical dependence on morphine in rats. Psychopharmacologia 4:247–260

    Article  PubMed  CAS  Google Scholar 

  77. Martinez D, Narendran R, Foltin RW et al (2007) Amphetamine-induced dopamine release: markedly blunted in cocaine dependence and predictive of the choice to self-administer cocaine. Am J Psychiatry 164:622–629

    Article  PubMed  Google Scholar 

  78. Mason BJ, Ritvo EC, Morgan RO et al (1994) A double-blind, placebo-controlled pilot study to evaluate the efficacy and safety of oral nalmefene HCl for alcohol dependence. Alcohol Clin Exp Res 18:1162–1167

    Article  PubMed  CAS  Google Scholar 

  79. Melis M, Spiga S, Diana M (2005) The dopamine hypothesis of drug addiction: hypodopaminergic state. Int Rev Neurobiol 63:101–154

    Article  PubMed  CAS  Google Scholar 

  80. Merlo-Pich E, Lorang M, Yeganeh M et al (1995) Increase of extracellular corticotropin-releasing factor-like immunoreactivity levels in the amygdala of awake rats during restraint stress and ethanol withdrawal as measured by microdialysis. J Neurosci 15:5439–5447

    PubMed  CAS  Google Scholar 

  81. Moeller FG, Barratt ES, Dougherty DM et al (2001) Psychiatric aspects of impulsivity. Am J Psychiatry 158:1783–1793

    Article  PubMed  CAS  Google Scholar 

  82. Myers RD, Stoltman WP, Martin GE (1972) Effects of ethanol dependence induced artificially in the rhesus monkey on the subsequent preference for ethyl alcohol. Physiol Behav 9:43–48

    Article  PubMed  CAS  Google Scholar 

  83. Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    Article  PubMed  CAS  Google Scholar 

  84. Nestler EJ (2004) Historical review: molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol Sci 25:210–218

    Article  PubMed  CAS  Google Scholar 

  85. Nestler EJ, Malenka RC (2004) The addicted brain. Sci Am 290:78–85

    Article  PubMed  CAS  Google Scholar 

  86. Nye HE, Nestler EJ (1996) Induction of chronic Fos-related antigens in rat brain by chronic morphine administration. Mol Pharmacol 49:636–645

    PubMed  CAS  Google Scholar 

  87. O’Dell LE, Roberts AJ, Smith RT et al (2004) Enhanced alcohol self-administration after intermittent versus continuous alcohol vapor exposure. Alcohol Clin Exp Res 28:1676–1682

    Article  PubMed  Google Scholar 

  88. Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47:419–427

    Article  PubMed  CAS  Google Scholar 

  89. Olive MF, Koenig HN, Nannini MA et al (2002) Elevated extracellular CRF levels in the bed nucleus of the stria terminalis during ethanol withdrawal and reduction by subsequent ethanol intake. Pharmacol Biochem Behav 72:213–220

    Article  PubMed  CAS  Google Scholar 

  90. Orsini C, Koob GF, Pulvirenti L (2001) Dopamine partial agonist reverses amphetamine withdrawal in rats. Neuropsychopharmacology 25:789–792

    Article  PubMed  CAS  Google Scholar 

  91. Overstreet DH, Knapp DJ, Breese GR (2004) Modulation of multiple ethanol withdrawal-induced anxiety-like behavior by CRF and CRF1 receptors. Pharmacol Biochem Behav 77:405–413

    Article  PubMed  CAS  Google Scholar 

  92. Papaleo F, Contarino A (2006) Gender- and morphine dose-linked expression of spontaneous somatic opiate withdrawal in mice. Behav Brain Res 170:110–118

    Article  PubMed  CAS  Google Scholar 

  93. Paterson NE, Markou A (2003) Increased motivation for self-administered cocaine after escalated cocaine intake. Neuroreport 14:2229–2232

    Article  PubMed  CAS  Google Scholar 

  94. Paterson NE, Myers C, Markou A (2000) Effects of repeated withdrawal from continuous amphetamine administration on brain reward function in rats. Psychopharmacology 152:440–446

    Article  PubMed  CAS  Google Scholar 

  95. Pulvirenti L, Koob GF (1993) Lisuride reduces psychomotor retardation during withdrawal from chronic intravenous amphetamine self-administration in rats. Neuropsychopharmacology 8:213–218

    PubMed  CAS  Google Scholar 

  96. Rassnick S, Heinrichs SC, Britton KT et al (1993) Microinjection of a corticotropin-releasing factor antagonist into the central nucleus of the amygdala reverses anxiogenic-like effects of ethanol withdrawal. Brain Res 605:25–32

    Article  PubMed  CAS  Google Scholar 

  97. Richardson HN, Lee S, O’Dell LE et al (2008) Alcohol self-administration acutely stimulates the hypothalamic-pituitary-adrenal (HPA) axis but dependence leads to a dampened neuroendocrine state. Eur J Neurosci 28:1641–1653

    Google Scholar 

  98. Richter RM, Weiss F (1999) In vivo CRF release in rat amygdala is increased during cocaine withdrawal in self-administering rats. Synapse 32:254–261

    PubMed  CAS  Google Scholar 

  99. Rimondini R, Arlinde C, Sommer W et al (2002) Long-lasting increase in voluntary ethanol consumption and transcriptional regulation in the rat brain after intermittent exposure to alcohol. FASEB J 16:27–35

    Article  PubMed  CAS  Google Scholar 

  100. Rimondini R, Sommer WH, Dall’Olio R et al (2008) Long-lasting tolerance to alcohol following a history of dependence. Addict Biol 13:26–30

    Article  PubMed  CAS  Google Scholar 

  101. Roberts AJ, Cole M, Koob GF (1996) Intra-amygdala muscimol decreases operant ethanol self-administration in dependent rats. Alcohol Clin Exp Res 20:1289–1298

    Article  PubMed  CAS  Google Scholar 

  102. Roberts AJ, Heyser CJ, Cole M et al (2000) Excessive ethanol drinking following a history of dependence: animal model of allostasis. Neuropsychopharmacology 22:581–594

    Article  PubMed  CAS  Google Scholar 

  103. Roberts DCS, Richardson NR (1992) Self-administration of psychomotor stimulants using progressive ratio schedules of reinforcement. In: Boulton AA, Baker GB, Wu PH (eds) Animal models of drug addiction. Neuromethods, vol 24. Human, Totowa, NJ, pp. 233–269

    Chapter  Google Scholar 

  104. Rodriguez de Fonseca F, Carrera MRA, Navarro M et al (1997) Activation of corticotropin-releasing factor in the limbic system during cannabinoid withdrawal. Science 276:2050–2054

    Article  Google Scholar 

  105. Roelofs SM (1985) Hyperventilation, anxiety, craving for alcohol: a subacute alcohol withdrawal syndrome. Alcohol 2:501–505

    Article  PubMed  CAS  Google Scholar 

  106. Rossetti ZL, Hmaidan Y, Gessa GL (1992) Marked inhibition of mesolimbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur J Pharmacol 221:227–234

    Article  PubMed  CAS  Google Scholar 

  107. Russell MAH (1976) What is dependence? In: Edwards G (ed) Drugs and drug dependence. Lexington Books, Lexington, MA, pp 182–187

    Google Scholar 

  108. Samson HH, Falk JL (1974) Alteration of fluid preference in ethanol-dependent animals. J Pharmacol Exp Ther 190:365–376

    PubMed  CAS  Google Scholar 

  109. Sarnyai Z, Biro E, Gardi J et al (1995) Brain corticotropin-releasing factor mediates “anxiety-like” behavior induced by cocaine withdrawal in rats. Brain Res 675:89–97

    Article  PubMed  CAS  Google Scholar 

  110. Schulteis G, Hyytia P, Heinrichs SC et al (1996) Effects of chronic ethanol exposure on oral self-administration of ethanol or saccharin by Wistar rats. Alcohol Clin Exp Res 20:164–171

    Article  PubMed  CAS  Google Scholar 

  111. Schulteis G, Markou A, Cole M et al (1995) Decreased brain reward produced by ethanol withdrawal. Proc Natl Acad Sci USA 92:5880–5884

    Article  PubMed  CAS  Google Scholar 

  112. Schulteis G, Markou A, Gold LH et al (1994) Relative sensitivity to naloxone of multiple indices of opiate withdrawal: a quantitative dose-response analysis. J Pharmacol Exp Ther 271:1391–1398

    PubMed  CAS  Google Scholar 

  113. Schulteis G, Stinus L, Risbrough VB et al (1998) Clonidine blocks acquisition but not expression of conditioned opiate withdrawal in rats. Neuropsychopharmacology 19:406–416

    Article  PubMed  CAS  Google Scholar 

  114. Self DW, McClenahan AW, Beitner-Johnson D et al (1995) Biochemical adaptations in the mesolimbic dopamine system in response to heroin self-administration. Synapse 21:312–318

    Article  PubMed  CAS  Google Scholar 

  115. Shaw-Lutchman TZ, Barrot M, Wallace T et al (2002) Regional and cellular mapping of cAMP response element-mediated transcription during naltrexone-precipitated morphine withdrawal. J Neurosci 22:3663–3672

    PubMed  CAS  Google Scholar 

  116. Simms JA, Steensland P, Medina B et al (2008) Intermittent access to 20% ethanol induces high ethanol consumption in Long-Evans and Wistar rats. Alcohol Clin Exp Res 32:1816–1823

    Google Scholar 

  117. Sommer WH, Rimondini R, Hansson AC et al (2008) Upregulation of voluntary alcohol intake, behavioral sensitivity to stress, and amygdala crhr1 expression following a history of dependence. Biol Psychiatry 63:139–145

    Article  PubMed  Google Scholar 

  118. Song ZH, Takemori AE (1992) Stimulation by corticotropin-releasing factor of the release of immunoreactive dynorphin A from mouse spinal cords in vitro. Eur J Pharmacol 222:27–32

    Article  PubMed  CAS  Google Scholar 

  119. Specio SE, Wee S, O’Dell LE et al (2008) CRF1 receptor antagonists attenuate escalated cocaine self-administration in rats. Psychopharmacology 196:473–482

    Article  PubMed  CAS  Google Scholar 

  120. Sterling P, Eyer J (1988) Allostasis: a new paradigm to explain arousal pathology. In: Fisher S, Reason J (eds) Handbook of life stress, cognition and health. Wiley, Chichester, pp 629–649

    Google Scholar 

  121. Stinus L, Cador M, Zorrilla EP et al (2005) Buprenorphine and a CRF1 antagonist block the acquisition of opiate withdrawal-induced conditioned place aversion in rats. Neuropsychopharmacology 30:90–98

    Article  PubMed  CAS  Google Scholar 

  122. Stinus L, Caille S, Koob GF (2000) Opiate withdrawal-induced place aversion lasts for up to 16 weeks. Psychopharmacology 149:115–120

    Article  PubMed  CAS  Google Scholar 

  123. Stinus L, Le Moal M, Koob GF (1990) Nucleus accumbens and amygdala are possible substrates for the aversive stimulus effects of opiate withdrawal. Neuroscience 37:767–773

    Article  PubMed  CAS  Google Scholar 

  124. Thorsell A, Rapunte-Canonigo V, O’Dell L et al (2007) Viral vector-induced amygdala NPY overexpression reverses increased alcohol intake caused by repeated deprivations in Wistar rats. Brain 130:1330–1337

    Article  PubMed  Google Scholar 

  125. Thorsell A, Slawecki CJ, Ehlers CL (2005) Effects of neuropeptide Y and corticotropin-releasing factor on ethanol intake in Wistar rats: interaction with chronic ethanol exposure. Behav Brain Res 161:133–140

    Article  PubMed  CAS  Google Scholar 

  126. Thorsell A, Slawecki CJ, Ehlers CL (2005) Effects of neuropeptide Y on appetitive and consummatory behaviors associated with alcohol drinking in wistar rats with a history of ethanol exposure. Alcohol Clin Exp Res 29:584–590

    Article  PubMed  CAS  Google Scholar 

  127. Tucci S, Cheeta S, Seth P et al (2003) Corticotropin releasing factor antagonist, α-helical CRF9–41, reverses nicotine-induced conditioned, but not unconditioned, anxiety. Psychopharmacology 167:251–256

    PubMed  CAS  Google Scholar 

  128. Valdez GR, Roberts AJ, Chan K et al (2002) Increased ethanol self-administration and anxiety-like behavior during acute withdrawal and protracted abstinence: regulation by corticotropin-releasing factor. Alcohol Clin Exp Res 26:1494–1501

    Article  PubMed  CAS  Google Scholar 

  129. Valdez GR, Zorrilla EP, Roberts AJ et al (2003) Antagonism of corticotropin-releasing factor attenuates the enhanced responsiveness to stress observed during protracted ethanol abstinence. Alcohol 29:55–60

    Article  PubMed  CAS  Google Scholar 

  130. Van Dyke C, Byck R (1982) Cocaine. Sci Am 246:128–141

    Article  PubMed  Google Scholar 

  131. Veale WL, Myers RD (1969) Increased alcohol preference in rats following repeated exposures to alcohol. Psychopharmacologia 15:361–1372

    Article  PubMed  CAS  Google Scholar 

  132. Vezina P (2004) Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neurosci Biobehav Rev 27:827–839

    Article  PubMed  CAS  Google Scholar 

  133. Volkow ND, Fowler JS (2000) Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cerebral Cortex 10:318–325

    Article  PubMed  CAS  Google Scholar 

  134. Volkow ND, Fowler JS, Wang GJ (2002) Role of dopamine in drug reinforcement and addiction in humans: results from imaging studies. Behav Pharmacol 13:355–366

    Article  PubMed  CAS  Google Scholar 

  135. Volkow ND, Wang GJ, Fowler JS et al (1997) Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386:830–833

    Article  PubMed  CAS  Google Scholar 

  136. Walker BM, Koob GF (2007) The γ-aminobutyric acid-B receptor agonist baclofen attenuates responding for ethanol in ethanol-dependent rats. Alcohol Clin Exp Res 31:11–18

    Article  PubMed  CAS  Google Scholar 

  137. Walker BM, Koob GF (2008) Pharmacological evidence for a motivational role of kappa-opioid systems in ethanol dependence. Neuropsychopharmacology 33:643–652

    Article  PubMed  CAS  Google Scholar 

  138. Walker BM, Rasmussen DD, Raskind MA et al (2008) α1-Noradrenergic receptor antagonism blocks dependence-induced increases in responding for ethanol. Alcohol 42:91–97

    Article  PubMed  CAS  Google Scholar 

  139. Walker JR, Chen SA, Moffitt H et al (2003) Chronic opioid exposure produces increased heroin self-administration in rats. Pharmacol Biochem Behav 75:349–354

    Article  PubMed  CAS  Google Scholar 

  140. Wee S, Mandyam CD, Lekic DM et al (2008) α1-Noradrenergic system role in increased motivation for cocaine intake in rats with prolonged access. Eur Neuropsychopharmacol 18:303–311

    Article  PubMed  CAS  Google Scholar 

  141. Wee S, Wang Z, Woolverton WL et al (2007) Effect of aripiprazole, a partial D2 receptor agonist, on increased rate of methamphetamine self-administration in rats with prolonged session duration. Neuropsychopharmacology 32:2238–2247

    Article  PubMed  CAS  Google Scholar 

  142. Weiss F, Ciccocioppo R, Parsons LH et al (2001) Compulsive drug-seeking behavior and relapse: neuroadaptation, stress, and conditioning factors. In: Quinones-Jenab V (ed) The biological basis of cocaine addiction. Annals of the New York academy of sciences, vol 937. New York Academy of Sciences, New York, pp 1–26

    Google Scholar 

  143. Weiss F, Markou A, Lorang MT et al (1992) Basal extracellular dopamine levels in the nucleus accumbens are decreased during cocaine withdrawal after unlimited-access self-administration. Brain Res 593:314–318

    Article  PubMed  CAS  Google Scholar 

  144. Weiss F, Parsons LH, Schulteis G et al (1996) Ethanol self-administration restores withdrawal-associated deficiencies in accumbal dopamine and 5-hydroxytryptamine release in dependent rats. J Neurosci 16:3474–3485

    PubMed  CAS  Google Scholar 

  145. Winger G (1988) Effects of ethanol withdrawl on ethanol-reinforced responding in rhesus monkeys. Drug Alcohol Depend 22:235–240

    Article  PubMed  CAS  Google Scholar 

  146. Wolffgramm J, Heyne A (1991) Social behavior, dominance, and social deprivation of rats determine drug choice. Pharmacol Biochem Behav 38:389–399

    Article  PubMed  CAS  Google Scholar 

  147. World Health Organization (1992) International statistical classification of diseases and related health problems, 10th revision. World Health Organization, Geneva

    Google Scholar 

  148. Zhang Z, Morse AC, Koob GF et al (2007) Dose- and time-dependent expression of anxiety-like behavior in the elevated plus-maze during withdrawal from acute and repeated intermittent ethanol intoxication in rats. Alcohol Clin Exp Res 31:1811–1819

    Article  PubMed  CAS  Google Scholar 

  149. Zywiak WH, Connors GJ, Maisto SA et al (1996) Relapse research and the Reasons for Drinking Questionnaire: a factor analysis of Marlatt’s relapse taxonomy. Addiction 91(suppl):s121–s130

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Pearson Center for Alcoholism and Addiction Research and National Institutes of Health grants AA06420 and AA08459 from the National Institute on Alcohol Abuse and Alcoholism, DA04043 and DA04398 from the National Institute on Drug Abuse, and DK26741 from the National Institute of Diabetes and Digestive and Kidney Diseases. The author would like to thank Michael Arends for his assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George F. Koob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Koob, G.F. (2010). Animal Models of Drug Dependence: Motivational Perspective. In: Johnson, B. (eds) Addiction Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0338-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0338-9_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0337-2

  • Online ISBN: 978-1-4419-0338-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics