Skip to main content

Abstract

Among the highest priorities for the US and the Department of Defense in the twenty-first century is to deny the acquisition and use of weapons of mass destruction by hostile states, substate actors, or nonstate actors for use in acts against the US and its allies.2 Anticipating the types of threats that may emerge as science and technology advance, the potential consequences of those threats, and the probability that enemies will obtain or pursue them is necessary for preparing for the future security of the nation and the wider world community. This is also a critical part of near-term defensive planning. Nanotechnology is a prime example of this type of enabling and potentially game-changing technology. Today, almost all developed countries are vigorously pursuing nanotechnology developments with well-funded programs in the US, Japan, China, Russia, Israel, Taiwan, India, Iran, and across Europe. The global nature of this research means that much of the nanotechnology advancement recently achieved, and that projected for the future will likely be available to friends and adversaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes and References

  1.  1. Hammes TX (2007) Fourth Generation Warfare Evolves, Fifth Emerges, Mil. Rev. May-Jun.: 14–23. http://usacac.army.mil/CAC/milreview/English/MayJun07/Hammes.pdf

    Google Scholar 

  2. The White House (2006) Prevent Our Enemies from Threatening Us, Our Allies, and Our Friends with Weapons of Mass Destruction, http://www.whitehouse.gov/nsc/nss5.html

    Google Scholar 

  3. National Research Council (2006) A Matter of Size: Triennial Review of the National Nanotechnology Initiative. National Academy Press, Washington DC.

    Google Scholar 

  4. Ding SY et al (2003) Quantum dot molecules assembled with genetically engineered proteins. Nano. Lett. 3:1581–1585.

    Article  CAS  Google Scholar 

  5. Williams E, Abarbanel H, Alivisatos P, Block S, Brenner M et al. (2002) Opportunities at the Intersection of NanoSci., Biology and Computation, The MITRE Corporation; McLean, VA, JSR-02–300, Nov. http://www.fas.org/irp/agency/dod/jason/nanoint.pdf

    Google Scholar 

  6. Medina C et al (2007) Nanoparticles: Pharmacological and toxicological significance. Br. J. Pharm. 150:552–558.

    Article  CAS  Google Scholar 

  7. Tan BH, Tam KC (2007) Review on the dynamics and micro-structure of pH-responsive nano-colloidal systems. Adv. Colloid Interface Sci.

    Google Scholar 

  8. Pantarotto DR, Singh D, McCarthy M, Erhardt JP, Briand M, Prato KK, Bianco A et al (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. 43:5242–5246.

    Article  CAS  Google Scholar 

  9. Kam, NWS and Dai HJ (2005) Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J. Am. Chem. Soc. 127(16):6021–6026.

    Article  CAS  Google Scholar 

  10. Fong CL and Hui KM (2002) Generation of potent and specific cellular immune responses via in vivo stimulation of dendritic cells by pNGVL-3-hFLex plasmid DNA and immunogenic peptides. Gene. Ther. 9:1127–1138.

    Article  CAS  Google Scholar 

  11. Kam NWS and Dai HJ (2005) Carbon nanotubes as intracellular protein transporters: Generality and biofunctionality. J. Am. Chem. Soc. 127:6021–6026.

    Article  CAS  Google Scholar 

  12. Tiwari SB and Amiji MM (2006) Improved oral delivery of paclitaxel following administration in nanoemulsion formulations. J. Nanosci. Nanotech. 6:3215–3221.

    Article  CAS  Google Scholar 

  13. Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C et al (2004) Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16:437–445.

    Article  CAS  Google Scholar 

  14. Dan Luo W, Saltzman M et al (2000) Enhancement of transfection by physical concentration of DNA at the cell surface. Nat. Biotech. 18:893–895.

    Article  Google Scholar 

  15. Niidome T and Huang L (2002) Gene therapy progress and prospects: Nonviral vectors. Gene. Ther. 9:1647–1652.

    Article  CAS  Google Scholar 

  16. Vijayanathan V, Thomas T, Thomas TJ et al (2002) DNA nanoparticles and development of DNA delivery vehicles for gene therapy. Biochem. 48:14085–14094.

    Google Scholar 

  17. Marwick C (2003) Br. Med. J. 326:181; Dobson J (2006) Gene therapy progress and prospects: Magnetic nanoparticle-based gene delivery. Gene. Ther. 13(4):283–287.

    Article  Google Scholar 

  18. Durcan N, Murphy C, Cryan SA (2008) Inhalable siRNA: Potential as a therapeutic agent in the lungs. Mol. Pharmaceutics ASAP Article, available at http://pubs.acs.org/cgi-bin/sample.cgi/mpohbp/asap/html/mp070048k.html Accessed June 30, 2008.

    Google Scholar 

  19. Doyle JM (2006) What race and ethnicity measure in pharmacologic research. J Clin Pharmacol 46:401.

    Article  Google Scholar 

  20. For some examples, see: Vijayanathan V, Thomas T, Thomas TJ et al (2002) DNA nanoparticles and development of DNA delivery vehicles for gene therapy. Biochem. 48:14085–14094; Dobson J (2006) Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene. Ther. 13:283–287; Nel A, Xia T, Madler L, Li N et al. (2006) Toxic potential of materials at the nanolevel. Science. 5761:622–627; MIT Environmental Programs (2006) Potential risks of nanomaterials and how to safely handle materials of uncertain toxicity. http://web.mit.edu/environment/pdf/Nanomaterial_Toxicity_EHS.pdf; Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL et al. (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol. 36:189–217; Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K et al. (2006) Safe handling of nanotechnology. Nat. 444:267–269; Holsapple MP, Farland WH, Landry TD, Monteiro-Riviere NA, Carter JM, Walker NJ, Thomas KV et al (2005) Research strategies for safety evaluation of nanomaterials, part II: Toxicological and safety evaluation of nanomaterials. Current challenges and data needs. Toxicolo. Sci. 88:12–17; Service RF (2003) Nanomaterials show signs of toxicity. Science 300:243.

    Google Scholar 

  21. National Nanotechnology Initiative (2006). Environmental, Health, and Safety Research Needs for Engineered Nanoscale Materials. http://nano.gov/NNI_EHS_research_needs.pdf

    Google Scholar 

  22. Oberdorster G, Oberdorster E, Oberdorster J (2007) Concepts of nanoparticle dose metric and response metric. Environ. Health Perspect. 115:A290.

    Article  Google Scholar 

  23. Poland CA et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotech. doi:10.1038/nnano.2008.111.

    Google Scholar 

  24. Maynard A (2006) Nanotechnology: A research strategy for assessing risk, woodrow wilson center project on emerging nanotechnologies. http://www.nanotechproject.org/file_download/77

    Google Scholar 

  25. Medina C et al (2007) Nanoparticles: Pharmocological and toxicological significance. Br. J. Pharm. 150:552–558.

    Article  CAS  Google Scholar 

  26. Oberdorster G, Oberdorster E, Oberdorster J (2007) Concepts of nanoparticle dose metric and response metric. Environ. Health Perspect. 115:A290.

    Article  Google Scholar 

  27. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI et al (2004) Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol. Sci. 77:347–357.

    Article  CAS  Google Scholar 

  28. Ramires PA, Romito A, Cosentino F, Milella E et al (2001) The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomater. 22:1467–1474.

    Article  CAS  Google Scholar 

  29. Renwick LC, Donaldson K, Clouter A et al (2001) Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol. Appl. Pharm. 172:119–127.

    Article  CAS  Google Scholar 

  30. Nel A, Xia T, Madler L, and Li N (2006). Toxic potential of materials at the nanolevel. Science. 5761:622–627. http://www.sciencemag.org/cgi/reprint/311/5761/622.pdf

    Article  Google Scholar 

  31. Long TC et al (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ. Sci. Technol. 40:4346–4352.

    Article  CAS  Google Scholar 

  32. Long TC et al (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ. Sci. Technol. 40:4346–4352.

    Article  CAS  Google Scholar 

  33. US Air Force Doctrine Document 2-1.8 (2004) Counter-Chemical, Biological, Radiological, and Nuclear Operations. http://www.fas.org/irp/doddir/usaf/afdd2–1–8.pdf.

    Google Scholar 

  34. Pister KSJ, Kahn JM, Boser BE et al (1999) Smart dust: Wireless networks of millimeter-scale sensor nodes. Electro. Res. Lab. Res. Sum.

    Google Scholar 

  35. Mourez M et al (2001) Nat. Biotech. 19:958–962.

    Article  CAS  Google Scholar 

  36. Pannifer AD et al (2001) Nature 411:229–233.

    Article  Google Scholar 

  37. Abrami L, Fivaz M, Glauser PE, Sugimoto N, Zurzolo C, van der Goot FG et al (2003) Sensitivity of polarized epithelial cells to the pore-forming toxin aerolysin. Infect. Immun. 71:739–746.

    Article  CAS  Google Scholar 

  38. Abrami L, Liu S, Cosson P, Leppla SH, van der Goot FG et al (2003) Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell. Biol. 160:321–328.

    Article  CAS  Google Scholar 

  39. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, Panoskaltsis N et al. (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355:1018–1028.

    Article  CAS  Google Scholar 

  40. Freitas RA Jr. and Merkle RC (2004) Kinematic self-replicating machines, Landes BioSci., Georgetown, TX http://www.MolecularAssembler.com/KSRM.htm

    Google Scholar 

  41. Moskovits M (2006) Nanoassemblers: A likely threat? Nanotech. Law Bus. 4:189–197.

    Google Scholar 

  42. Drexler KE (1981) Molecular engineering: An approach to time development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. 78:5275–5278.

    Article  CAS  Google Scholar 

  43. Baum R (2003) Nanotechnology: Drexler and Smalley make the case for and against “molecular assemblers.” Chem. Eng. News 81:37–42. http://pubs.acs.org/cen/coverstory/8148/8148counterpoint.html

    Google Scholar 

  44. Phoenix C and Drexler KE (2004) Safe exponential manufacturing. Nanotech. 15:869–872, http://www.iop.org/EJ/article/0957–4484/15/8/001/nano4_8_001.pdf

    Article  Google Scholar 

  45. Drexler KE (2007) The Road to Advanced Nanotechnologies, Presentation at the National Academy of Science Sackler Colloquia on Nanomaterials in Biology and Medicine: Promises and Perils, Washington, DC. 10–11 April 2007, http://www.nasonline.org/site/PageNavigator/SACKLER_nanoprobes_program

    Google Scholar 

  46. These include the Foresight Institute, the Institute for Molecular Manufacturing, the Center for Responsible Nanotechnology, and The Lifeboat Foundation.

    Google Scholar 

  47. National Research Council (2006) Molecular Self-Assembly in a Matter of Size: Triennial Review of the National Nanotechnology Initiative. National Research Council, Washington, DC, pp. 99–109.

    Google Scholar 

  48. For some examples, see: Lehn J-M (2002) Toward complex matter: Supramolecular chemistry and self-organization. PNAS. 99:4763–4768; Whitesides GM and Boncheva M (2002) Beyond molecules: Self-assembly of mesoscopic and macroscopic components, PNAS. 99:4769–4774; Lehn, J-M (1995) Supramolecular Chemistry: Concepts and Perspectives (VCH, New York); Atwood JL, Davies JED, MacNicol DD, Vögtle F, Lehn J-M et al. (eds.) (1996) Comprehensive Supramolecular Chemistry (Pergamon, Oxford); Hof F and Rebek J Jr. (2002) Molecules within molecules: Recognition through self-assembly. PNAS. 99:4775–4777; Diederich F and Felber B (2002) Supramolecular chemistry of dendrimers with functional cores. PNAS. 99:4778–4781; Fréchet JMJ (2002) Dendrimers and supramolecular chemistry. PNAS. 99:4782–4787; Davis AV, Yeh RM, Raymond KN et al. Supramolecular assembly dynamics. PNAS. 99:4793–4796; Balzani V, Credi A, Venturi M et al. Controlled disassembling of self-assembling systems: Toward artificial molecular-level devices and machines. PNAS. 99:4814–4817; Cotton FA, Lin C, Murillo CA et al. The use of dimetal building blocks in convergent syntheses of large arrays, PNAS. 99:4810–4813; Roco MC (2003) Nanotechnology: Convergence with modern biology and medicine. Curr. Opin. Biotech. 14:337–346.

    Article  CAS  Google Scholar 

  49. Professor Cengiz Oskan (30 January 2007) UC-Riverside at Nanotechnology for Chemical and Biological Defense 2030 Workshop, Santa Fe, NM.

    Google Scholar 

  50. Braun E and Keren K (2004) From DNA to transistors. Adv. Phys. 53:441–496.

    Article  CAS  Google Scholar 

  51. Lee J, Hernandez P, Lee J, Govorov AO, Kotov NA et al (2007) Nat. Mate. 6:291–295.

    Article  CAS  Google Scholar 

  52. Maye MM et al (2007) DNA-regulated micro- and nanoparticle assembly. Small 3:1678–1682.

    Article  CAS  Google Scholar 

  53. Wang X, Liu F, Andavan GTS, Jing X, Singh K, Yazdanpanah VR et al (2006) Carbon nanotube–DNA nanoarchitectures and electronic functionality. Small 11:1356–1365.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Kosal .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kosal, M. (2009). Potential Malfeasant Cooption of Nanotechnology. In: Nanotechnology for Chemical and Biological Defense. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0062-3_4

Download citation

Publish with us

Policies and ethics