Skip to main content

Influence of Phenology and Land Management on Biosphere-Atmosphere Isotopic CO2 Exchange

  • Chapter
  • First Online:
Phenology of Ecosystem Processes

Abstract

Stable isotope and micrometeorological techniques have long been used to study carbon cycle dynamics at a variety of spatial and temporal scales. Combination of these techniques provide a powerful tool for gaining greater process information at the ecosystem and regional scales and can provide a meaningful way to scale processes from leaf to region. In this chapter we review the recent literature and examine the key processes influencing biosphere–atmosphere 13CO2 exchange. These processes are examined from the perspective of agricultural land management and rapid seasonal changes in phenology. Novel measurement techniques are introduced that can be used to better quantify the 13CO2 exchange between the biosphere and atmosphere to determine how ecosystem processes, land use modifications, and phenology impact the isotopic composition of the atmosphere (i.e. the atmospheric isotopic forcing associated with land surface processes). High temporal resolution isotope mixing ratio and flux measurements, based on tunable diode laser absorption spectroscopy, are presented. The results demonstrate that the isotopic composition of respiration at the ecosystem scale is strongly linked to plant assimilated carbon, which is dependent on plant metabolic physiology and growth phase. We review how this strong isotopic coupling between ecosystem respiration and photosynthesis can impact isotope-based flux partitioning of net ecosystem CO2 exchange, the variation in the canopy isotopic discrimination parameter, and the resulting isotopic forcing on the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FN :

net ecosystem CO2 exchange (μmol m−2 s−1)

FA :

ecosystem photosynthetic assimilation (μmol m−2 s−1)

FR :

ecosystem respiration (μmol m−2 s−1)

∆canopy :

canopy isotopic discrimination (‰)

D:

canopy isotopic disequilibrium (‰)

C3 :

Calvin cycle plant metabolism

C4 :

Hatch-Slack cycle plant metabolism

δ13C:

carbon isotopic composition (‰)

ca :

canopy air CO2 mixing ratio (ppm)

cs :

leaf boundary layer CO2 mixing ratio (ppm)

ci :

stomatal CO2 mixing ratio (ppm)

cc :

chloroplast CO2 mixing ratio (ppm)

\(\delta _N^{13}\) :

carbon isotope ratio of the net flux (‰)

δ A :

assimilated carbon isotopic composition (‰)

δ R :

non-foliar respired carbon isotopic composition (‰)

δ N :

carbon isotopic composition of the net CO2 exchange (‰)

δ a :

atmospheric carbon isotopic composition (‰)

g:

total conductance (μmol m−2 s−1)

ga :

aerodynamic conductance (μmol m−2 s−1)

gs :

canopy stomatal conductance (μmol m−2 s−1)

gm :

mesophyll wall conductance (μmol m−2 s−1)

∆ b :

boundary layer diffusional fractionation (‰)

∆ s :

stomatal diffusional fractionation (‰)

∆diss :

mesophyll dissolution fractionation (‰)

∆aq :

aqueous phase mesophyll transport fractionation (‰)

∆ f :

enzymatic fixation isotopic fractionation (‰)

Fδ :

net ecosystem CO2 isoflux (μmol m−2 s−1‰)

Kc :

eddy diffusivity of CO2 (m2 s−1)

\(\overline p _a\) :

molar density of dry air (mol m−3)

Ma :

molecular weight of dry air (g mol–1 )

RVPDB :

heavy to light isotopic ratio of NBS-19

w:

vertical wind velocity (m s−1)

Sc :

storage rate of change of CO2 between ground and measurement height (mmol m−2 s−1)

Cwc :

cospectral density of vertical wind velocity and CO2 mixing ratio (m ppm s−1)

\({\rm R}_{\rm N}^{13}\) :

heavy to light ratio of isotopic fluxes

R h :

heterotrophic component of total ecosystem respiration

R a :

autotrophic component of total ecosystem respiration

FRh :

heterotrophic component of total ecosystem respiration flux (mmol m−2 s−1)

FRa :

autotrophic component of total ecosystem respiration flux (mmol m−2 s−1)

References

  • Aranibar, J.N., Berry, J.A., Riley, W.J., Pataki, D.E., Law, B.E. and Ehleringer, J.R. (2006) Combining meteorology, eddy fluxes, isotope measurements, and modeling to understand environmental controls of carbon isotope discrimination at the canopy scale. Global Change Biol. 12, 710–730.

    Article  Google Scholar 

  • Badeck, F.-W., Tcherkez, G., Nogués, S., Piel, C. and Ghashghaie, J. (2005) Post-photosynthetic fractionation of stable carbon isotopes between plant organs – a widespread phenomenon. Rapid Commun. Mass Sp. 19, 1381–1391.

    Article  CAS  Google Scholar 

  • Baldocchi, D.D. (2008) Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 56, 1–26.

    Article  CAS  Google Scholar 

  • Baldocchi, D.D. and Bowling, D.R. (2003) Modeling discrimination of 13CO2 above and within a temperate broad-leaved forest canopy on hourly to seasonal time scales. Plant Cell Environ. 26, 231–244.

    Article  Google Scholar 

  • Bathellier, C., Badeck, F.-W., Couzi, P., Harscoët, S., Mauve, C. and Ghashghaie, J. (2008) Divergence in δ13C of dark respired CO2 and bulk organic matter occurs during the transition between heterotrophy and autotrophy in Phaseolus vulgaris plants. New Phytol. 177, 406–418.

    CAS  Google Scholar 

  • Bernacchi, C.J., Portis, A.R., Nakano, H., von Caemmerer, S. and Long, S.P. (2002) Temperature response of mesophyll conductance. implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol. 130, 1992–1998.

    Article  CAS  Google Scholar 

  • Blanken, P.D. and Black, T.A. (2004) The canopy conductance of a boreal aspen forest, Prince Albert National Park, Canada. Hydrol. Proc. 18, 1561–1578.

    Article  Google Scholar 

  • Bowling, D.R., Baldocchi, D.D. and Monson, R.K. (1999) Dynamics of isotopic exchange of carbon dioxide in a Tennessee deciduous forest. Global Biogeochem. Cycles 13, 903–922.

    Article  CAS  Google Scholar 

  • Bowling, D.R., Burns, S.P., Conway, T.J., Monson, R.K. and White, J.W.C. (2005) Extensive observations of CO2 carbon isotope content in and above a high-elevation subalpine forest. Global Biogeochem. Cycles 19 15, 83.

    Google Scholar 

  • Bowling, D.R., McDowell, N.G., Bond, B.J., Law, B. and Ehleringer, J.R. (2002) 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia 131, 113–124.

    Article  Google Scholar 

  • Bowling, D.R., Sargent, S., Tanner, B. and Ehleringer, J.R. (2003) Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange. Agric. For. Meteorol. 118, 1–19.

    Article  Google Scholar 

  • Bowling, D.R., Tans, P.P. and Monson, R.K. (2001) Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Global Change Biol. 7, 127–145.

    Article  Google Scholar 

  • Cerling, T.E., Harris, J.M., MacFadden, B.J., Leakey, M.G., Quade, J., Eisenmann, V. and Ehleringer, J.R. (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158.

    Article  CAS  Google Scholar 

  • Ciais, P., Tans, P.P., White, J.W.C., Trolier, M., Francey, R.J., Berry, J.A., Randall, D.R., Sellers, P.J., Collatz, J.G. and Schimel, D.S. (1995) Partitioning of ocean and land uptake of CO2 as inferred by δ13C measurements from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling network. J. Geophys. Res. 100, 5051–5070.

    Article  CAS  Google Scholar 

  • Duranceau, M., Ghashghaie, J., Badeck, F., Deleens, E. and Cornic, G. (1999) δ13C of CO2 respired in the dark in relation to δ13C of leaf carbohydrates in Phaseolus vulgaris L. under progressive drought. Plant Cell Environ. 22, 515–523.

    Article  Google Scholar 

  • Duranceau, M., Ghashghaie, J. and Brugnoli, E. (2001) Carbon isotope discrimination during photosynthesis and dark respiration in intact leaves of Nicotiana sylvestris: comparison between wild type and mitochondrial mutant plants. Aust. J. Plant Physiol. 28, 65–71.

    CAS  Google Scholar 

  • Ekblad, A., Bostrom, B., Holm, A. and Comstedt, D. (2005) Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions. Oecologia 143, 136–142.

    Article  Google Scholar 

  • Ekblad, A. and Högberg, P. (2001) Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127, 305–308.

    Article  Google Scholar 

  • Farquhar, G.D. (1983) On the nature of carbon isotope discrimination in C4 species. Aust. J. Plant Physiol. 10, 205–226.

    Article  CAS  Google Scholar 

  • Farquhar, G.D., Ehleringer, J.R. and Hubick, K.T. (1989) Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Mol. Biol. 40, 503–537.

    Article  CAS  Google Scholar 

  • Flanagan, L.B., Brooks, J.R., Varney, G.T., Berry, S.C. and Ehleringer, J.R. (1996) Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO2 in boreal forest ecosystems. Global Biogeochem. Cycles 10, 629–640.

    Article  CAS  Google Scholar 

  • Flanagan, L.B. and Ehleringer, J.R. (1998) Ecosystem-atmosphere CO2 exchange: interpreting signals of change using stable isotope ratios. Trends Ecol. Evol. 13, 10–14.

    Article  Google Scholar 

  • Flexas, J., Ribas-Carbó, M., Diaz-Espejo, A., Galmés, J. and Medrano, H. (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ. 31, 602–621.

    Article  CAS  Google Scholar 

  • Francey, R.J., Allison, C.E., Etheridge, D.M., Trudinger, C.M., Enting, I.G., Leuenberger, M., Langenfelds, R.L., Michel, E. and Steele, L.P. (1999) A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B 51, 170–193.

    Article  Google Scholar 

  • Fung, I., Field, C.B., Berry, J.A., Thompson, M.V., Randerson, J.T., Malmstrom, C.M., Vitousek, P.M., Collatz, G.J., Sellers, P.J., Randall, D.A., Denning, A.S., Badeck, F. and John, J. (1997) Carbon 13 exchanges between the atmosphere and biosphere. Global Biogeochem. Cycles 11, 507–533.

    Article  CAS  Google Scholar 

  • Gessler, A., Keitel, C., Kodama, N., Weston, C., Winters, A.J., Keith, H., Grice, K., Leuning, R. and Farquhar, G.D. (2007) δ13C of organic matter transported from leaves to the roots in Eucalyptus delegatensis: short-term variations and relation to respired CO2. Funct. Plant Biol. 34, 692–706.

    Article  CAS  Google Scholar 

  • Gessler, A., Schrempp, S., Matzarakis, A., Mayer, H., Rennenberg, H. and Adams, M.A. (2001) Radiation modifies the effect of water availability on the carbon isotope composition of beach (Fagus sylvatica). New Phytol. 150, 653–664.

    Article  Google Scholar 

  • Ghashghaie, J., Badeck, F.-W., Lanigan, G., Nogués, S., Tcherkez, G., Deleens, E., Cornic, G. and Griffiths, H. (2003) Carbon isotope fractionation during dark respiration and photorespiration in C3 plants. Phytochem. Rev. 2, 145–161.

    Article  CAS  Google Scholar 

  • Ghashghaie, J., Duranceau, M., Badeck, F.W., Cornic, G., Addeline, M.T. and Deleens, E. (2001) δ13C of CO2 respired in the dark in relation to δ13C of leaf metabolites: comparison between Nicotiana sylvestris and Helianthus annuus under drought. Plant Cell Environ. 24, 505–515.

    Article  CAS  Google Scholar 

  • Griffis, T.J., Baker, J.M., Sargent, S.D., Tanner, B.D. and Zhang, J. (2004) Measuring field-scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques. Agric. For. Meteorol. 124, 15–29, 38.

    Article  Google Scholar 

  • Griffis, T.J., Baker, J.M. and Zhang, J. (2005a) Seasonal dynamics and partitioning of isotopic CO2 exchange in C3/C4 managed ecosystem. Agric. For. Meteorol. 132, 1–19.

    Article  Google Scholar 

  • Griffis, T.J., Lee, X., Baker, J.M., Sargent, S.D. and King, J.Y. (2005b) Feasibility of quantifying ecosystem-atmosphere C18O16O exchange using laser spectroscopy and the flux-gradient method. Agric. For. Meteorol. 135, 44–60.

    Article  Google Scholar 

  • Griffis, T.J., Sargent, S.D., Baker, J.M., Lee, X., Tanner, B.D., Greene, J., Swiatek, E. and Billmark, K. (2008) Direct measurement of biosphere–atmosphere isotopic CO2 exchange using the eddy covariance technique. J. Geophys. Res. 113, D08304.

    Article  Google Scholar 

  • Griffis, T.J., Zhang, J., Baker, J.M., Kljun, N. and Billmark, K. (2007) Determining carbon isotope signatures from micrometeorological measurements: Implications for studying biosphere-atmosphere exchange processes. Bound.-Lay. Meteorol. 123, 295–316.

    Article  Google Scholar 

  • Hobbie, E.A. and Werner, R.A. (2004) Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytol. 161, 371–385.

    Article  CAS  Google Scholar 

  • Högberg, P., Nordgren, A., Buchmann, N., Taylor, A.F.S., Ekblad, A., Högberg, M.N., Nyberg, G., Ottosson-Lofvenius, M. and Read, D.J. (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411, 789–792.

    Article  Google Scholar 

  • Kaimal, J. and Finnigan, J. (1994) Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, Oxford, pp. 289.

    Google Scholar 

  • Keitel, C., Matzarakis, A., Rennenberg, H. and Gessler, A. (2006) Carbon isotopic composition and oxygen isotopic enrichment in phloem and total leaf organic matter of European beech (Fagus sylvatica L.) along a climate gradient. Plant Cell Environ. 29, 1492–1507.

    Article  CAS  Google Scholar 

  • Klumpp, K., Schäufele, R., Lötscher, M., Lattanzi, F.A., Feneis, W. and Schnyder, H. (2005) C-isotope composition of CO2 respired by shoots and roots: fractionation during dark respiration? Plant Cell and Environ. 28, 241–250.

    Article  CAS  Google Scholar 

  • Knohl, A., Werner, R.A., Brand, W.A. and Buchmann, N. (2005) Shortterm variations in δ13C of ecosystem respiration reveals link between assimilation and respiration in a deciduous forest. Oecologia 142, 70–82.

    Article  Google Scholar 

  • Leavitt, S.W. and Long, A. (1986) Stable carbon isotope variability in tree foliage and wood. Ecology 67, 1002–1010.

    Article  CAS  Google Scholar 

  • Lee, X.H., Kim, K. and Smith, R. (2007) Temporal variations of the 18O/16O signal of the whole-canopy transpiration in a temperate forest. Global Biogeochem. Cycles 21, GB3013.

    Article  Google Scholar 

  • Leff, B., Ramankutty, N. and Foley, J.A. (2004) Geographic distribution of major crops across the world. Global Biogeochem. Cycles 18, GB1009.

    Article  Google Scholar 

  • Lloyd, J., Kruijt, B., Hollinger, D.Y., Grace, J., Francey, R.J., Wong, S.C., Kelliher, F.M., Miranda, A.C., Farquhar, G.D., Gash, J.H.C., Vygodskaya, N.N., Wright, I.R., Miranda, H.S. and Schulze, E.D. (1996) Vegetation effects on the isotopic composition of atmospheric CO2 at local and regional scales: Theoretical aspects and a comparison between rain forest in amazonia and a boreal forest in Siberia. Aust. J. Plant Physiol. 23, 371–399.

    Article  Google Scholar 

  • Miller, J.B., Tans, P.P., White, J.W.C., Conway, T.J. and Vaughn, B.W. (2003) The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes. Tellus 55B, 197–206.

    CAS  Google Scholar 

  • Monin, A.S. and Obukhov, A.M. (1954) Basic laws of turbulent mixing near the ground. Trudy Geofiz. Ins. Akad. Nauk SSSR 24, 163–187. (In Russian)

    Google Scholar 

  • Mortazavi, B., Chanton, J.P., Prater, J.L., Oishi, A.C., Oren, R. and Katul, G.G. (2005) Temporal variability in 13C of respired CO2 in a pine and a hardwood forest subject to similar climatic conditions. Oecologia 142, 57–69.

    Article  Google Scholar 

  • Ogée, J., Peylin, P., Ciais, P., Bariac, T., Brunet, Y., Berbigier, P., Roche, C., Richard, P., Bardoux, G. and Bonnefond, J.M. (2003) Partitioning net ecosystem carbon exchange into net assimilation and respiration using (13CO2) measurements: A cost-effective sampling strategy. Global Biogeochem. Cycles 17, GB1070.

    Article  Google Scholar 

  • Ometto, J.P.H., Flanagan, L.B., Martinelli, L.A., Moreira, M.Z., Higuchi, N. and Ehleringer, J.R. (2002) Carbon isotope discrimination in forest and pasture ecosystems of the Amazon basin, Brazil. Global Biogeochem. Cycles 16, GB1109.

    Article  Google Scholar 

  • Pataki, D.E., Ehleringer, J.R., Flanagan, L.B., Yakir, D., Bowling, D.R., Still, C.J., Buchmann, N., Kaplan, J.O. and Berry, J.A. (2003) The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochem. Cycles 17, 1022.

    Article  Google Scholar 

  • Pfeffer, M. and Peisker, M. (1998) CO2 gas exchange and phosphoenolpyruvate carboxylase activity in leaves of Zea mays L. Photosynth. Res. 58, 281–291.

    Article  CAS  Google Scholar 

  • Randerson, J.T., Chapin, F.S., Harden, J.W., Neff, J.C. and Harmon, M.E. (2002) Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems. Ecol. Appl. 12, 937–947.

    Article  Google Scholar 

  • Raupach, M.R. (1989) Applying lagrangian fluid-mechanics to infer scalar source distributions from concentration profiles in plant canopies. Agric. For. Meteorol. 47, 85–108.

    Article  Google Scholar 

  • Rochette, P., Pattey, E., Desjardins, R.L., Dwyer, L.M., Stewart, D.W. and Dube, P.A. (1991) Estimation of maize Zea Mays L. canopy conductance by scaling up leaf stomatal conductance. Agric. For. Meteorol. 54, 241–261.

    Article  Google Scholar 

  • Scartazza, A., Mata, C., Matteucci, G., Yakir, D., Moscatello, S. and Brugnoli, E. (2004) Comparisons of δ13C of photosynthetic products and ecosystem respiratory CO2 and their responses to seasonal climate variability. Oecologia 140, 340–351.

    Article  Google Scholar 

  • Scholze, M., Ciais, P. and Heimann, M. (2008) Modeling terrestrial 13C cycling: Climate, land use and fire. Global Biogeochem. Cycles 22, GB1009.

    Article  Google Scholar 

  • Scholze, M., Kaplan, J.O., Knorr, W. and Heimann, M. (2003) Climate and interannual variability of the atmosphere-biosphere 13CO2 flux. Geophys. Res. Lett. 30, 1097.

    Article  Google Scholar 

  • Simpson, T.J. (1998) Application of isotopic methods to secondary metabolic pathways. Biosynthesis 195, 1–48.

    Article  CAS  Google Scholar 

  • Suits, N.S., Denning, A.S., Berry, J.A., Still, C.J., Kaduk, J., Miller, J.B. and Baker, I.T. (2005) Simulation of carbon isotope discrimination of the terrestrial biosphere. Global Biogeochem. Cycles 19, GB1017.

    Article  Google Scholar 

  • Tcherkez, G., Farquhar, G.D., Badeck, F. and Ghashghaie, J. (2004) Theoretical considerations about carbon isotope distribution in glucose of C3 plants. Funct. Plant Biol. 31, 857–877.

    Article  CAS  Google Scholar 

  • Tcherkez, G., Nogués, S., Bleton, J., Cornic, G., Badeck, F.W. and Ghashghaie, J. (2003) Metabolic origin of carbon isotope composition of leaf dark-respired CO2 in French bean. Plant Physiol. 131, 237–244.

    Article  CAS  Google Scholar 

  • Werner, R.A., Unger, S., Pereira, J.S., Maia, R., David, T.S., Kurz-Besson, C., David, J.S. and Maguas, C. (2006) Importance of short-term dynamics in carbon isotope ratios of ecosystem respiration (δ13C) in a Mediterranean oak woodland and linkage to environmental factors. New Phytol. 172, 330–346.

    Article  CAS  Google Scholar 

  • Xu, C.Y., Lin, G.H., Griffin, K.L. and Sambrotto, R.N. (2004) Leaf respiratory CO2 is 13C-enriched relative to leaf organic components in five species of C3 plants. New Phytol. 163, 499–505.

    Article  CAS  Google Scholar 

  • Yakir, D. (2004) The stable isotopic composition of atmospheric CO2, In: The Atmosphere: Treatise on Geochemistry. Vol.4. Elsevier, Amsterdam, pp. 175–212.

    Google Scholar 

  • Yakir, D. and Wang, X.F. (1996) Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurements. Nature 380(6574), 515–517.

    Article  CAS  Google Scholar 

  • Zhang, J., Griffis, T.J. and Baker, J.M. (2006) Using continuous stable isotope measurements to partition net ecosystem CO2 exchange. Plant Cell Environ. 29, 483–496.

    Article  CAS  Google Scholar 

  • Zobitz, J.M., Burns, S.P., Ogée, J., Reichstein, M. and Bowling, R. (2007) Partitioning net ecosystem exchange of CO2: A comparison of a Bayesian/isotope approach to environmental regression methods. J. Geophys. Res. 112, G03013.11.1

    Article  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to John Baker who has had a significant impact on the development of this work. We also thank numerous technicians and students who have provided field assistance including Matt Erickson, Bill Breiter, Jim Brozowski, Travis Bavin, Jennifer Corcoran, Jeremy Smith, Kyounghee Kim and Lisa Welp. We thank Dr. T. A. Black for helping us with the integration of the automated chamber system with the TDL system. Financial support for this project was provided by the National Science Foundation, ATM-0546476 and the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-03ER63684.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Billmark, K.A., Griffis, T.J. (2009). Influence of Phenology and Land Management on Biosphere-Atmosphere Isotopic CO2 Exchange. In: Noormets, A. (eds) Phenology of Ecosystem Processes. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0026-5_6

Download citation

Publish with us

Policies and ethics