Skip to main content

Introducing Conifers

  • Chapter
Conifer Reproductive Biology

Summary

Conifers are cone-bearing seed plants with an ancient evolutionary history. Opening with an introduction to Australia's Wollemi pine, one finds that modern conifer taxa (seven families, 71 genera, 620+ species) are persistent Mesozoic relics. As such, their evolutionary history begins with the terrestrial invasion of land plants and the greening of the earth, the rise of the Paleozoic forest and the Jurassic plant diet of herbivorous dinosaurs. All modern conifers, not just Wollemi pine (Wollemia nobilis), are living fossils. Conifers have persisted despite continental drift, climate oscillations, volcanism and the rapid spread of angiosperms. Modern conifers, as a whole, are distributed worldwide although a few regions of the world such as China, Mexico and New Caledonia have high concentrations of conifer taxa. Although many conifer species have large, wideranging census populations, others such Wollemi pine are critically endangered. Vestiges of the ancient conifer diaspora can be seen in the fossilized Metasequoia-dominated forests in Canadian High Arctic and from the endemic Da Lat ecosystem in Vietnam which includes the flat-leaved Pinus krempfii. Conifers are among the oldest extant seed plant lineage and their peculiar reproductive biology holds clues about seed plant evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvin, K. 1960. Further conifers of the Pinaceae from the Wealden Formation of Belgium. Institut Royal des Sciences Naturelles de Belgique Memoires 146: 1–39.

    Google Scholar 

  • Andrews, H. 1963. Early seed plants. Science 142: 925–931.

    Article  PubMed  Google Scholar 

  • Boufford, D. and S. Spongeford. 1983. Eastern Asia-eastern North American phytogeographical relationships — a history from the time of Linnaeus to the twentieth century. Annals of the Missouri Botanical Garden 70: 423–439.

    Article  Google Scholar 

  • Brenner, E. and D. Stevenson. 2006. Using genomics to study evolutionary origins of seeds. Editor: C.G. Williams. In: Landscapes, Genomics and Transgenic Conifers. Springer, Dordrecht, The Netherlands. pp. 85–106.

    Chapter  Google Scholar 

  • Brundett, M. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytologist 154: 275–304.

    Article  Google Scholar 

  • Brunsfeld, S., P. Soltis, et al. 1994. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae. Systematic Botany 19: 253–262.

    Article  Google Scholar 

  • Buchholz, J. 1951. A flat-leaved pine from Annam, Indo-china. American Journal of Botany 38: 245–252.

    Article  Google Scholar 

  • Chapman, D. 1995. Plant transitions to land Chapter 3. Editors: M. Gordon and E. Olson. In: Invasions of the Land: The Transition of Organisms from Aquatic to Terrestial Life. Columbia University Press, New York. 312 pp.

    Google Scholar 

  • Chin, K. and B. Gill. 1996. Dinosaurs, dung beetles and conifers: participants in a Cretaceous food web. Palaios 11: 280–285.

    Article  Google Scholar 

  • Contreras-Medina, R. and I. Vega. 2002. On the distribution of gymnosperm genera, their areas of endemism and cladistic biogeography. Australian Systematic Botany 15: 193–203.

    Article  Google Scholar 

  • Costanza, S. 1985. Pennsylvanioxylon of middle and upper Pennsylvanian coals from the Illinois basin and its comparison with Mesoxylon. Palaeontographica Abt. B 197: 81–121.

    Google Scholar 

  • Cox, C. and P. Moore. 2005. Biogeography: An Ecological and Evolutionary Approach. Blackwell, Malden, MA, Seventh Edition, 440 pp.

    Google Scholar 

  • deFerré, Y. 1948. Quelques particularities anatomiques d'un pin indochinois: Pinus krempfii. Bulletin de la société d'histoire naturelle de Toulouse 83: 1–6.

    Google Scholar 

  • DiMichele, W., S. Mamay, et al. 2001. An early Permian flora with late Permian and Mesozoic affinities for north-central Texas. Journal of Palaeontology 75: 449–460.

    Article  Google Scholar 

  • Eckenwalder, J. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madrono 23: 237–256.

    Google Scholar 

  • Escapa, I., R. Cuneo, et al. 2008. A new genus of the Cupressaceae (sensu lato) from the Jurassic of Patagonia: implications for conifer megasporangiate cone homologies. Review of Palaeobotany and Palynology 151: 110–122.

    Article  Google Scholar 

  • Farjon, A. 1996. Biodiversity of Pinus (Pinaceae) in Mexico: speciation and paleo-endemism. Botanical Journal of the Linnaean Society 121: 365–384.

    Google Scholar 

  • Farjon, A. 1998. World Checklist and Bibliography of Conifers. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Farjon, A. 2007. In defence of a conifer taxonomy which recognizes evolution. Taxon 56: 639–641.

    Google Scholar 

  • Farjon, A. and B. Styles. 1997. Pinus (Pinaceae). New York Botanical Garden, New York.

    Google Scholar 

  • Farjon, A., T. Nguyen, et al. 2002. A new genus and species in Cupressaceae (Coniferales) from Northern Vietnam, Xanthocyparis vietnamensis. Novon 12: 179–189.

    Article  Google Scholar 

  • Gensel, P. and H. Andrews. 1984. Plant Life in the Devonian. Praeger, New York.

    Google Scholar 

  • Gernandt, D., S. Magallan, et al. 2008. Use of simultaneous analyses to guide fossil-based calibrations of Pinaceae phylogeny. International Journal of Plant Sciences 169: 1086–1099.

    Article  Google Scholar 

  • Haig, D. and M. Westoby. 1989. Selective forces in the emergence of the seed habit. Biological Journal of the Linnean Society 38: 215–238.

    Article  Google Scholar 

  • Hart, J. 1987. A cladistic analysis of conifers: preliminary results. Journal of Arnold Arboretum 68: 269–307.

    Google Scholar 

  • Hernandez-Castillo, G., G. Rothwell, et al. 2001. Thucydiaceae Fam. Nov., with a review and re-evaluation of Paleozoic Walchian conifers. International Journal of Plant Sciences 162: 1155–1185.

    Article  Google Scholar 

  • Jahren, A. 2007. The Arctic forest of the middle Eocene. Annual Review of Earth and Planetary Sciences 35: 509–540.

    Article  CAS  Google Scholar 

  • Keller, A. and M. Hendrix. 1997. Paleoclimatologic analysis of a Late Jurassic petrified forest, south-eastern Mongolia. Palaios 12: 282–291.

    Article  Google Scholar 

  • Kerp, J., R. Poort, et al. 1990. Aspects of Permian paleobotany and palynology: conifer dominated rotliegend floras from the Saar-Nahe Basin (Late Carboniferous Early Permian, SW Germany) with special reference to the reproductive biology of early conifers. Review of Paleobotany and Palynology 62: 205–248.

    Article  Google Scholar 

  • Knoll, A. 1986. Patterns of change in plant communities through geological time. Editors: J.A. Diamond and T.J. Case. In: Community Ecology. Harper & Row, New York. Chapter 7, pp. 126–141.

    Google Scholar 

  • Krupkin, A., A. Liston, et al. 1996. Phylogenetic analysis of the hard pines (Pinus subgenus Pinus, Pinaceae) from chloroplast DNA restriction site analysis. American Journal of Botany 83: 489–498.

    Article  Google Scholar 

  • Labandeira, C., J. Kvacek, et al. 2007. Pollination drops, pollen and insect pollination of Mesozoic gymnosperms. Taxon 56: 663–695.

    Google Scholar 

  • LePage, B. 2003. The evolution, biogeography and paleoecology of the Pinaceae based on fossil and extant representatives. Acta Horticulturae 615: 29–52.

    Google Scholar 

  • LePage, B. and J. Basinger. 1995. Evolutionary history of the genus Pseudolarix Gordon (Pinaceae). International Journal of Plant Sciences 156: 910–950.

    Article  Google Scholar 

  • LePage, B., R. Currah, et al. 1997. Fossil ectomycorrhizae from the Middle Eocene. American Journal of Botany 84: 410–412.

    Article  Google Scholar 

  • LePage, B., B. Beauchamp, et al. 2003. Late early Permian plant fossils from the Canadian High Arctic: a rare paleoenvironmental/climatic window in northwest Pangea. Palaeogeography, Palaeoclimatology, Palaeoecology 191: 345–372.

    Article  Google Scholar 

  • LePage, B., C. Williams, et al. 2005. The Geobiology and Ecology of Metasequoia. Springer, Dordrecht, The Netherlands.

    Book  Google Scholar 

  • Li, H. 1953. Present distribution and habits of the conifers and the taxads. Evolution 7: 245–261.

    Article  Google Scholar 

  • Looy, C., W. Brugman, et al. 1999. The delayed resurgence of forests after the Permian-Triassic ecologic crisis. Proceedings National Academy of Sciences U.S.A. 96: 13857–13862.

    Article  CAS  Google Scholar 

  • Looy, C., R. Twitchett, et al. 2001. Life at the end: Permian dead zone. Proceedings National Academy of Sciences U.S.A 98: 7879–7883.

    Article  CAS  Google Scholar 

  • Mapes, G. and G. Rothwell. 1998. Primitive pollen cone structure in upper Pennylsvanian (Stephanian) Walchian conifers. Journal of Paeontology 72: 571–576.

    Google Scholar 

  • Matten, L., T. Fine, et al. 1984. The megagametophyte of Hydrasperma tenuis long from the uppermost Devonian of Ireland. American Journal of Botany 71: 1461–1464.

    Article  Google Scholar 

  • Merrill, E. 1948. Metasequoia, another living fossil. Arnoldia 8: 1–8.

    Google Scholar 

  • Millar, C. 1993. The impact of the Eocene on the evolution of Pinus L. Annals of the Missouri Botanical Garden 80: 471–498.

    Article  Google Scholar 

  • Miller, C. 1977. Mesozoic conifers. Botanical Gazette 43: 217–280.

    Google Scholar 

  • Mirov, N. 1967. The Genus Pinus. Ronald Press, New York.

    Google Scholar 

  • Niklas, K., B. Tiffney, et al. 1983. Patterns in vascular land plant diversification. Nature 303: 614–616.

    Article  Google Scholar 

  • Niklas, K. 1997. The Evolutionary Biology of Plants. University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Pettit, J. and C. Beck. 1968. Archaeosperma arnoldii - a cupulate seed from the Upper Devonian of North America. Contrib. Mus. Paleont. Univ. Michigan 22: 139–154.

    Google Scholar 

  • Price, R. and J. Lowenstein. 1989. An immunological comparison of Sciadopityaceae, Taxodiaceae and Cupressaceae. Systematic Botany 14: 141–149.

    Article  Google Scholar 

  • Richardson, D., P. Williams, et al. 1994. Pine invasions in the Southern Hemisphere: determinants of spread and invadibility. Journal of Biogeography 21: 511–527.

    Article  Google Scholar 

  • Rothwell, G. and S. Scheckler. 1988. Biology of ancestral gymnosperms. Editor: C. Beck. In: Origin and Evolution of Gymnosperms. Columbia University Press, New York. pp. 85–134.

    Google Scholar 

  • Stefanovic, S., M. Jager, et al. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. American Journal of Botany 85: 688–697.

    Article  CAS  Google Scholar 

  • Stephan, G. and L. Tien. 1986. Development of pine resin production in Vietnam (translated from German). Soz. Forst. 36: 120–121.

    Google Scholar 

  • Stewart, W. and G. Rothwell. 1993. Paleobotany and the evolution of plants. Cambridge University Press, New York. 521 p.

    Google Scholar 

  • Taylor, T. and M. Millay. 1979. Pollination biology and reproduction of early seed plants. Review of Paleobotany and Palynology 27: 329–355.

    Article  Google Scholar 

  • Wang, S.-J. 1998. The cordaitean fossil plants from Cathaysian area in China. Acta Botanica Sinica 40: 573–579.

    Google Scholar 

  • Wang, X.-R., A. Szmidt, et al. 2000. The phylogenetic position of the endemic flat-needle pine Pinus krempfii (Pinaceae) from Vietnam, based on PCR-RFLP analysis of the chloroplast DNA. Plant Systematics and Evolution 220: 21–36.

    Article  CAS  Google Scholar 

  • Wen, J. 1999. Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annual Review of Ecology and Systematics 30: 421–455.

    Article  Google Scholar 

  • Westing, A. and C. Westing. 1981. Endangered species and habitats of Vietnam. Environmental Conservation 8: 59–63.

    Article  Google Scholar 

  • Williams, C., A. Johnson, et al. 2003. Reconstruction of Tertiary Metasequoia forests. I. Test of a method for biomass determination based on stem dimensions. Paleobiology 29: 256–270.

    Article  Google Scholar 

  • Willyard, A., J. Syring, et al. 2007. Fossil calibration of molecular divergence in Pinus: inferences for ages and mutation rates. Molecular Biology Evolution 24: 90–101.

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

(2009). Introducing Conifers. In: Conifer Reproductive Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9602-0_1

Download citation

Publish with us

Policies and ethics