Skip to main content

Animal Biocalcification, Evolution

  • Reference work entry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

SOM. Soluble organic matrix

IOM. Insoluble organic matrix

GRN. Gene regulatory network

Introduction

One of the major events in the evolution of multicellular animals was the transition from soft-bodied organisms to those that possessed mineralized hard parts for protection and support. This major evolutionary hallmark supported the rapid diversification of animals and their occupation of a diverse range of novel ecological niches at the dawn of the Phanerozoic, between 560 and 530 million years ago, when mineralized skeletons appeared relatively synchronous in a variety of Phyla during the so-called Cambrian Explosion (Knoll, 2003; Conway Morris, 2006). However, it is still unclear exactly what drove this sudden capacity to construct mineralized structures, be it changes in ocean chemistry (Brennan et al., 2004) or the evolution of more diverse ecologies (Cohen, 2005), including predators (Vermeij, 1989). Investigation of biomineralization processes will provide insight...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Aizenberg, J., Weiner, S., and Addadi, L., 2003. Coexistence of amorphous and crystalline calcium carbonate in skeletal tissues. Connective Tissue Research, 44, 20–25.

    Google Scholar 

  • Ameye, L., Hermann, R., Killian, C., Wilt, F., and Dubois, P., 1999. Ultrastructural localization of proteins involved in sea urchin biomineralization. Journal of Histochemistry and Cytochemistry, 47, 1189–1200.

    Article  Google Scholar 

  • Arp, G., 1999. Calcification of Non-Marine Cyanobacterial Biofilms (USA, PR China, Indonesia, Germany) – Implications for the Interpretation of Fossil Microbialites. PhD Thesis, Mathematisch-Naturwissenschaftliche Fakultät, Georg-August-Universität Göttingen, Göttingen, p. 118.

    Google Scholar 

  • Bédouet, L., Schuller, M. J., Marin, F., Milet, C., Lopez, E., and Giraud, M., 2001. Soluble proteins of the nacre of the giant oyster Pinctada maxima and of the abalone Haliotis tuberculata: extraction and partial analysis of nacre proteins. Comparative Biochemistry and Physiology Part B, Biochemistry & Molecular Biology, 128, 389–400.

    Article  Google Scholar 

  • Bédouet, L., Rusconi, F., Rousseau, M., Duplat, D., Marie, A., Dubost, L., Le Ny, K., Berland, S., Péduzzi, J., and Lopez, E., 2006. Identification of low molecular weight molecules as new components of the nacre organic matrix. Comparative Biochemistry and Physiology Part B, Biochemistry & Molecular Biology, 144, 532–543.

    Article  Google Scholar 

  • Blank, S., Arnoldi, M., Khoshnavaz, S., Treccani, L., Kuntz, M., Mann, K., Grathwohl, G., and Fritz, M., 2003. The nacre protein perlucin nucleates growth of calcium carbonate crystals. Journal of Microscopy, 212, 280–291.

    Article  Google Scholar 

  • Bottjer, D. J., Davidson, E. H., Peterson, K. J., and Cameron, R. A., 2006. Paleogenomics of echinoderms. Science, 314, 956–960.

    Article  Google Scholar 

  • Brennan, S. T., Lowenstein, T. K., and Horita, J., 2004. Seawater chemistry and the advent of biocalcification. Geology, 32, 473–476.

    Article  Google Scholar 

  • Carroll, S. B., Grenier, J. K., and Weatherbee, S. D., 2001. From DNA to Diversity – Molecular Genetics and the Evolution of Animal Design. Blackwell: Malden, MA.

    Google Scholar 

  • Cohen, B. L., 2005. Not armour, but biomechanics, ecological opportunity and increased fecundity as keys to the origin and expansion of the mineralized benthic metazoan fauna. Biological Journal of the Linnean Society, 85, 483–490.

    Article  Google Scholar 

  • Conway Morris, S., 2006. Darwin’s dilemma: the realities of the Cambrian “explosion.” Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 361, 1069–1083.

    Article  Google Scholar 

  • Degens, E., 1979. Why do organisms calcify. Chemical Geology, 25, 257–269.

    Article  Google Scholar 

  • Degens, E. T., Kazmierszak, J., and Ittekkot, V., 1985. Cellular response to Ca2 + stress and its geological implications. Acta Palaeontologica Polonica, 30, 115–135.

    Google Scholar 

  • Demers, C., Hamdy, C. R., Corsi, K., Chellat, F., Tabrizian, M., and Yahia, L., 2002. Natural coral exoskeleton as a bone graft substitute: a review. Bio-Medical Materials and Engineering, 12, 15–35.

    Google Scholar 

  • Ettensohn, C. A., Illies, M. R., Oliveri, P., and De Jong, D. L., 2003. Alx1, a member of the Cart1/Alx3/Alx4 subfamily of paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo. Development, 130, 2917–2928.

    Article  Google Scholar 

  • Ettensohn, C. A., Kitazawa, C., Cheers, M. S., Leonard, J. D., and Sharma, T., 2007. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network. Development, 134, 3077–3087.

    Article  Google Scholar 

  • Gao, F., and Davidson, E., 2008. Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution. Proceedings of the National Academy of Sciences of the United States of America, 105, 6091–6096.

    Article  Google Scholar 

  • Illies, M. R., Peeler, M. T., Dechtiaruk, A. M., and Ettensohn, C. A., 2002. Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus. Development Genes and Evolution, 212, 419–431.

    Article  Google Scholar 

  • Jackson, D. J., McDougall, C., Green, K., Simpson, F., Wörheide, G., and Degnan, B. M., 2006. A rapidly evolving secretome builds and patterns a sea shell. BMC Biology, 4, 40.

    Article  Google Scholar 

  • Jackson, D., Wörheide, G., and Degnan, B. M., 2007a. Dynamic expression of ancient and novel molluscan shell genes during ecological transitions. BMC Evolutionary Biology, 7, 160.

    Article  Google Scholar 

  • Jackson, D. J., Macis, L., Reitner, J., Degnan, B. M., and Wörheide, G., 2007b. Sponge paleogenomics reveals an ancient role for carbonic anhydrase in skeletogenesis. Science, 316, 1893–1895.

    Article  Google Scholar 

  • Kazmierczak, J., Ittekot, U., and Degens, E. T., 1985. Biocalcification through time: environmental challenge and cellular response. Paläontologische Zeitschrift, 59, 15–33.

    Google Scholar 

  • Killian, C. E., and Wilt, F. H., 1996. Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules. Journal of Biological Chemistry, 271, 9150–9159.

    Article  Google Scholar 

  • Kirschvink, J. L., and Hagadorn, J. W., 2000. A grand unifying theory of biomineralization. In Bäuerlein, E. (ed.), The Biomineralization of Nano- and Micro-Structures. Weinheim: Wiley, pp. 139–150.

    Google Scholar 

  • Knoll, A. H., 2003. Biomineralization and evolutionary history. In Dove, P. M., De Yoreo, J. J., and Weiner, S. (eds.), Biomineralization. Washington, DC: The Mineralogical Society of America/Geochemical Society, pp. 329–356.

    Google Scholar 

  • Livingston, B. T., Killian, C. E., Wilt, F., Cameron, A., Landrum, M. J., Ermolaeva, O., Sapojnikov, V., Maglott, D. R., Buchanan, A. M., and Ettensohn, C. A., 2006. A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Developmental Biology, 300, 335–348.

    Article  Google Scholar 

  • Lopez, E., Vidal, B., Berland, S., Camprasse, S., Camprasse, G., and Silve, C., 1992. Demonstration of the capacity of nacre to induce bone-formation by human osteoblasts maintained invitro. Tissue & Cell, 24, 667–679.

    Article  Google Scholar 

  • Lowenstam, H. A., and Margulis, L., 1980. Evolutionary prerequisites for early phanerozoic calcareous skeletons. Biosystems, 12, 27–41.

    Article  Google Scholar 

  • Lowenstam, H. A., and Weiner, S., 1989. On Biomineralization. Oxford: Oxford University Press.

    Google Scholar 

  • Mann, S., 2001. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford: Oxford University Press.

    Google Scholar 

  • Mann, S., and Webb, J., 1989. Biomineralization. Weinheim: VCH.

    Google Scholar 

  • Mann, K., Weiss, I. M., Andre, S., Gabius, H. J., and Fritz, M., 2000. The amino-acid sequence of the abalone (Haliotis laevigata) nacre protein perlucin. European Journal of Biochemistry, 267, 5257–5264.

    Article  Google Scholar 

  • Marin, F., and Westbroek, P., 1998. A marriage of bone and nacre. Nature, 392, 861–862.

    Article  Google Scholar 

  • Marshall, C. R., 2006. Explaining the Cambrian “explosion” of animals. Annual Review of Earth and Planetary Sciences, 34, 355–384.

    Article  Google Scholar 

  • Peled-Kamar, M., Hamilton, P., and Wilt, F. H., 2002. Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule. Experimental Cell Research, 272, 56–61.

    Article  Google Scholar 

  • Peterson, K. J., Cotton, J. A., Gehling, J. G., and Pisani, D., 2008. The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 363, 1435–1443.

    Article  Google Scholar 

  • Politi, Y., Arad, T., Klein, E., Weiner, S., and Addadi, L., 2004. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science, 306, 1161–1164.

    Article  Google Scholar 

  • Reitner, J., and Neuweiler, F. C., 1995. Mud mounds: a polygenetic spectrum of fine-grained carbonate buildups. Facies, 32, 1–70.

    Article  Google Scholar 

  • Reitner, J., Thiel, V., Zankl, H., Michaelis, W., Wörheide, G., and Gautret, P., 2000. Organic and biogeochemical patterns in cryptic microbialites. In Riding, R. E., and Awramik, S. M. (eds.), Microbial Sediments. Berlin: Springer, pp. 149–160.

    Google Scholar 

  • Simkiss, K., 1986. The process of biomineralization in lower plants and animals – an overview. In Leadbeater, B. S. C., and Riding, R. (eds.), Biomineralization in Lower Plants and Animals. The Systematics Association Special Volume 30. Oxford: Clarendron, pp. 19–38.

    Google Scholar 

  • Simkiss, K., and Wilbur, K. M., 1989. Biomineralization – Cell biology and Mineral Deposition. San Diego: Academic.

    Google Scholar 

  • Söllner, C., Burghammer, M., Busch-Nentwich, E., Berger, J., Schwarz, H., Riekel, C., and Nicolson, T., 2003. Control of crystal size and lattice formation by starmaker in otolith biomineralization. Science, 302, 282–286.

    Article  Google Scholar 

  • Treccani, L., Khoshnavaz, S., Blank, S., Roden, K. v., Schulz, U., Weiss, I. M., Mann, K., Radmacher, M., and Fritz, M., 2003. Biomineralizing proteins, with emphasis on invertebrate-mineralized structures. In Fahnestock, S. R., and Steinbüchl, A. (eds.), Biopolymers. Berlin: Wiley, Vol. 8, pp. 289–321.

    Google Scholar 

  • Trichet, J., and Defarge, C., 1995. Non-biologically supported organomineralization. Bulletin de l’Institut Océanographique Monaco, 14, 203–236.

    Google Scholar 

  • Urry, L. A., Hamilton, P. C., Killian, C. E., and Wilt, F. H., 2000. Expression of spicule matrix proteins in the sea urchin embryo during normal and experimentally altered spiculogenesis. Developmental Biology, 225, 201–213.

    Article  Google Scholar 

  • Vermeij, G., 1989. The origin of skeletons. PALAIOS, 4, 585–589.

    Article  Google Scholar 

  • Weiner, S., and Dove, P., 2003. An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy and Geochemistry, 54, 1–29.

    Article  Google Scholar 

  • Weiss, I. M., Kaufmann, S., Mann, K., and Fritz, M., 2000. Purification and characterization of perlucin and perlustrin, two new proteins from the shell of the mollusc Haliotis laevigata. Biochemical and Biophysical Research Communications, 267, 17–21.

    Article  Google Scholar 

  • Weiss, I. M., Gohring, W., Fritz, M., and Mann, K., 2001. Perlustrin, a Haliotis laevigata (Abalone) nacre protein, is homologous to the insulin-like growth factor binding protein N-terminal module of vertebrates. Biochemical and Biophysical Research Communications, 285, 244–249.

    Article  Google Scholar 

  • Wilt, F. H., Killian, C. E., and Livingston, B. T., 2003. Development of calcareous skeletal elements in invertebrates. Differentiation, 71, 237–250.

    Article  Google Scholar 

  • Yan, Z., Jing, G., Gong, N., Li, C., Zhou, Y., Xie, L., and Zhang, R., 2007. N40, a novel nonacidic matrix protein from pearl oyster nacre, facilitates nucleation of aragonite in vitro. Biomacromolecules, 8, 3597–3601.

    Article  Google Scholar 

  • Yano, M., Nagai, K., Morimoto, K., and Miyamoto, H., 2007. A novel nacre protein N19 in the pearl oyster Pinctada fucata. Biochemical and Biophysical Research Communications, 362, 158–163.

    Article  Google Scholar 

  • Zhu, X., Mahairas, G., Illies, M., Cameron, R. A., Davidson, E. H., and Ettensohn, C. A., 2001. A large-scale analysis of mRNAs expressed by primary mesenchyme cells of the sea urchin embryo. Development, 128, 2615–2627.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Wörheide, G., Jackson, D.J. (2011). Animal Biocalcification, Evolution. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_32

Download citation

Publish with us

Policies and ethics