Skip to main content

The Role of Dynamical Instabilities and Fluctuations in Hearing

  • Conference paper
  • 1282 Accesses

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The process of hearing can be understood as one arising through the action of a number of nonlinear elements operating near dynamical instabilities in an environment subject to fluctuations. The sound detector in the inner ear, the mechanoelectrical transducer hair cell can be modelled as a forced Hopf oscillator. When such a system is additionally equipped with a regulatory feedback mechanism which ensures that the system always remains self tuned to operate very close to the bifurcation, then the presence of weak noise can assist in enhancing hugely the amplification of weak stimuli. The fast variable gets phase-locked with the external stimulus for all values of the signal amplitude, showing that the phenomenon is distinct from stochastic resonance. Drawing upon some interesting results obtained for a generic nonlinear system, some speculations can be made in the context of hearing. We suggest a plausible explanation for the hitherto unexplained source of the peaks in the spontaneous otoacoutic emission spectra of various organisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Gold, Proc. R. Soc. B, 135, 492 (1948).

    Google Scholar 

  2. J. Zwislocki, J. Acoust. Soc. Am., 22, 778 (1950)

    Article  Google Scholar 

  3. O. F. Ranke, J. Acoust. Soc. Am., 22, 772 (1950)

    Article  Google Scholar 

  4. T. J. Goblick, Jr., & R. R. Pfeiffer, J. Acoust. Soc. Am., 46, 924 (1969)

    Article  PubMed  Google Scholar 

  5. H. Duifhuis, J. Acoust. Soc. Am., 59, 408 (1976)

    Article  PubMed  CAS  Google Scholar 

  6. E. Zwicker, Biol. Cybern., 35, 243 (1979)

    Article  PubMed  CAS  Google Scholar 

  7. C. R. Steele & L. A. Taber, J. Acoust. Soc. Am., 65, 1001 (1979)

    Article  PubMed  CAS  Google Scholar 

  8. D. O. Kim, C. E. Molnar & J. W. Mathews, J. Acoust. Soc. Am., 67, 1704 (1980)

    Article  PubMed  CAS  Google Scholar 

  9. S. T. Neely, J. Acoust. Soc. Am., 78, 345 (1985)

    Article  PubMed  CAS  Google Scholar 

  10. E. Zwicker, J. Acoust. Soc. Am., 80, 146 (1986)

    Article  PubMed  CAS  Google Scholar 

  11. R. A. Eatock, D. P. Corey & A. J. Hudspeth, J. Neurosci., 7, 2821 (1987)

    PubMed  CAS  Google Scholar 

  12. A. J. Hudspeth, Nature, 341, 397 (1989)

    Article  PubMed  CAS  Google Scholar 

  13. J. A. Assad, N. Hacohen & D. P. Corey, PNAS, 86, 2918 (1989)

    Google Scholar 

  14. P. Dallos, J. Neurosci., 12, 4575 (1992)

    PubMed  CAS  Google Scholar 

  15. J. A. Assad & D. P. Corey, J. Neurosci., 12, 3291 (1992)

    PubMed  CAS  Google Scholar 

  16. A. J. Hudspeth & P. G. Gillespie, Neuron, 12, 1 (1994)

    Article  PubMed  CAS  Google Scholar 

  17. A. C. Crawford & R. Fettiplace, J. Physiol., 312, 377 (1981)

    PubMed  CAS  Google Scholar 

  18. G. A. Manley, J. Neurophysiol., 86, 541 (2001)

    PubMed  CAS  Google Scholar 

  19. A. J. Hudspeth, Y. Choe, A. D. Mehta & P. Martin, PNAS, 97, 11765 (2000)

    Article  PubMed  CAS  Google Scholar 

  20. F. Jaramillo, V. S. Markin & A. J. Hudspeth, Nature, 364, 527 (1993)

    Article  PubMed  CAS  Google Scholar 

  21. D. P. Corey & A. J. Hudspeth, J. Neurosci., 3, 962 (1983)

    PubMed  CAS  Google Scholar 

  22. M. A. Ruggero, Curr. Opin. Neurobiol., 2, 449 (1992)

    Article  PubMed  CAS  Google Scholar 

  23. J. Howard & A. J. Hudspeth, PNAS, 84, 3064 (1987)

    Article  PubMed  CAS  Google Scholar 

  24. J. Howard & A. J. Hudspeth, Neuron, 1, 189 (1988)

    Article  PubMed  CAS  Google Scholar 

  25. W. Bialek, Ann. Rev. Biophys. Biophys. Chem., 16, 455 (1987)

    Article  CAS  Google Scholar 

  26. Y. Choe, M. O. Magnasco & A. J. Hudspeth, Proc. Natl. Acad. Sci. USA, 95, 15321 (1998)

    Article  PubMed  CAS  Google Scholar 

  27. V.M. Eguiluz, M. Ospeck, Y. Choe, A.J. Hudspeth & M.O. Magnasco, Phys. Rev. Lett., 84, 5232 (2000)

    Article  PubMed  CAS  Google Scholar 

  28. M. Ospeck, V. M. Eguiluz & M. O. Magnasco, Biophys. J., 80, 2597 (2001)

    Article  PubMed  CAS  Google Scholar 

  29. S. Camalet, T. Duke, F. Jülicher & J. Prost, PNAS, 97, 3183 (2000)

    Article  PubMed  CAS  Google Scholar 

  30. J. Guckenheimer & P. Holmes, Nonlinear Oscillations, Dynamical Systems & Bifurcations of Vector Fields, Springer-Verlag, (1983)

    Google Scholar 

  31. F. Jaramillo & K. Wiesenfeld, Nature Neurosci., 1, 384 (1998)

    Article  PubMed  CAS  Google Scholar 

  32. L. Moreau & E. Sontag, Phys. Rev., E 68, 020901(R) (2003)

    Google Scholar 

  33. L. Moreau, E. Sontag & M. Arcak, Syst. Control Lett., 50, 229 (2003)

    Article  Google Scholar 

  34. A. Vilfan & T. Duke, Biophys. J., 85, 191 (2003)

    PubMed  CAS  Google Scholar 

  35. J. Balakrishnan, J. Phys. A: Math. Gen., 38, 1627 (2005)

    Article  Google Scholar 

  36. C. Hemming & R. Kapral, Faraday Discuss., 120, 371 (2001)

    Article  PubMed  CAS  Google Scholar 

  37. E. A. Lumpkin & A. J. Hudspeth, PNAS, 92, 10297 (1995)

    Article  PubMed  CAS  Google Scholar 

  38. E. A. Lumpkin & A. J. Hudspeth, J. Neurosci., 18, 6300 (1998)

    PubMed  CAS  Google Scholar 

  39. P. Martin & J. Hudspeth, PNAS, 96, 14306 (1999)

    Article  PubMed  CAS  Google Scholar 

  40. C. Van den Broeck, M. Malek Mansour & F. Baras, J. Stat. Phys., 28, 557 (1982)

    Google Scholar 

  41. F. Baras, M. Malek Mansour & C. Van den Broeck, J. Stat. Phys., 28, 577 (1982)

    Google Scholar 

  42. P. Jung & P. Hänggi, Europhys. Lett. 8, 505 (1989)

    Article  Google Scholar 

  43. P. Jung & P. Hänggi, Phys. Rev. A 41, 2977 (1990)

    Google Scholar 

  44. L. Gammaitoni, P. Hänggi, P. Jung & F. Marchesoni, Rev. Mod. Phys., 70, 223 (1998)

    Article  CAS  Google Scholar 

  45. P. Jung & P. Hänggi, Phys. Rev. A 44, 8032 (1991)

    Google Scholar 

  46. S. S. Narayan & M. A. Ruggero, in Proceedings of the Symposium on Recent Development in Auditory Mechanics, eds. H. Wada, T. Takasaka, K. Ikeda, K. Ohyama, & T. Koike (World Scientific Publishing, US, UK, Singapore, 2000)

    Google Scholar 

  47. K. Wiesenfeld, J. Stat. Phys., 38, 1071 (1985)

    Article  Google Scholar 

  48. A. Neiman, P. I. Saparin & L. Stone, Phys. Rev. E 56, 270 (1997)

    Google Scholar 

  49. B. Ashok & J. Balakrishnan, (submitted) (2008)

    Google Scholar 

  50. P. M. Zurek, J. Acoust. Soc. Am., 69, 514 (1981)

    Article  PubMed  CAS  Google Scholar 

  51. W. Denk & W. W. Webb, Hear. Res., 60, 89 (1992)

    Article  PubMed  CAS  Google Scholar 

  52. C. Köppl, in Advances in Hearing Research, ed. G.A. Manley, C. Köppl, H. Fastl & H. Oeckinghaus, pp. 200–209 (World Scientific, Singapore, 1995

    Google Scholar 

  53. C. E. Stuart & A. J. Hudspeth, PNAS, 97, 454 (2000)

    Article  Google Scholar 

  54. M. C. Göpfert, A. D. L. Humphris, J. T. Albert, D. Robert & O. Hendrich, PNAS, 102, 325 (2005).

    Article  PubMed  CAS  Google Scholar 

  55. B. Ashok, J. Balakrishnan & G. Ananthakrishna (in preparation) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Balakrishnan, J. (2009). The Role of Dynamical Instabilities and Fluctuations in Hearing. In: Dana, S.K., Roy, P.K., Kurths, J. (eds) Complex Dynamics in Physiological Systems: From Heart to Brain. Understanding Complex Systems. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9143-8_15

Download citation

Publish with us

Policies and ethics