Skip to main content

Abstract

Lightning flashes and surface rainfall are two manifestations of thunderstorms, both consequences of physical processes in the cloud involving hydrometeors of different sizes and types. For several decades, observations using various techniques have shown the general trend for both activities to be tightly related and to quantify the relationship. In several regions of the world, rainfall produced by convective systems has been estimated from surface detection, from ground radar scans or from space observations, and the rate of lightning flashes generated by the same systems was determined in parallel using various detection systems. Among the parameters used to quantify the relationship between rainfall and lightning, the Rain-yield Per Flash (RPF) which is the rainfall volume or mass divided by the lightning frequency, has been estimated in different regions and in several convection regimes. The values obtained from many studies can range from less than 1 × 107 kg fl-1 in continental and arid regimes to about 3000 × 107 kg fl-1 in oceanic regime. The variation of the RPF has been attributed to various causes in the literature, according to the techniques of rainfall estimation, the region of the storm activity, the type and the phase of the storms involved, and the type of flash considered. Surface-detected rainfall can provide larger RPF values than rainfall detected at altitude because of evaporation. The RPF values are obviously lower when considering total lightning activity and higher when the storm systems cover an extended stratiform zone. A large difference is observed between oceanic and continental storms. The RPF is much larger in oceanic convective clouds, especially in warm pool. The main reason for this contrast is the weakness of the updrafts over the ocean compared to over the land. In ocean storms, the width and the height of the mixed-phase cloud region, where the non-inductive charging processes occur, are too small for the development of electrification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Battan, L. J., Some factors governing precipitation and lightning from convective clouds, J. Atmos. Sci., 22, 79–84, 1965.

    Article  Google Scholar 

  • Buechler, D. E., P. D. Wright, and S. J. Goodman, (1990), Lightning/rainfall relationships during COHMEX. Preprints, 16th Conference on Severe Local Storm, Amer. Meteor. Soc.,710–714.

    Google Scholar 

  • Buechler, D. E., and S. J. Goodman, (1991), Radar characteristics of cloud-to-ground lightning producing storms in Florida. Preprints, 25th International Conference on Radar Meteorology, Amer. Meteor. Soc., 897–900.

    Google Scholar 

  • Carey, L. D., and S. A. Rutledge, (1996), A multiparameteradar case study of the microphysical and kinematic evolution of a lightning producing storm, Meteor. Atmos. Phys., 59, 33–64.

    Article  Google Scholar 

  • Chèze, J.-L., and H. Sauvageot, (1997), Area-average rainfall and lightning activity, J. Geophys. Res., 102(D2), 1707–1715.

    Article  Google Scholar 

  • Christian, H. J., and S. Goodman, (1992). Global observations of lightning from space, in: Proceedings of the 9th International Conference on Atmospheric Electricity, St. Petersburg, pp. 316–321.

    Google Scholar 

  • Christian, H. J., et al., (1999), The lightning imaging sensor, in: Proceedings of the 11th International Conference on Atmospheric Electricity, Guntersville, AL, NASA/CP-1999-209261, pp. 746–749.

    Google Scholar 

  • Christian, H. J., et al., (2003), Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108(D1), 4005, doi:10.1029/2002JD002347.

    Article  Google Scholar 

  • Dye, J.E., J.J. Jones, A.J. Weinheimer, and W.P. Winn, (1988), Observations within two regions of charge during initial thunderstorm electrification, Quart. J. R. Meteor. Soc., 114, 1271–1290.

    Article  Google Scholar 

  • Engholm, C. D., E. R. Williams, and R. M. Dole, (1990), Meteorological and electrical conditions associated with positive cloud-to-ground lightning. Mon. Weath. Rev., 118, 470–487.

    Article  Google Scholar 

  • Goodman, S. J., D. E. Buechler, P. D. Wright, and W. D. Rust, (1988), Lightning and precipitation history of a microburst-producing storm, Geophys. Res. Lett., 15, 1185–1188.

    Article  Google Scholar 

  • Grosh, R. C., (1978), Lightning and precipitation – the life history of isolated thunderstorms, Preprints, 10th Conference on Cloud Physics and Atmospheric Electricity, Amer. Meteor. Soc., 617–624.

    Google Scholar 

  • Holle, R.L., A.I. Watson, R.E. López, D.R. MacGorman, R. Ortiz, and W.D. Otto, (1994), The life cycle of lightning and severe weather in a 3–4 June 1985 PRE-STORM MCS, Mon. Wea. Rev., 122, 1798–1808.

    Article  Google Scholar 

  • Houze, R. A. Jr., (1993), Cloud Dynamics. Academic, San Diego, Calif, 573 pp.

    Google Scholar 

  • Israël, H., (1973), Atmospheric Electricity, Vol. 2, Fields, Charges, Currents, Israel Program for Scientific Translation. Jerusalem, 478 pp.

    Google Scholar 

  • Kinzer, G. D., (1974), Cloud-to-Ground lightning versus radar reflectivity in Oklahoma thunderstorms. J. Atmos. Sci., 31, 787–799.

    Article  Google Scholar 

  • Krehbiel, P. R., (1986), The electrical structure of thunderstorms. In The Earth’s Electrical Environment. National Academic Press, Washington, DC, pp. 90–113.

    Google Scholar 

  • Krehbiel, P.R., M. Brook, and R.A. McCrory, (1979), An analysis of the charge structure of lightning discharges to ground, J. Geophys. Res., 84, 2432–2456.

    Article  Google Scholar 

  • López, R. E., R. Ortiz, W. D. Otto, and R. E. Holle, (1991), The lightning activity and precipitation yield of convective cloud systems in central Florida. Preprints, 25th International Conference on Radar Meteorology, Amer. Meteor. Soc., 907–910.

    Google Scholar 

  • MacGorman, D. R., D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, (1989), Lightning rates relative to tornadic storm evolution on 22 May 1981, J. Atmos. Sci., 46, 221–250.

    Article  Google Scholar 

  • MacGorman, D. R., and Rust, W. D. (1998), The Electrical Nature of Storms. Oxford University Press, New York, USA.

    Google Scholar 

  • Mackerras, D., and M. Darveniza, (1994), Latitudinal variation of lightning occurrence characteristics, J. Geophys. Res., 99, 10813–10821.

    Article  Google Scholar 

  • Maier, M. W., A. G. Boulanger, and J. Sarlat, (1978), Cloud-to-Ground lightning frequency over south Florida. Preprints, Conference on Cloud Physics and Atmospheric Electricity, Amer. Meteor. Soc., 605–610.

    Google Scholar 

  • Molinié, J., and C. Pontikis, (1995), A climatological study of tropical thunderstorm clouds and lightning frequencies on the French Guyana coast, Geophys. Res. Lett., 22, 1085–1088.

    Article  Google Scholar 

  • Nisbet, J.S., J.R. Kasha, and G.S. Forbes, (1990), A case study of the Thunderstorm Research International Project storm of July 11, 1978. 2. Interrelations among the observable parameters controlling electrification, J. Geophys. Res., 95, 5435–5445.

    Article  Google Scholar 

  • Orville, R. E., and R. W. Henderson, (1986), The global distribution of midnight lightning: December 1977 to August 1978, Mon. Wea. Rev., 114, 2640–2653.

    Article  Google Scholar 

  • Petersen, W. A., S. A. Rutledge, and R. E. Orville, (1996), Cloud-to-ground lightning observations from TOGA COARE: Selected results and lightning location algorithms, Mon. Weather Rev., 124, 602–620.

    Article  Google Scholar 

  • Petersen, W. A., and S. A. Rutledge, (1998), On the relationship between cloud-to-ground lightning and convective rainfall, J. Geophys. Res., 103(D12), 14,025–14,040.

    Article  Google Scholar 

  • Petersen, W. A., and S. A. Rutledge, (2001), Regional variability in tropical convection: Observations from TRMM, J. Clim., 14, 3566–3586.

    Article  Google Scholar 

  • Piepgrass, M. V., E. P. Krider, and C. B. Moore, (1982), Lightning and surface rainfall during Florida thunderstorms, J. Geophys. Res., 87, C13, 11193–11201.

    Article  Google Scholar 

  • Pinto, O. Jr., I. R. C. A. Pinto, M. A. S. S. Gomes, I. Vitorello, A. L. Padilha, J. H. Diniz, A. M. Carvalho, and A. Cazetta Filho, (1999), Cloud-to-Ground lightning in southeastern Brazil in 1993: 1. Geographical distribution. J. Geophys. Res., 104, D24, 31369–31379.

    Article  Google Scholar 

  • Reynolds, S.E., and M. Brook, (1956), Correlation of the initial electric field and the radar echo in thunderstorms, J. Meteor., 13, 376–380.

    Google Scholar 

  • Richard, P., and J. Y. Lojou, (1996), Assessment of application of storm cell electrical activity monitoring to intense precipitation forecast, in: Proceedings of the 10th Conference on Atmospheric Electricity, June 10–14, Osaka, Japan, pp. 284–287.

    Google Scholar 

  • Rosenfeld, D., and I. M. Lensky, (1998), Satellite based insights into precipitation formation processes in continental and maritime convective clouds, Bull. Amer. Meteor. Soc., 79, 2457–2476.

    Article  Google Scholar 

  • Rust, W. D., D. R. MacGorman, and R. T. Arnold, (1981), Positive Cloud-to-Ground lightning flashes in severe storms, Geophys. Res. Lett., 8, 791–794.

    Article  Google Scholar 

  • Rutledge, S. A., D. R. MacGorman, (1988), Cloud-to-ground lightning activity in the 10–11 June 1985 Mesoscale Convective System observed during the Oklahoma-Kansas PRE-STORM Project, Mon. Wea. Rev., 116, 1393–1408.

    Article  Google Scholar 

  • Rutledge, S.A., E.R. Williams, and T.D. Kennan, (1992), The down under Doppler and electricity experiment (DUNDEE): Overview and preliminary results, Bull. Am. Meteorol. Soc., 73, 3–16.

    Article  Google Scholar 

  • Saunders, C. P. R., W. D. Keith, and R. P. Mitzeva, (1991), The effect of liquid water on thunderstorm charging, J. Geophys. Res., 96, 11007–11017.

    Article  Google Scholar 

  • Saunders, C.P.R., (1993), A review of thunderstorm electrification processes, J. Appl. Meteor., 32, 642–655.

    Article  Google Scholar 

  • Seimon, A., (1993), Anomalous cloud-to-ground lightning in an F5-tornado-producing supercell thunderstorm on 28 August 1990, Bull. Amer. Meteor. Soc., 74, 189–203.

    Article  Google Scholar 

  • Sheridan, S. C., J. H. Griffiths, and R. E. Orville, (1997), Warm season cloud-to-ground lightning-precipitation relationships in the South-Central United States, Weather Forecast., 12, 449–458.

    Article  Google Scholar 

  • Simpson, J., R. F. Adler, and G. R. North, (1986), On the tropical rainfall measuring mission (TRMM), Meteor. Atmos. Phys., 60, 19–36.

    Article  Google Scholar 

  • Soula, S., H. Sauvageot, G. Molinié, F. Mesnard, and S. Chauzy, (1998), The CG lightning activity of a storm causing a flash-flood, Geophys. Res. Lett., 25(8), 1181–1184.

    Article  Google Scholar 

  • Soula, S., and S. Chauzy, (2001), Some aspects of the correlation between lightning and rain activities in severe storms, Atmos. Res., 56/1–4, 355–373.

    Article  Google Scholar 

  • Stolzenburg, M., (1994), Observations of high ground flash densities of positive lightning in summertime thunderstorms, Mon. Wea. Rev., 122, 1740–1750.

    Article  Google Scholar 

  • Takahashi, T., (1978), Riming electrification as a charge generation mechanism in thunderstorms, J. Atmos. Sci., 35, 1536–1548.

    Article  Google Scholar 

  • Takayabu, Y. N., (2006), Rain-yield per flash calculated from TRMM PR and LIS data and its relationship to the contribution of tall convective rain, Geophys. Res. Lett., 33, L18705, doi:10.1029/2006GL027531.

    Article  Google Scholar 

  • Tapia, A., J. A. Smith, and M. Dixon, (1998), Estimation of convective rainfall from lightning observations, J. Appl. Meteor., 37, 1497–1509.

    Article  Google Scholar 

  • Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt, (2002), Radar, passive microwave, and lightning characteristics of precipitating systems in the tropics, Mon. Wea. Rev., 130, 802–824.

    Article  Google Scholar 

  • Watson, A.I., R.E. López, and R.L. Holle, (1994), Diurnal cloud-to-ground lightning patterns in Arizona during the Southwest Monsoon, Mon. Wea. Rev., 122, 1716–1725.

    Article  Google Scholar 

  • Williams, E.R., and R.M. Lhermitte, (1983), Radar tests of the precipitation hypothesis for thunderstorm electrification, J. Geophys. Res., 88, 10984–10992.

    Article  Google Scholar 

  • Williams, E.R., M.E. Weber, and R.E. Orville, (1989), The relationship between lightning type and convective state of thunderclouds, J. Geophys. Res., 94, 13213–13220.

    Article  Google Scholar 

  • Williams, E.R., (1989), The tripole structure of thunderstorms, J. Geophys. Res., 94, 13151–13167.

    Article  Google Scholar 

  • Williams, E. R., S. A. Rutledge, S. G. Geotis, N. Renno, E. Rasmussen, and T. Rickenbach, (1992), A radar and electrical study of tropical “hot towers”, J. Atmos. Sci., 49, 1386–1395.

    Article  Google Scholar 

  • Williams, E., and S. Stanfill, (2002), The physical origin of the land–ocean contrast in lightning activity, C. R. Physique, 3, 1277–1292.

    Article  Google Scholar 

  • Workman, E.J., and S.E. Reynolds, (1949), Electrical activity as related to thunderstorm cell growth, Bull. Amer. Meteor. Soc., 30, 142–144.

    Google Scholar 

  • Zipser, E. J., (1994), Deep cumulonimbus cloud systems in the tropics with and without lightning, Mon. Wea. Rev., 122, 1837–1851.

    Article  Google Scholar 

  • Zipser, E. J., and K. R. Lutz, (1994), The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Weather Rev., 122, 1751–1759.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Soula, S. (2009). Lightning and Precipitation. In: Betz, H.D., Schumann, U., Laroche, P. (eds) Lightning: Principles, Instruments and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9079-0_20

Download citation

Publish with us

Policies and ethics