Skip to main content

The Meteorological and Electrical Structure of TLE-Producing Convective Storms

  • Chapter
Book cover Lightning: Principles, Instruments and Applications

Abstract

Emerging real-time capabilities using sensitive ULF/ELF/VLF magnetic receivers can monitor the impulse charge moment changes (iΔMq) of cloud-to-ground lightning strokes (CGs) over large regions. This provides a means to detect the parent CGs of the most common of the transient luminous events (TLEs) – sprites (often preceded by halos.) As iΔMq values grow larger than 100 C km, +CGs have a rapidly increasing probability of producing mesospheric sprites. If the iΔMq value of a +CG is >300 C km, there is a >75–80% chance this CG stroke initiates a sprite. Curiously, while negative iΔMq values of this size are much less common, they do occur. Yet on only a rare occasions have –CGs been documented to initiate a sprite over continental stroms (the so-called polarity paradox). The total charge moment change required to initiate sprites is believed to be at least ∼500 C km. Also, the great majority of sprite initiations are delayed after the return stroke by much more than the 2 ms time period used in the iΔMq estimates. This suggests that while both positive and negative CGs may have relatively large iΔMq values, due to the relatively low amperage continuing currents in the negative discharges, only +CGs have large enough continuing currents to routinely reach breakdown values and initiate sprites. While both CG polarities can theoretically initiate sprites, perhaps a somewhat higher breakdown threshold may exist for –CGs, and/or reduced streamer development makes them more difficult to detect optically? Preliminary climatologies of iΔMq for the U.S. are presented. The technique employed in the U.S. utilizes the National Lightning Detection Network for geolocation, allowing placement of >80–90% of sprite parent +CGs. Global lightning location systems such as the Worldwide Lightning Location Network (WWLLN) appear to detect approximately 25% of the CGs producing U.S. sprites, suggesting the possibility of employing such systems elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, M., M.J. Taylor, P.D. Pautet, S.A. Cummer, N. Jaugey, J.N. Thomas and R.W. Holzworth, 2007: Sprite halos and associated lightning characteristics over South America. AGU Fall Meeting, AE23A-0896, Abstract only.

    Google Scholar 

  • Barrington-Leigh, C.P. and U.S. Inan, 1999: Elves triggered by positive and negative lightning discharges. Geophys. Res. Lett., 26, 683–686.

    Article  Google Scholar 

  • Barrington-Leigh, C.P., U.S. Inan, M. Stanley and S.A. Cummer, 1999: Sprites directly triggered by negative lightning discharges. Geophys. Res. Lett., 26, 3605–3608.

    Article  Google Scholar 

  • Berger, K., R.B. Anderson and H. Kroninger, 1975: Parameters of lightning flashes. Electra, 80, 223–237.

    Google Scholar 

  • Boccippio, D.J., E.R. Williams, W.A. Lyons, I. Baker and R. Boldi, 1995: Sprites, ELF transients and positive ground strokes. Science, 269, 1088–1091.

    Article  Google Scholar 

  • Carey, L.D., M.J. Murphy, T.L. McCormick and N.W.S. Demetriades, 2005: Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res., 110, D03105m doi: 10.1029/2003JD004371.

    Article  Google Scholar 

  • Cummer, S.A., 2006: Measurements of lightning parameters from remote electromagnetic fields. NATO Advanced Study Institute on Sprites, Elves and Intense Lightning Discharges, M. Fullekrug et al. (eds.), Springer, 191–210.

    Google Scholar 

  • Cummer, S.A., N. Jaugey, J. Li, W.A. Lyons, T.E. Nelson and E.A. Gerken, 2006: Submillisecond imaging of sprite development and structure. Geophys. Res. Lett., 33, L04104, doi: 0.1029/2005GL024969.

    Article  Google Scholar 

  • Cummer, S.A. and W.A. Lyons, 2005: Implications of lightning charge moment changes for sprite initiation. J. Geophys. Res., 110, A04304, doi:10.1029/004JA010812.

    Article  Google Scholar 

  • Cummer, S.A. and W.A. Lyons, 2004: Lightning charge moment changes in U.S. High Plains thunderstorms. Geophys. Res. Lett., 31, L05114, doi10.1029/ 003GL019043, 2004.

    Article  Google Scholar 

  • Cummer, S.A. and U.S. Inan, 2000: Modeling ELF radio atmospheric propagation and extracting lightning currents from ELF observations. Radio Sci., 35, 385–394.

    Article  Google Scholar 

  • Cummins, K.L., M.J. Murphy, E.A. Bardo, W.L. Hiscox, R.B. Pyle and A.E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103(D8), 9035–9044.

    Article  Google Scholar 

  • Engholm, C., R. Dole and E.R. Williams, 1990: Meteorological and electrical conditions associated with positive cloud-to-ground lightning. Mon. Wea. Rev., 118, 470–487.

    Article  Google Scholar 

  • Franz, R.C., R.J. Nemzek and J.R. Winckler, 1990: Television image of a large upward electrical discharge above a thunderstorm system. Science, 249, 48–51.

    Article  Google Scholar 

  • Frey, H.U., S.B. Mende, S.A. Cummer, J. Li, T. Adachi, H. Fukunishi, Y. Takahashi, A.B. Chen, R.-R. Hsu, H.-T. Su and Y.-S. Chang, 2007: Halos generated by negative cloud-to-ground lightning. Geophys. Res. Lett., 34, L18801, doi: 10.1029/2007GL030908.

    Article  Google Scholar 

  • Fukunishi, H., Y. Takahashi, M. Kubota, K. Sakanoi, U.S. Inan and W.A. Lyons, 1996: Elves, Lightning-induced transient luminous events in the lower ionosphere. Geophys. Res. Lett. 23, 2157–2160.

    Article  Google Scholar 

  • Hobara, Y., E. Williams, V. Mushtak, R. Boldi, M. Hayakawa, K. Yamashita, W. Lyons, B. Russell, G. Sátori, J. Bór, C. Price, E. Greenberg and R. Holzworth, 2007: ELF Q-bursts from African squall lines. AGU, 88(52), Fall Meet. Suppl.

    Google Scholar 

  • Hobara, Y., M. Hayakawa, E. Williams, R. Boldi and E. Downes, 2006: Location and electrical properties of sprite-producing lightning from a single ELF site.NATO Advanced Study Institute on Sprites, Elves and Intense Lightning Discharges, M. Fullekrug et al. (eds.), Springer 211–235.

    Google Scholar 

  • Hu, W., S. Cummer, W.A. Lyons and T.E. Nelson, 2002: Lightning charge moment changes for the initiation of sprites. Geophys. Res. Lett., 29 , 10.1029/2001GL014593.

    Google Scholar 

  • Huang, E., E. Williams, R. Boldi, S. Heckman, W. Lyons, M. Taylor, T. Nelson and C. Wong, 1999: Criteria for sprites and elves based on Schumann resonance observations. J. Geophys. Res., 104, 16943–16964.

    Article  Google Scholar 

  • Jacobson, A.R., R. Holzworth, J. Harlin, R. Dowden and E. Lay 2006: Performance assessment of the World Wide Lightning Location Network (WWLLN), using the Los Alamos Sferic Array (LASA) as ground truth. J. Atmos. Ocean. Tech., 23, 1082–1092.

    Article  Google Scholar 

  • Lang, T, L.J. Miller, M. Weisman, S.A. Rutledge, L.J. Barker, III, V.N. Bringi, V. Chandrasekar, A. Detwiler, N. Doesken, J. Helsdon, C. Knight, P. Krehbiel, W.A. Lyons, D. MacGorman, E. Rasmussen, W. Rison, W.D. Rust and R.J. Thomas 2004: The Severe Thunderstorm Electrification and Precipitation Study (STEPS), Bull. Amer. Meteor. Soc., 85,1107–1125.

    Article  Google Scholar 

  • Lang, T.J., S.A. Rutledge and K.C. Wiens, 2004: Origins of positive cloud-to-ground lightning flashes in the stratiform region of a mesoscale convective system. Geophys. Res. Lett., 31, L10105, doi:10.1029/2004GL019823.

    Article  Google Scholar 

  • Lyons, W.A., S.A. Cummer, M.A. Stanley, K. Wiens and T.E. Nelson, 2008: Supercells and sprites. Bull. Amer. Meteor. Soc., 1165–1174, doi: 10.1175/BAMS2439.1.

    Google Scholar 

  • Lyons, W.A., 2006: The meteorology of transient luminous events – An introduction and overview. NATO Advanced Study Institute on Sprites, Elves and Intense Lightning Discharges, M. Fullekrug et al. (eds.), Springer 19–56.

    Google Scholar 

  • Lyons, W.A., L.M. Andersen, T.E. Nelson and G.R. Huffines, 2006a: Characteristics of sprite-producing electrical storms in the STEPS 2000 domain. On line summary and CD, 2nd Conference on Meteorological Applications of Lightning Data, AMS, Atlanta,19 pp.

    Google Scholar 

  • Lyons, W.A., S.A. Cummer and G.R. Huffines, 2006b: Characterizing intense convection using conventional and advanced lightning metrics, including charge moment change. Proceedings of First International Lightning Meteorology Conference, Tucson, AZ. (conference CD31 pp).

    Google Scholar 

  • Lyons, W.A. and S.A. Cummer 2005: Lightning characteristics of the Aurora, NE record hail stone producing supercell of 22–23 June 2003 during BAMEX. 1st Conference on Meteorological Applications of Lightning Data, AMS, San Diego (available on conference preprint CD).

    Google Scholar 

  • Lyons, W.A. and R.A. Armstrong 2004: A review of electrical and turbulence effects of convective storms on the overlying stratosphere and mesosphere. AMS Symposium on Space Weather, AMS Annual Meeting, Seattle 6 pp, CD.

    Google Scholar 

  • Lyons, W.A., T.E. Nelson, E.R. Williams, S.A. Cummer and M.A. Stanley 2003a: Characteristics of sprite-producing positive cloud-to-ground lightning during the 19 July STEPS mesoscale convective systems. Mon. Wea. Rev., 131, 2417–2427.

    Article  Google Scholar 

  • Lyons, W.A., T.E. Nelson, R.A. Armstrong, V.P. Pasko and M. Stanley 2003b: Upward electrical discharges from the tops of thunderstorms. Bull. Amer. Meteor. Soc., 84, 445–454.

    Article  Google Scholar 

  • Lyons, W.A., R.A. Armstrong, E.R. Williams, and E.A. Bering, 2000: The hundred year hunt for the red sprite. EOS, Trans. Amer. Geophys. Union, 81, 373–377.

    Article  Google Scholar 

  • Lyons, W.A., M. Uliasz and T.E. Nelson, 1998: Climatology of large peak current cloud-to-ground lightning flashes in the contiguous United States. Mon. Wea. Rev., 126, 2217–2233.

    Article  Google Scholar 

  • Lyons, W.A., 1996: Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems. J. Geophys. Res. 101, 29641–29652.

    Article  Google Scholar 

  • Lyons, W.A., 1994: Low-light video observations of frequent luminous structures in the stratosphere above thunderstorms. Mon. Wea. Rev., 122, 1940–1946.

    Article  Google Scholar 

  • Orville, R.E., R.W. Henderson and L.F. Bosart, 1988: Bipole patterns revealed by lightning locations in mesoscale storms. Geophys. Res. Lett., 15, 129–132.

    Article  Google Scholar 

  • Pasko, V.A., 2006: Theoretical modeling of sprites and jets.NATO Advanced Study Institute on Sprites, Elves and Intense Lightning Discharges, M. Fullekrug et al. (eds.), Springer, 253–311.

    Google Scholar 

  • Pasko, V.A., U.S. Inan, T.F. Bell and Y.N. Taranenko, 1997: Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J. Geophys. Res., 102(A3), 4529–4561.

    Article  Google Scholar 

  • Pasko, V.P., U.S. Inan and T.F. Bell, 1996: Sprites as luminous columns of ionization produced by quasi-electrostatic thundercloud fields. Geophys. Res. Lett., 23, 649–652.

    Article  Google Scholar 

  • Price, C., W. Burrows and P. King 2002: The likelihood of winter sprites over the Gulf Stream. Geophys. Res. Lett., 29, doi:10.1029/2002GL015571.

    Google Scholar 

  • Rakov, V.A. and M.A. Uman, 2003: Lightning: Physics and Effects. Cambridge University Press 687 pp.

    Google Scholar 

  • Rodger, C.J., S. Werner, J.B. Brundell, E.H. Lay, N.R. Thomson, R.H. Holzworth and R.L. Dowden, 2006: Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study. Ann. Geophys., 24, 3197–3214.

    Article  Google Scholar 

  • Rodger, C.J., 1999: Red sprites, upward lightning and VLF perturbations. Reviews of Geophysics, 37, 317–336.

    Article  Google Scholar 

  • Samaras, T. and W.A. Lyons 2008: Visualization of naturally produced lightning using high-speed imaging. Preprints, 3rd Conference on Meteorological Applications of Lightning Data, AMS, New Orleans.

    Google Scholar 

  • Stanley, M.A., 2000: Sprites and their parent discharges. Ph.D. Dissertation, New Mexico Institute of Mining Technology, Socorro, NM 163 pp..

    Google Scholar 

  • Thomas, R.J., P.R. Krehbiel, W. Rison, S.J. Hunyady, W.P. Winn, T. Hamlin and J. Harlin, 2004: Accuracy of the lightning mapping array. J. Geophys. Res., 109, D14207, doi: 10.1029/2004JD004549.

    Article  Google Scholar 

  • van der Velde, O.A., W.A. Lyons, T.E. Nelson, S.A. Cummer, J. Li and J. Bunnell, 2007: Analysis of the first gigantic jet recorded over continental North America. J. Geophys. Res., 112, D20104, doi:10.1029/2007JD008575.

    Article  Google Scholar 

  • Williams, E.R., Y. Hobara, R. Boldi, W. Lyons, T. Nelson, B. Russell, V. Mushtak, G. Sátori, J. Bór, S. Cummer, C. Price, E. Greenberg, Y. Takahashi and R. Holzworth, 2008: Meteorological origin of Q-bursts and sprites over West Africa. Preprints 3rd Conference on Meteorological Applications of Lightning Data, AMS, New Orleans. 4 pp.

    Google Scholar 

  • Williams, E.R., E. Downes, R. Boldi, W.A. Lyons and S. Heckman, 2007: The polarity asymmetry of sprite-producing lightning: A paradox? Radio Sci., 42, Special Issue on Schumann Resonances, RS2S17, doi: 10.1029/2006RS003488.

    Article  Google Scholar 

  • Williams, E.R. and Y. Yair 2006: The microphysical and electrical properties of sprite-producing thunderstorms. NATO Advanced Study Institute on Sprites, Elves and Intense Lightning Discharges, M. Fullekrug et al. (eds.), Springer 237–247.

    Google Scholar 

  • Williams, E.R., 2001: Sprites, elves and glow discharge tubes. Phys. Today, November, 41.

    Google Scholar 

  • Williams, E.R., 1998: The positive charge reservoir for sprite-producing lightning. J. Atmos. Sol. Terr. Phys., 60, 689–692.

    Article  Google Scholar 

  • Wilson, C.T.R., 1925: The electric field of a thunderstorm and some of its effects. Proc. Phys. Soc. Lond., 37, 32D–37D.

    Google Scholar 

  • Yashunin, S.A., E.A. Mareev and V.A Rakov 2007: Are lightning M components capable of initiating sprites and sprite halos? J. Geophys. Res., 112, D10109, doi: 10.1029/2006JD007631.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lyons, W.A. et al. (2009). The Meteorological and Electrical Structure of TLE-Producing Convective Storms. In: Betz, H.D., Schumann, U., Laroche, P. (eds) Lightning: Principles, Instruments and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9079-0_17

Download citation

Publish with us

Policies and ethics