Skip to main content

Cyanobacterial Mat Features Preserved in the Siliciclastic Sedimentary Record

Paleodeserts and Modern Supratidal Flats

  • Chapter
Book cover From Fossils to Astrobiology

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 12))

Up till about 3,850 Ma, planet-sterilising impact events would have made Earth effectively inhospitable to life (Maher and Stevenson, 1988; Sleep et al, 1989). There is no record of the origin of life, but it can be assumed that it began on Earth under extreme conditions: very hot, only trace amounts to no oxygen, possibly saltier oceans than now, higher UV flux, but with a wide range of potential habitats for life, varying from subaerial to deep water conditions (Nisbet, 1995; Nisbet and Sleep, 2001; Westall, 2004). Cyanobacteria, inferred in the rock record from at least 3.5 Ga (Schopf, 2004), were the pioneering oxygenic phototrophs within this framework of early Earth’s evolution (Paerl et al., 2000 and references therein) and their further evolution was punctuated by critical biochemical transitions such as the oxygenic atmosphere, which many put at c. 2.3 Ga, others much earlier (cf., Ohmoto, 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berner, R.A. (1984) Sedimentary pyrite formation: an update. Geochim. Cosmochim. Acta 48, 605–615.

    Article  ADS  Google Scholar 

  • Bloos, G. (1976) Untersuchungen über Bau und Entstehung der feinkörnigen Sandsteine des Schwarzen Jura (Hettangium u. tiefstes Sinemurium) im schwäbischen Sedimentationsbereich. Arb. Inst. Geol. Paläont. Univ. Stuttgart 71, 1–270.

    Google Scholar 

  • Bouougri, E. and Porada, H. (2002) Mat-related sedimentary structures in Neoproterozoic peritidal passive margin deposits of the west African craton (Anti-Atlas, Morocco). Sediment. Geol. 153, 85–106.

    Article  ADS  Google Scholar 

  • Callaghan, C.C. (1987) The geology of the Waterberg Group in the southern portion of the Waterberg basin. Unpublished M.Sc. thesis, University of Pretoria, Pretoria, 164 p.

    Google Scholar 

  • Callaghan, C.C., Eriksson, P.G. and Snyman, C.P. (1991) The sedimentology of the Waterberg Group in the Transvaal, South Africa: an overview. J. Afr. Earth Sci. 13, 121–139.

    Article  Google Scholar 

  • Correns, C.W. (1934) Grundsätzliches zur Darstellung der Korngrößenverteilung. Zbl. Min. Geol. Palaeont. Abtl. A 11, 321–331.

    Google Scholar 

  • Decho, A.W. (1990) Microbial exopolymer secretions in ocean environments: their roles in food webs and marine processes. Oceanogr. Mar. Biol. Ann. Rev. 28, 73–153.

    Google Scholar 

  • Decho, A.W. (1994) Molecular-scale events influencing the macroscale cohesiveness of exopolymers. In: W.E. Krumbein, D.M. Paterson and L.J. Stal (eds.) Biostabilization of Sediments. BIS Verlag, Oldenburg, pp. 134–148.

    Google Scholar 

  • Decho, A.W. (2000) Expolymer microdomains as a structuring agent for heterogeneity within microbial biofilms. In: R. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer, Berlin, pp. 9–15.

    Google Scholar 

  • Draganits, E. and Noffke, N. (2004) Siliciclastic stromatolites and other microbially induced sedimentary structures in an Early Devonian barrier-island environment (Muth Formation, NW Himalayas). J. Sediment. Res. 74, 191–202.

    Article  ADS  Google Scholar 

  • Eglington, B.M. and Armstrong, R.A. (2004) The Kaapvaal Craton and adjacent orogens, southern Africa: a geochronological database and overview of the geological development of the craton. S. Afr. J. Geol. 107, 13–32.

    Article  Google Scholar 

  • Ehrenberg, C.G. (1839) Über das im Jahre 1686 in Curland vom Himmel gefallene Meteorpapier und über dessen Zusammensetzung aus Conferven und Infusorien. Ann. Phys. u. Chem. 16, 187–188.

    Article  ADS  Google Scholar 

  • Eriksson, K.A. and Simpson, E.L. (1998) Controls on spatial and temporal distribution of Precambrian aeolianites. Sediment. Geol. 120, 275–294.

    Article  ADS  Google Scholar 

  • Eriksson, P.G. and Cheney, E.S. (1992) Evidence for the transition to an oxygen-rich atmosphere during the evolution of red beds in the Lower Proterozoic sequences of southern Africa. Precambrian Res. 54, 257–269.

    Article  Google Scholar 

  • Eriksson, P.G., Condie, K.C., Tirsgaard, H., Mueller, W.U., Altermann, W., Miall, A.D., Aspler, L.B., Catuneanu, O. and Chiarenzelli, J.R. (1998) Precambrian clastic sedimentation systems. Sediment. Geol. 120, 5–53.

    Article  ADS  Google Scholar 

  • Eriksson, P.G, Simpson, E.L., Eriksson, K.A., Bumby, A.J., Steyn, G.L. and Sarkar, S. (2000) Muddy roll-up structures in siliciclastic interdune beds of the ca. 1.8 Ga Waterberg Group, South Africa. PALAIOS 15, 177–183.

    Google Scholar 

  • Eriksson, P.G., Altermann, W., Nelson, D.R., Mueller, W.U. and Catuneanu, O. (eds.) (2004) The Precambrian Earth: Tempos and Events. Developments in Precambrian Geology 12, Elsevier, Amsterdam, 941 p.

    Google Scholar 

  • Eriksson, P.G., Catuneanu, O., Sarkar, S. and Tirsgaard, H. (2005) Patterns of sedimentation in the Precambrian. Sediment. Geol. 176, 17–42.

    Article  ADS  Google Scholar 

  • Eriksson, P.G., Porada, H., Banerjee, S., Bouougri, E., Sarkar, S. and Bumby, A.J. (2007) Mat destruction features. In: J. Schieber, P.K. Bose, P.G. Eriksson, S. Banerjee, S. Sarkar, W Altermann and O. Catuneanu (eds.) Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Atlases in Geology 2, Elsevier, Amsterdam, pp. 76–105.

    Google Scholar 

  • Fenchel, T. and Kühl, M. (2000) Artificial cyanobacterial mats: growth, structure, and vertical zonation.patterns. Microb. Ecol. 40, 85–93; DOI: 10.1007/s002480000062.

    Google Scholar 

  • Gerdes, G. (2007) Structures left by modern microbial mats in their host sediments. In: J. Schieber, P.K. Bose, P.G. Eriksson, S. Banerjee, S. Sarkar, W Altermann and O. Catuneanu (eds.) Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Atlases in Geology 2, Elsevier, Amsterdam, pp. 5–38.

    Google Scholar 

  • Gerdes, G and Krumbein, W.E. (1987) Biolaminated deposits. In: GM. Bhattacharya, G.M. Friedmann, H.J. Neugebauer and A. Seilacher (eds.) Lecture Notes in Earth Sciences 9. Springer, Berlin, pp. 1–183.

    Google Scholar 

  • Gerdes, G., Krumbein, WE. and Reineck, H.E. (1985a) Verbreitung und aktuogeologische Bedeutung mariner mikrobieller Matten im Gezeitenbereich der Nordsee. Facies 12, 75–96.

    Article  Google Scholar 

  • Gerdes, G., Krumbein, W.E. and Reineck, H.E. (1985b) The depositional record of sandy, versicoloured tidal flats (Mellum Island, southern North Sea). J. Sediment. Petrol. 55, 265–278.

    Google Scholar 

  • Gerdes, G., Claes, M., Dunajtschik-Piewak, K., Riege, H., Krumbein, WE. and Reineck, H.-E. (1993) Contribution of microbial mats to sedimentary surface structures. Facies 29, 61–74.

    Article  Google Scholar 

  • Gerdes, G., Klenke, Th. and Noffke, N (2000) Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology 47, 279–308.

    Article  ADS  Google Scholar 

  • Hanson, R.E., Gose, W.A., Crowley, J., Ramezani, S.A., Bowring, D.S., Hall, R.P., Pancake, J.A. and Mukwakwami, J. (2004) Paleoproterozoic intraplate magmatism and basin development on the Kaapvaal Craton: age, paleomagnetism and geochemistry of 1.93 to 1.87 Ga post-Waterberg dolerites. S. Afr. J. Geol. 107, 233–254.

    Article  Google Scholar 

  • Häntzschel, W. and Reineck, H.-E. (1968) Fazies-Untersuchungen im Hettangium von Helmstedt (Niedersachsen). Mitt. Geol. Staatsinst. Hamburg 37, 5–39.

    Google Scholar 

  • Hoffmann, C. (1942) Beiträge zur Vegetation des Farbstreifen-Sandwattes. Kieler Meeresforsch. 4, 85–108.

    Google Scholar 

  • Hsü, K. and Siegenthaler, C. (1969) Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem. Sedimentology 12, 11–25.

    Article  ADS  Google Scholar 

  • Jansen, H. (1982) The geology of the Waterberg Basin in the Transvaal, Republic of South Africa. Mem. Geol. Surv. S. Afr. 71, 98.

    Google Scholar 

  • Krumbein, W.E. and Werner, D., 1983. The microbial silica cycle. In: WE. Krumbein (ed.) Microbial Geochemistry. Blackwell, Oxford, pp. 125–157.

    Google Scholar 

  • Krumbein, WE., Brehm, U., Gerdes, G., Gorbushina, A.A., Levit, G and Palinska, K.A. (2003) Biofilm, biodictyon, biomat, microbialites, oolites, stromatolites, geophysiology, global mechanism, parahistology. In: WE. Krumbein, G.A. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms. Kluwer, Dordrecht, pp. 1–27.

    Google Scholar 

  • Maher, K.A. and Stevenson, D.J. (1988) Impact frustration of the origin of life. Nature 331, 612–614.

    Article  ADS  Google Scholar 

  • Martinson, A. (1965) Aspects of a Middle Cambrian thanatotope on Öland. Geol. Fören. Stockh. Förh. 87, 181–230.

    Google Scholar 

  • Medhioub, K. and Perthuisot, J-P. (1981) The influence of peripheral sabkhas on the geochemistry and sedimentology of a Tunisian lagoon:Bahiret el Bibane. Sedimentology 28, 679–688.

    Article  ADS  Google Scholar 

  • Nisbet, E.G. (1995) Archaean ecology: a review of evidence for the early development of bacterial biomes, and speculation on the development of a global-scale biosphere. In: M.P. Coward and A.C. Ries (eds.) Early Precambrian Processes. Geological Society, London, pp. 27–52.

    Google Scholar 

  • Nisbet, E.G. and Sleep, N.H. (2001) The habitat and nature of early life. Nature 409, 1083–1091.

    Article  ADS  Google Scholar 

  • Noffke, N. and Krumbein, WE. (1999) A quantitative approach to sedimentary surface structures contoured by the interplay of microbial colonization and physical dynamics. Sedimentology 46, 417–126.

    Article  Google Scholar 

  • Noffke, N., Gerdes, G., Klenke, T. and Krumbein, WE. (2001) Microbially induced sedimentary structures — a new category within the classification of primary sedimentary structures. J. Sediment. Res. A71, 649–656.

    Article  ADS  Google Scholar 

  • Noffke, N., Knoll, A.H. and Grotzinger, J.P. (2002) Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: a case study from the Upper Neoproterozoic Nama Group, Namibia. PALAIOS 17, 533–544.

    Article  Google Scholar 

  • Noffke, N., Eriksson, K.A., Hazen, R.M. and Simpson, E.L. (2006) A new window into Early Archean life: microbial mats in Earth’s oldest siliciclastic deposits (3.2 Ga Moodies Group, South Africa). Geology 34, 253–256.

    Article  ADS  Google Scholar 

  • Oerstedt, A.S. (1842) Beretning om en exkursionen til Trindelen. Naturhistorisk Tidskrift 3, 552–569.

    Google Scholar 

  • Ohmoto, H. (2004) Archaean atmosphere, hydrosphere and biosphere. In: P.G Eriksson, W. Altermann, D.R. Nelson, W.U. Mueller and O. Catuneanu (eds.) The Precambrian Earth: Tempos and Events. Developments in Precambrian Geology 12, Elsevier, Amsterdam, pp. 361–388.

    Google Scholar 

  • Paerl, H.W, Pinckney, J.L. and Steppe, T.F. (2000) Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ. Microbiol. 2/1, 11–26.

    Article  Google Scholar 

  • Pflüger, F. (1999) Matground structures and redox facies. PALAIOS 14, 25–39.

    Article  Google Scholar 

  • Pflüger, F. and Gresse, P.G. (1996) Microbial sand chipsa non-actualistic sedimentary structure. Sediment. Geol. 102, 263–274.

    Article  ADS  Google Scholar 

  • Porada, H. and Bouougri, E. (2007) ‘Wrinkle structures’ — a critical review. In: J. Schieber, P.K. Bose, P.G. Eriksson, S. Banerjee, S. Sarkar, W Altermann and O. Catuneanu (eds.) Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Atlases in Geology 2, Elsevier, Amsterdam, pp. 135–144.

    Google Scholar 

  • Porada, H. and Löffler, T. (2000) Microbial shrinkage cracks in siliciclastic rocks of the Neoproterozoic Nosib Group (Damara Supergroup) of central Namibia. Communs. Geol. Surv. Namibia 12, 63–72.

    Google Scholar 

  • Prothero, D.R. and Schwab, F. (2004) Sedimentary Geology, 2nd Edition. W.H. Freeman, New York, 557p.

    Google Scholar 

  • Sanford, W.E. and Wood, W.W. (2001) Hydrology of the coastal sabkhas of Abu Dhabi, United Arab Emirates. Hydrol. J. 9, 358–366.

    ADS  Google Scholar 

  • Schieber, J. (1998) Possible indicators of microbial mat deposits in shales and sandstones: examples from the Mid-Proterozoic Belt Supergroup, Montana, USA. Sediment. Geol. 120, 105–124.

    Article  ADS  Google Scholar 

  • Schieber, J. (2004) Microbial mats in the siliciclastic rock record: a summary of the diagnostic features. In: P.G. Eriksson, W. Altermann, D.R. Nelson, W.U. Mueller and O. Catuneanu (eds.) The Precambrian Earth: Tempos and Events. Developments in Precambrian Geology 12, Elsevier, Amsterdam, pp. 663–673.

    Google Scholar 

  • Schieber, J., Böse, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W. and Catuneanu, O. (eds.) (2007) Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record. Atlases in Geology 2, Elsevier, Amsterdam, 311 p.

    Google Scholar 

  • Schopf, J.W. (2004) Earth’s earliest biosphere: status of the hunt. In: P.G. Eriksson, W Altermann, D.R. Nelson, W.U. Mueller and O. Catuneanu (eds.) The Precambrian Earth: Tempos and Events. Developments in Precambrian Geology 12, Elsevier, Amsterdam, pp. 516–539.

    Google Scholar 

  • Schulz, E. (1936) Das Farbstreifen-Sandwatt und seine Fauna, eine ökologisch-biozönotische Untersuchung an der Nordsee. Kieler Meeresforsch. 1, 359–378.

    Google Scholar 

  • Simpson, E.L., Eriksson, K.A., Eriksson, P.G. and Bumby, A.J. (2002) Eolian dune degradation and generation of massive sandstone bodies in the Paleoproterozoic Makgabeng Formation, Waterberg Group, South Africa. J. Sediment. Res. 72, 40–45.

    Article  ADS  Google Scholar 

  • Simpson, E.L., Eriksson, K.A., Kuklis, C.A., Eriksson, P.G., Bumby, A.J. and van Jaarsveld, C.F. (2004) Saline pan deposits from the 1.8 Ga Makgabeng Formation, Waterberg Group, South Africa. Sediment. Geol. 163, 279–292.

    Article  ADS  Google Scholar 

  • Sleep, N.H., Zahnle, K.J., Kasting, J.F. and Morowitz, H.J. (1989) Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342, 139–142.

    Article  ADS  Google Scholar 

  • SACS (South African Committee for Stratigraphy) (1980) Stratigraphy of South Africa, Part 1. (Compiler LE Kent). Lithostratigraphy of the Republic of South Africa, South West-Africa/ Namibia, and the Republics of Bophuthatswana, Transkei, and Venda. Handbook, Geological Survey of South Africa, 8, 690 pp.

    Google Scholar 

  • Stal, L.J. (2000) Cyanobacterial mats and stromatolites. In: B.A. Whitton and M. Potts (eds.) The Ecology of Cyanobacteria. Kluwer, pp. 61–120.

    Google Scholar 

  • Stal, L.J. and Krumbein, W.E. (1985) Isolation and characterization of cyanobacteria from a marine microbial mat. Bot. Mar. 28, 351–365.

    Article  Google Scholar 

  • Sutherland, I.W. (1977) Bacterial exopolysaccharides — their nature and production. In: I.W Sutherland (ed.) Surface Carbohydrates of the Procaryote Cell. Academic, New York, pp. 27–96.

    Google Scholar 

  • Van der Neut, M. and Eriksson, P.G. (1999) Palaeohydrological parameters of a Proterozoic braided fluvial system (Wilgerivier Formation, Waterberg Group, South Africa) compared with a Phanerozoic example. Special Publication, 28, International Association of Sedimentologists, pp. 381–392.

    Google Scholar 

  • Walraven, F. and Hattingh, E. (1993) Geochronology of the Nebo granite, Bushveld Complex. S. Afr. J. Geol. 96, 31–41.

    Google Scholar 

  • Westall, F. (2004) Precambrian geology and exobiology. In: P.G. Eriksson, W Altermann, D.R. Nelson, W.U. Mueller and O. Catuneanu (eds.) The Precambrian Earth: Tempos and Events. Developments in Precambrian Geology 12, Elsevier, Amsterdam, pp. 575–587.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hubertus Porada or Patrick G. Eriksson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Porada, H., Eriksson, P.G. (2009). Cyanobacterial Mat Features Preserved in the Siliciclastic Sedimentary Record. In: Seckbach, J., Walsh, M. (eds) From Fossils to Astrobiology. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8837-7_9

Download citation

Publish with us

Policies and ethics