Skip to main content

Biosedimentological Processes That Produce Hot Spring Sinter Biofabrics: Examples from the Uzon Caldera, Kamchatka Russia

  • Chapter
Book cover From Fossils to Astrobiology

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 12))

  • 1541 Accesses

Abstract

Though the majority of microorganisms in hot spring ecosystems fail to be preserved as bona fide (carbonaceous) microfossils, the presence of microbial biofilms on accretionary surfaces of hot spring sinters can influence the development of sinter fabrics. The extent of biological influence on a primary sinter fabric depends upon the behavior of the microbial community at the time the sinter accretes as well as on the input of sedimentary processes — chemical and physical — that occur during sinter growth. Our ability to recognize the influence of benthic microbial communities on the fabric of a hydrothermal deposit, whether on Earth or, potentially, another rocky planet like Mars, requires an understanding of the interactions between microbial communities, authigenic mineral deposition, and detrital grain accumulation during sinter formation. Examples of hot springs in Uzon Caldera, Kamchatka, Russia, are discussed to illustrate how changes in the relative input of biological, chemical, and physical processes contribute to sinter biofabric formation and preservation. The conclusions drawn from this comparison are relevant to the search for evidence of life in any type of hydrothermal deposit found on a rocky planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramov, O. and Kring, D. A. (2005). “Impact-induced hydrothermal activity on early Mars.” Journal of Geophysical Research 110.

    Google Scholar 

  • Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P. and Burch, I. W. (2006). “Stromatolite reef from the Early Archaean era of Australia.” Nature 441: 714–718.

    Article  ADS  Google Scholar 

  • Awramik, S. M. (1971). “Precambrian columnar stromatolite diversity: reflection of Metazoan appearance.” Science 174(4011): 825–827.

    Article  ADS  Google Scholar 

  • Awramik, S. M. and Riding, R. (1988). “Role of algal eukaryotes in subtidal columnar stromatolite formation.” Proceedings of the National Academy of Sciences 85(5): 1327–1329.

    Article  ADS  Google Scholar 

  • Belousov, V. I., Grib, E. N. and Leonov, V. L. (1984). “The geological setting of the hydrothermal systems in the Geysers Valley and Uzon caldera.” Volcanology and Seismology 5: 67–81.

    Google Scholar 

  • Buick, R. (1990). “Microfossil recognition in Archean rocks; an appraisal of spheroids and filaments from a 3500 my old chert-barite unit at North Pole, Western Australia.” PALAIOS 5(5): 441–459.

    Article  Google Scholar 

  • Burne, R. V. and Moore, L. S. (1987). “Microbialites: organosedimentary deposits of benthic microbial communities.” PALAIOS 2(3): 241–254.

    Article  Google Scholar 

  • Cady, S. L. (2001). “Paleobiology of the Archean.” Advanced Applied Microbiology 50: 3–35.

    Article  Google Scholar 

  • Cady, S. L. and Farmer, J. D. (1996). “Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients.” Ciba Foundation Symposium 202: 150–170.

    Google Scholar 

  • Cady, S. L., Farmer, J. D., Grotzinger, J. P., Schopf, J. W. and Steele, A. (2003). “Morphological biosignatures and the search for life on Mars.” Astrobiology 3(2): 351–368.

    Article  ADS  Google Scholar 

  • Farmer, J. D. and Des Marais, D. J. (1999). “Exploring for a record of ancient Martian life.” Journal of Geophysical Research-Planets 104(E11): 26,977–26,995.

    Google Scholar 

  • Florenskii, I. V. (1988) “On the age of the Uzon and Krasheninnikov Calderas.” Volcanology and Seismology 6: 147–153.

    Google Scholar 

  • Gerdes, G., Klenke, T. and Noffke, N. (2000). “Microbial signatures in peritidal siliciclastic sediments: a catalogue.” Sedimentology 47(2): 279–308.

    Article  ADS  Google Scholar 

  • Goin, J. C. (2007). “Biosedimentology of thermal features in the Uzon Caldera, Kamchatka, Russia: implications for biosignature formation.” Environmental Sciences and Resources-Geology. Portland, OR, Portland State University. PhD: 173.

    Google Scholar 

  • Gorlenko, V. M., Bonch-Osmolovskaya, E. A., Kompantseva, E. I. and Starynin, D. A. (1987). “Differentiation of microbial communities in connection with a change in the physicochemical conditions in thermophile springs.” Microbiology 56: 314–322.

    Google Scholar 

  • Grotzinger, J. P. and Knoll, A. H. (1999). “Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?” Annual Review of Earth and Planetary Sciences 27(1): 313–358.

    Article  ADS  Google Scholar 

  • Grotzinger, J. P. and Rothman, D. H. (1996). “An abiotic model for stromatolite morphogenesis.” Nature 383: 423–425.

    Article  ADS  Google Scholar 

  • Hode, T., von Dalwigk, I. and Broman, C. (2003). “A hydrothermal system associated with the Siljan impact structure, Sweden-implications for the search for fossil life on Mars.” Astrobiology 3(2): 271–289.

    Article  ADS  Google Scholar 

  • Hofmann, H. J. (1969). Attributes of Stromatolites. Department of Energy and Mines, Ottawa, Canada.

    Google Scholar 

  • Hofmann, H. J. (1973). “Stromatolites: characteristics and utility.” Earth Science Reviews 9: 339–373.

    Article  ADS  Google Scholar 

  • Jones, B., Renaut, R. W. and Rosen, M. R. (2001). Taphonomy of Silicified Filamentous Microbes in Modern Geothermal Sinters-Implications for Identification. Palaios 16(6): 580–592, published by SEPM Society for Sedimentary Geology.

    Google Scholar 

  • Konhauser, K. O., Phoenix, V. R., Bottrell, S. H., Adams, D. G. and Head, I. M. (2001). “Microbial-silica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolites.” Sedimentology 48(2): 415–433.

    Article  Google Scholar 

  • Konhauser, K. O., Jones, B., Reysenbach, A. L. and Renaut, R. W. (2003). “Hot spring sinters: keys to understanding Earth’s earliest life forms.” Canadian Journal of Earth Science 40: 1713–1724.

    Article  ADS  Google Scholar 

  • Lalonde, S. V., Konhauser, K. O., Reysenbach, A. L. and Grant, F. (2005). “The experimental silicification of Aquificales and their role in hot spring sinter formation.” Geobiology 3(1): 41.

    Article  Google Scholar 

  • Lowe, D. R. (1994). “Abiological origin of described stromatolites older than 3.2Ga.” Geology 22(5): 387–390.

    Article  ADS  Google Scholar 

  • Lowe, D. R. and Braunstein, D. (2003). “Microstructure of high-temperature (> 73C) siliceous sinter deposited around hot springs and geysers, Yellowstone National Park: the role of biological and abiological processes in sedimentation.” Canadian Journal of Earth Science 40: 1611–1642.

    Article  ADS  Google Scholar 

  • Newsom, H. E., Hagerty, J. J. and Thorsos, I. E. (2001). “Location and sampling of aqueous and hydrothermal deposits in martian impact craters.” Astrobiology 1(1): 71–88.

    Article  ADS  Google Scholar 

  • Noffke, N., Knoll, A. H. and Grotzinger, J. P. (2002). Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: a case study from the Upper Neoproterozoic Nama Group, Namibia. PALAIOS 17: 533–544.

    Article  Google Scholar 

  • Ponomareva, V. V. and Braitseva, O. A. (1991). “Volcanic hazards assessment in the area of Lake Kronotskoe, Uzon Caldera, and valley of the Geysers.” Volcanology and Seismology 12(1): 42–69.

    Google Scholar 

  • Rathbun, J. A. and Squyres, S. W. (2002). “Hydrothermal systems associated with Martian impact craters.” Icarus 157(2): 362–372.

    Article  ADS  Google Scholar 

  • Reid, R. P., Visscher, P. T., Decho, A. W., Stolz, J. F., Bebout, B. M., Dupraz, C., Macintyre, I. G., Paerl, H. W., Pinckney, J. L. and Prufert-Bebout, L. (2000). “The role of microbes in accretion, lamination and early lithification of modern marine stromatolites.” Nature 406(6799): 989–992.

    Article  ADS  Google Scholar 

  • Riding, R. (1999). “The term stromatolite: towards an essential definition.” Lethaia 32(4): 321–330.

    Article  Google Scholar 

  • Riding, R. (2000). “Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms.” Sedimentology 47(s 1): 179–214.

    Article  Google Scholar 

  • Rosing, M. T. (1999). “13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland.” Science 283(5402): 674.

    Article  ADS  Google Scholar 

  • Schidlowski, M., Appel, P. W. U., Eichmann, R. and Junge, C. E. (1979). “Carbon isotope geochemistry of the 3.7 × 10 9-yr-old Isua sediments, West Greenland: implications for the Archaean carbon and oxygen cycles.” Geochimica et Cosmochimica Acta 43(2): 189–199.

    Article  ADS  Google Scholar 

  • Schieber, J. (1999). “Microbial mats in terrigenous clastics; the challenge of identification in the rock record.” PALAIOS 14(1): 3–12.

    Article  MathSciNet  Google Scholar 

  • Schopf, J. M. (1975). “Modes of fossil preservation.” Reviews of Paleobotany and Palynology 20(1–2): 27–53.

    Article  Google Scholar 

  • Schopf, J. W. (1994). “New evidence of the antiquity of life.” Origins of Life and Evolution of Biospheres 24(2): 263–282.

    ADS  Google Scholar 

  • Schopf, J. W. (1999). “Fossils and pseudofossils: lessons from the hunt for early life on Earth.” Size Limits of Very Small Microorganisms: Proceedings of a Workshop. National Academy Press, Washington DC, 88–93.

    Google Scholar 

  • Schopf, J. W. and Walter, M. R. (1983). “Archean microfossils — new evidence of ancient microbes.” Earth’s Earliest Biosphere: Its Origin and Evolution (A 84-4305121-51). Princeton, NJ, Princeton University Press, 214–239.

    Google Scholar 

  • Walter, M. R. (1976). Stromatolites. Amsterdam, Elsevier.

    Google Scholar 

  • Walter, M. R. and Des Marais, D. J. (1993). “Preservation of biological information in thermal spring deposits: developing a strategy for the search for fossil life on Mars.” Icarus 101(1): 129–143.

    Article  ADS  Google Scholar 

  • Walter, M. R., Bauld, J. and Brock, T. D. (1972). “Siliceous algal and bacterial stromatolites in hot spring and geyser effluents of Yellowstone National Park.” Science 178(4059): 402.

    Article  ADS  Google Scholar 

  • Westall, F. and Southam, G. (2006). “The early record of life.” Geophysical Monograph 164: 283–304.

    Google Scholar 

  • Zolotarev, B. P., Karpov, G. A., Yeroshev-Shak, V. A., Artamonov, A. V., Grigoryev, V. S. and Pokrovsky, B. G. (1999). “Evolution of volcanism in Uzon caldera.” Volcanology and Seismology 6: 67–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jessica C. Goin or Sherry L. Cady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Goin, J.C., Cady, S.L. (2009). Biosedimentological Processes That Produce Hot Spring Sinter Biofabrics: Examples from the Uzon Caldera, Kamchatka Russia. In: Seckbach, J., Walsh, M. (eds) From Fossils to Astrobiology. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8837-7_8

Download citation

Publish with us

Policies and ethics