Skip to main content

Magnetotactic Bacteria and Their Potential for Terraformation

  • Chapter
From Fossils to Astrobiology

This paper is focused on magnetotactic bacteria and their possible contributions to the terraformation of Mars or other planets. The potential for terraformation is mainly based on their ability to carry out aerobic or anaerobic respiration with either nitrate or ferric iron, to fix carbon dioxide in the dark using the energy released through the oxidation of inorganic chemicals such as thiosulfate, and to use molecular nitrogen for cell growth. Furthermore, the magnetic assisted taxies, could help magnetotactic bacteria in their navigation toward optimum growth conditions, when a magnetic field is present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Averner, M. M. and MacElroy, R. D. (1976) On the habitability of Mars: an approach to planetary ecosynthesis. NASA SP-414.

    Google Scholar 

  • Badescu, V. (2005) Regional and seasonal limitations for Mars Intrinsic Ecopoiesis. Acta Astronaut. 56, 670–680.

    Article  ADS  Google Scholar 

  • Barber, D. J. and Scott, E. R. D. (2002) Origin of supposedly biogenic magnetite in the Martian meteorite Allan Hills 84001. Proc. Natl. Acad. Sci. USA 99, 6556–6561.

    Article  ADS  Google Scholar 

  • Bazylinski, D. A. and Blakemore, R. P. (1983) Nitrogen fixation (acetylene reduction) in Aquaspirillum magnetotacticum. Curr. Microbiol. 9, 305–308.

    Article  Google Scholar 

  • Bazylinski, D. A. and Frankel R. B. (2004) Magnetosome formation in prokaryotes. Nat. Rev. 2, 217–230.

    Article  Google Scholar 

  • Bazylinski, D. A. and Moskowitz, B. M. (1997) Microbial biomineralization of magnetic iron minerals: microbiology, magnetism, and environmental significance. In: J. Banfield and K. Nealson (eds.) Geomicrobiology: Interactions Between Microbes and Minerals, vol. 35. Mineralogical Society of America, Washington, DC, pp. 181–224.

    Google Scholar 

  • Bazylinski, D. A., Frankel, R. B., and Jannasch, H. W. (1988) Anaerobic magnetite production by a marine magnetotactic bacterium. Nature 334, 518–519.

    Article  ADS  Google Scholar 

  • Bazylinski, D. A., Frankel, R. B., Heywood, B. R., Mann, S., King, J. W., Donaghay, P. L., and Hanson A. K. (1995) Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Appl. Environ. Microbiol. 61, 3232–3239.

    Google Scholar 

  • Bazylinski, D. A., Dean, A. J., Schüler, D., Phillips, E. J. P., and Lovley, D. R. (2000) N2-dependent growth andnitrogenase activity in the metal-metabolizing bacteria Geobacter and Magnetospirillum species. Environ. Microbiol. 2, 266–273.

    Article  Google Scholar 

  • Bazylinski, D. A., Dean, A. J., Williams, T. J., Long, L. K., Middleton, S. L., and Dubbels, B. L. (2004) Chemolitoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch. Microbiol. 182, 373–387.

    Article  Google Scholar 

  • Bazylinski, D. A., Frankel, R. B., and Konhauser, K. O. (2007) Modes of biomineralization of magnetite by microbes. Geomicrobiol. J. 24, 465–475.

    Google Scholar 

  • Birch, P. (1992) Terraforming Mars quickly. JBIS 45, 331–340.

    ADS  Google Scholar 

  • Blakemore, R. P. (1975) Magnetotactic bacteria. Science 190, 377–379.

    Article  ADS  Google Scholar 

  • Blakemore, R. P. (1982) Magnetotactic bacteria. Annu. Rev. Microbiol. 36, 217–238.

    Article  Google Scholar 

  • Blakemore, R. P., Maratea, D., and Wolfe, R. S. (1979) Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J. Bacteriol. 140, 720–729.

    Google Scholar 

  • Buseck, P. R., Dunin-Borkowski, R. E., Devouard, B., Frankel, R. B., McCartney, M. R., Midgley, P. A., Pósfai, M., and Weyland, M. (2001) Magnetite morphology and life on Mars. Proc. Natl. Acad. Sci. USA 98, 13490–13495.

    Article  ADS  Google Scholar 

  • Butler, R. F. and Banerjee, S. K. (1975) Theoretical single-domain grain size range in magnetite and titanomagnetite. J. Geophys. Res. 80, 252–259.

    Article  ADS  Google Scholar 

  • Flies, C. B., Jonkers, H. M., De Beer, D., Bosselmann, K., Böttcher, M. E., and Schüler, D. (2005) Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in fresh-water microcosms. FEMS Microbiol. Ecol. 52, 185–195.

    Article  Google Scholar 

  • Fogg, M. J. (1989) The Creation of an artificial, dense Martian atmosphere: a major obstacle to the terraforming of Mars. JBIS 42, 577–582.

    ADS  Google Scholar 

  • Fogg, M. J. (1993) Terraforming: a review for environmentalists. The Environmentalist 13, 7–17.

    Article  Google Scholar 

  • Fogg, M. J. (1995) Terraforming: Engineering Planetary Environments. SAE International Publisher, Warrendale, PA.

    Google Scholar 

  • Fogg, M. J. (1998) Terraforming Mars: a review of current research. Adv. Space Res. 3, 415–442.

    Article  ADS  Google Scholar 

  • Frankel, R. B. and Bazylinski, D. A. (2006) How magnetotactic bacteria make magnetosomes queue up. Trends Microbiol. 14, 329–331.

    Article  Google Scholar 

  • Frankel, R. B., Bazylinski, D. A., Johnson, M. S., and Taylor, B. L. (1997) Magneto-aerotaxis in marine coccoid bacteria. Biophys. J. 73, 994–1000.

    Article  Google Scholar 

  • Frankel, R. B., Bazylinski, D. A., and Schüler, D. (1998) Biomineralization of magnetic iron minerals in magnetotactic bacteria. Supramol. Sci. 5, 383–390.

    Article  Google Scholar 

  • Friedmann, E. I. and Ocampo-Friedmann, R. (1995) A primitive cyanobacterium as pioneer microorganism for terraforming Mars. Adv. Space Res. 3, 243–246.

    Article  Google Scholar 

  • Friedmann, E. I., Hua, M., and Ocampo-Friedmann, R. (1993) Terraforming Mars: dissolution of carbonate rocks by cyanobacteria. JBIS 46, 291–292.

    ADS  Google Scholar 

  • Fukumori, Y., Oynagi, H., Yoshimatsu, K., Noguchi, Y., and Fujiwara, T. (1997) Enzymatic iron oxidation and reduction in magnetite synthesizing Magnetospirillum magnetotacticum. J. Phys. IV 7, 659–666.

    Article  Google Scholar 

  • Gerstell, M. F., Francisco, J. S., Yung, Y. L., Boxe, C., and Aaltonee E. T. (2001) Keeping Mars warm with new super greenhouse gases. Proc. Natl. Acad. Sci. USA 98, 2154–2157.

    Article  ADS  Google Scholar 

  • Gorby, Y. A., Beveridge, T. J., and Blakemore, R. P. (1988) Characterization of the bacterial magnetosome membrane. J. Bacteriol. 170, 834–841.

    Google Scholar 

  • Grünberg, K., Müller, E. C., Otto, A., Reszka, R., Linder, D., Kube, M., Reinhardt, R., and Schüler, D. (2004) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol. 70, 1040–1050.

    Article  Google Scholar 

  • Guerin, W. F. and Blakemore, R. P. (1992) Redox cycling of iron supports growth and magnetite synthesis by Aquaspirillum magnetotacticum. Appl. Environ. Microbiol. 58, 1102–1109

    Google Scholar 

  • Hancox, C. R. (1999) Terraformation of Mars. In: R. M. Zubrin and M. Zubrin (eds.) Proceedings of the Founding Convention of the Mars Society, Part III. Univelt Publisher, San Diego, CA, pp. 905–935.

    Google Scholar 

  • Haynes, R. H. and McKay, C. P. (1992) The implantation of life on mars: feasibility and motivation. Adv. Space Res. 12, 133–140.

    Article  ADS  Google Scholar 

  • Heyen, U. and Schüler, D. (2003) Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl. Microbiol. Biotechnol. 61, 536–544.

    Google Scholar 

  • Hiscox, J. A. (2000a) Biology and the Planetary Engineering of Mars. In: K. R. McMillen (ed.) The Case for Mars VI. Univelt Publisher, San Diego, CA, pp. 453–481.

    Google Scholar 

  • Hiscox, J. A. (2000b) Selecting pioneer microorganisms for Mars. In: K. R. McMillen (ed.) The Case for Mars VI. Univelt, San Diego, CA, pp. 491–503.

    Google Scholar 

  • Hiscox, J. A. and Thomas, D. J. (1995) Modification and selection of microorganisms for growth on Mars. J. Brit. Inter. Soc. 48, 419–426.

    Google Scholar 

  • Jukes, H. (1991) Mars as a new abode for microbial life. J. Molec. Evol. 32, 355–357.

    Article  Google Scholar 

  • Kasama, T., Posfai, M., Chong, R. K. K., Finlayson, A. P., Buseck, P. R., Frankel, R. B., and Dunin-Borkowski, R. E. (2006) Magnetic properties, micro structure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography. Am. Mineral. 91, 1216–1229.

    Article  Google Scholar 

  • Keim, C. N., Abreu, F., Lins, U., Lins de Barros, H., and Farina, M. (2004) Cell organization and ultrastructure of a magnetotactic multicellular organism. J. Struct. Biol. 145, 254–262.

    Article  Google Scholar 

  • Lins, U., Keim, C. N., Evans, F. F., Farina, M., and Buseck, P. R. (2007) Magnetite (Fe3O4) and greigite (Fe3S4) crystals in magnetotactic multicellular organisms. Geomicrobiol. J. 24, 43–50.

    Article  Google Scholar 

  • Mann, S., Sparks, N. H. C., and Board, R. G. (1990) Magnetotactic bacteria: microbiology, biomineralization, palaeomagnetism and biotechnology. Adv. Microbiol. Physiol. 31, 125–181.

    Article  Google Scholar 

  • Marinova, M. M., McKay C. P., and Hashimoto, H. (2000) Warming Mars using artificial super-greenhouse gases. JBIS 53, 235–240.

    Google Scholar 

  • Matsunaga, T., Tsujimura, N., Okamura, H., and Takeyama, H. (2000) Cloning and characterization of a gene, mpsA, encoding a protein associated with intracellular magnetic particles from Magnetospirillum sp. strain AMB-1. Biochem. Biophy. Res. Commun. 268, 932–937.

    Article  Google Scholar 

  • McKay, C. P. and Marinova, M. M. (2001) The Physics, Biology and Environmental Ethics of making Mars habitable. Astrobiology 1, 89–109.

    Article  ADS  Google Scholar 

  • McKay, C. P., Toon, O. B., and Kasting, J. F. (1991) Making Mars habitable. Nature 352, 489–496.

    Article  ADS  Google Scholar 

  • McKay, C. P., Friedman, E. I., Frankel, R. B., and Bazylinski, D. A. (2003) Magnetotactic bacteria on Earth and on Mars. Astrobiology 2, 263–270.

    Article  ADS  Google Scholar 

  • Moench, T. T. and Konetzka, W. A. (1978) A novel method for the isolation and study of a magnetotactic bacterium. Arch. Microbiol. 119, 203–212.

    Article  Google Scholar 

  • Moisescu, C., Dumitru, L., and Ardelean, I. (2005) The growth of the magnetotactic bacterium Magnetospirillum gryphiswaldense under microaerobic conditions. Proceedings of the Institute of Biology of the Romanian Academy 7, 207–210.

    Google Scholar 

  • Murray, J., Codispoti, L., and Friedrich, G. (1995) Oxidation-reduction environments: the suboxic zone in Black Sea. In: C. P. Huang, C. R. O’Melia and J. J. Morgan (eds.) Aquatic Chemistry, vol. 244. American Chemical Society, Washington, DC, pp. 157–176.

    Chapter  Google Scholar 

  • Nienow, J. A., McKay, C. P., and Friedmann, E. I. (1988) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in the photosynthetically active region. Microb. Ecol. 16, 271–289.

    Article  Google Scholar 

  • Nussinov, M. D., Lysenko, S. V., and Patrikeev, V. V. (1994) Terraforming of Mars through terrestrial microorganisms and nanotechnological devices. J. Brit. Interplanet. Soc. 47, 319–320.

    Google Scholar 

  • Petermann, H. and Bleil, U. (1993) Detection of live magnetotactic bacteria in South-Atlantic deep-sea sediments. Earth Planet. Sci. Lett. 117, 223–228.

    Article  ADS  Google Scholar 

  • Petersen, N., Weiss, D. G., and Vali, H. (1989) Magnetic bacteria in lake sediments. In: F. J. Lowes, D. W. Collinson, J. H. Parry, S. K. Runcorn, T. D. C., and A. Soward (eds.) Geomagnetism and Paleomagnetism. Kluwer, Dordrecht, pp. 231–241.

    Google Scholar 

  • Popoviciu, D. R. (2006) Some Ideas Regarding the Biological Colonization of Planet Mars. http://www.redcolony.com

  • Rodgers, F., Blakemore, R. P., Frankel, R. B., Bazylinski, D., Maratea, D., and Rodgers, C. (1990) Intercellular junctions, motility and magnetosome structure in a multicellular magnetotactic prokaryote. In: R. B. Frankel and R. B. Blakemore (eds.) Iron Biominerals. Plenum, New York, pp. 231–238.

    Google Scholar 

  • Sagan, C. (1961) The planet Venus. Science 133, 849–858.

    Article  ADS  Google Scholar 

  • Sagan, C. (1973) Planetary engineering on Mars. Icarus 20, 513–514.

    Article  ADS  Google Scholar 

  • Schübbe, S., Kube, M., Scheffel, A., Wawer, C., Heyen, U., Meyerdierks, A., Madkour, M., Mayer, F., Reinhardt, R., and Schüler, D. (2003) Characterization on a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J. Bacteriol. 185, 5779–5790.

    Article  Google Scholar 

  • Schüler, D. (2004) Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense. Arch. Microbiol. 181, 1–7.

    Article  Google Scholar 

  • Schüler, D. and Baeuerlein, E. (1998) Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J. Bacteriol. 180, 159–162.

    Google Scholar 

  • Schüler, D. and Frankel, R. B. (1999) Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl. Microbiol. Biotechnol. 52, 464–473.

    Article  Google Scholar 

  • Short, K. A. and Blakemore, R. P. (1986) Iron respiration-driven proton translocation in aerobic bacteria. J. Bacteriol. 167, 729–731.

    Google Scholar 

  • Smith, M. J., Sheehan, P. E., Perry, L. L., O’Connor, K., Csonka, L. N., Applegate, B. M., and Whitman, L. J. (2006) Quantifying the magnetic advantage in magnetotaxis. Biophys. J. 91, 1098–1107.

    Article  ADS  Google Scholar 

  • Spring, S., Amann, R., Ludwig, W., Schleifer, K. H., Van Gemerden, H., and Petersen, N. (1993) Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment. Appl. Environ. Microbiol. 59, 2397–2403.

    Google Scholar 

  • Stephens, C. (2006) Bacterial cell biology: managing magnetosomes. Curr. Biol. 16, R363–R365.

    Article  Google Scholar 

  • Stolz, J. F. (1992) Magnetotactic bacteria: biomineralization, ecology, sediment magnetism, environmental indicator. In: H. C. W Skinner (ed.) Biomineralization: Processes of Iron and Manganese; Modern and Ancient Environments. Catena-Verlag, Cremlingen-Destedt, pp. 133–145.

    Google Scholar 

  • Stolz, J. F (1993) Magnetosomes. J. Gen. Microbiol. 139, 1663–1670.

    Google Scholar 

  • Tamegai, H., Yamanaka, T., and Fukumori, Y. (1993) Purification and properties of a ‘cytochrom a0l’-like hemoprotein from a magnetotactic bacterium, Aquaspirillummagnetotacticum. Biochim. Biophys. Acta. 1158, 137–243.

    Google Scholar 

  • Tanaka, M., Okamura, Y., Arakaki, A., Tanaka, T., Takeyama, H., and Matsunaga, T. (2006) Origin of magnetosome membrane: proteomic analysis of magnetosome membrane and comparison with cytoplasmic membrane. Proteomics 6, 5234–5247.

    Article  Google Scholar 

  • Taylor, A. P., Barry, J. C., and Webb, R. I. (2001) Structural and morphological anomalies in magnetosomes: possible biogenic origin for magnetite in ALH84001. J. Microscopy 201, 84–106.

    Article  MathSciNet  Google Scholar 

  • Thomas-Keprta, K. L., Clemett, S. J., Bazylinski, D. A., Kirschvink, J. L., McKay, D. S., Wentworth, S. J., Vali, H., Gibson, E. K., Jr., and Romanek, C. S. (2002) Magnetofossils from ancient Mars: a robust biosignature in the Martian meteorite ALH84001. Appl. Environ. Microbiol. 68, 3663–3672.

    Article  Google Scholar 

  • Urban, J. E. (2000) Adverse effects of microgravity on the magnetotactic bacterium Magnetospirillum magnetotacticum. Acta Astronaut. 10, 775–780.

    Article  Google Scholar 

  • Weiss, B. P., Kim, S. S., Kirschvink, J. L., Kopp, R. E., Sankaran, M., Kobayashi, A., and Komeili, A. (2004) Magnetic tests for magnetosome chains in Martian meteorite ALH84001. Proc. Natl. Acad. Sci. USA 101, 8281–8284.

    Article  ADS  Google Scholar 

  • Williams, T. J., Zhang, C. L., Scott, J. H., and Bazylinski, D. A. (2006) Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Appl. Environ. Microbiol. 72, 1322–1329.

    Article  Google Scholar 

  • Yamazaki, T., Oyanagi, H., Fujiwara, T., and Fukumori, Y. (1995) Nitrite reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum — a novel cytochrome-cd(1) with Fe(II)-nitrite oxidoreductase activity. Eur. J. Biochem. 233, 665–671.

    Article  Google Scholar 

  • Zopfi, J. T., Ferdelman, T. G., Jorgensen, B. B., Teske, A., and Thamdrup, B. (2001) Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark). Mar. Chem. 74, 29–51.

    Article  Google Scholar 

  • Zubrin, R. and Wagner, R. (ed.) (1996) The Case for Mars: The Plan to Settle the Red Planet and Why We Must. Free Press, New York.

    Google Scholar 

  • Zubrin, R. M. and McKay, C. P. (1997) Technological requirements for terraforming Mars. JBIS 50, 83–92.

    Google Scholar 

  • Mars Global Surveyor — Magnetic Field Experiment. http://mgs-mager.gsfc.nasa.gov

  • Terrestrial Magnetism. http://denali.gsfc.nasa.gov/terr_mag/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ioan I. Ardelean , Cristina Moisescu or Dan Razvan Popoviciu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Ardelean, I.I., Moisescu, C., Popoviciu, D.R. (2009). Magnetotactic Bacteria and Their Potential for Terraformation. In: Seckbach, J., Walsh, M. (eds) From Fossils to Astrobiology. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8837-7_16

Download citation

Publish with us

Policies and ethics