Skip to main content

Organic and Sustainable Agriculture and Energy Conservation

  • Chapter

Abstract

In the last decades biofuels have been regarded as an important source of renewable energy and at the same time as an option to curb greenhouse gas emissions. This is based on a number of assumptions that, on a close look, may be misleading, such as the supposed great energy efficiency of biofuels production. Large scale biofuels production may, on the contrary, have dramatic effects on agriculture sustainability and food security. In this chapter we explore the energy efficiency of organic farming in comparison to conventional agriculture, as well as the possible benefits of organic management in term of Green House Gasses mitigation.

Organic agriculture (along with other low inputs agriculture practices) results in less energy demand compared to intensive agriculture and could represent a mean to improve energy savings and CO2 abatement if adopted on a large scale. At the same time it can provide a number of important environmental and social services such as: preserving and improving soil quality, increasing carbon sink, minimizing water use, preserving biodiversity, halting the use of harmful chemicals so guaranteeing healthy food to consumers. We claim that more work should be done in term of research and investments to explore the potential of organic farming for reducing environmental impact of agricultural practices. However, the implications for the socio-economic system of a reduced productivity should be considered and suitable agricultural policies analysed.

The chapter is organised as follows: Section (17.1) provides the reader with a definition of organic agriculture (and sustainable agriculture) and a brief history of the organic movement in order to help the reader to better understand what is presented later on; Section (17.2) reviews a number of studies on energy efficiency in organic and conventional agriculture; Section (17.3) compares CO2 emissions from organic and conventional managed farming systems; Section (17.4) analyses the possible use of agricultural “waste” to produce cellulosic ethanol; Section (17.5) provides some comments concerning the possible production of biofuels from organically grown crops; Section (17.6) concludes the chapter presenting a summary of the review.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, D. (2001). Nutritionists question study of organic food. Nature, 412, 666.

    Article  CAS  Google Scholar 

  • Allison, F. E. (1973). Soil organic matter and its role in crop production. (Elsevier, Amsterdam)

    Book  Google Scholar 

  • Altieri, M. 2002. Agroecology: the science of natural resource management for poor farmers in marginal environments. Agriculture, Ecosystems and Environment, 93, 1–24.

    Article  Google Scholar 

  • Altieri, M. (1987). Agroecology: The science of sustainable agriculture. (Westview Press, Boulder)

    Google Scholar 

  • Badgley, C., Moghtader, J., Quintero, E., Zakem, E., Chappell, J. M., Avilés-Vázquez, K., Samulon, A., & Perfecto, I. (2007). Organic agriculture and the global food supply. Renewable Agriculture and Food Systems, 22, 86–108.

    Article  Google Scholar 

  • Balfour, E. (1977). Towards a sustainable agriculture – The Living Soil. IFOAM conference in Switzerland in 1977, Retrieved 30 July 30 2007 from http://soilandhealth.org/ 01aglibrary/010116Balfourspeech.html

    Google Scholar 

  • Badger, P. C. (2002). Ethanol From Cellulose: A General Review. (In J. Janick, & A. Whipkey (Eds.), Trends in new crops and new uses (pp. 17–21). ASHS Press, Alexandria, VA).

    Google Scholar 

  • Bengtsson, J., Ahnstrom, J., & Weibull, A-C. (2005). The effects of organic agriculture on biodiversity and abundance: a meta-analysis. Journal of Applied. Ecology, 42, 261–269.

    Article  Google Scholar 

  • Bland, W. L. (1999). Toward integrated assessment in agriculture. Agricultural Systems, 60(3), 157–167.

    Article  Google Scholar 

  • Brandt, K., & Mølgaard, J.P. (2006). Food quality. (In P., Kristiansen, A., Taji, & J., Reganold (Eds), Organic agriculture. A global perspective. (pp. 305–328) CSIRO Publishing, Collingwood, Australia)

    Google Scholar 

  • Brandt, K., & Mølgaard, J. P. (2001). Organic agriculture: does it enhance or reduce the nutritional value of plant foods? Journal of the Science of Food and Agriculture, 81, 924–931.

    Article  CAS  Google Scholar 

  • Brussaard, L., de Ruiter, P. C., & Brown, G. G. (2007). Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems and Environment, 121, 233–244.

    Article  Google Scholar 

  • Carter, V. G., & Dale, T. (1975). Topsoil and civilization. (Univ. of Oklahoma Press, Revised edition)

    Google Scholar 

  • Castellini, C., Bastianoni, S., Granai, C., Dal Bosco, A., & Brunetti, M. (2006). Sustainability of poultry production using the emergy approach: Comparison of conventional and organic rearing systems. Agriculture, Ecosystems and Environment, 114, 343–350.

    Article  Google Scholar 

  • Cassman, K. (2007). Editorial response by Kenneth Cassman: can organic agriculture feed the world—science to the rescue? Renewable Agriculture and Food Systems, 22(2), 83–84.

    Google Scholar 

  • Codex Alimentarius. (2004). Guidelines for the production, processing, labelling and marketing of organically produced foods (GL 32 – 1999, Rev. 1 – 2001) Retrieved July 25 2007 from http://www.codexalimentarius.net/web/standard_list.do?lang=en

    Google Scholar 

  • Conford, P. (2001). The origins of the organic movement. (Floris Books, Glasgow, Great Britain).

    Google Scholar 

  • Coleman, D. C., Crossley, D.A.Jr., & Hendrix, P.F. (2004). Fundamentals of Soil Ecology. (Second Edition, Academic Press, Amsterdam)

    Google Scholar 

  • Cormack, W. F. (2000). Energy use in organic farming systems. Final report for project OF0182 for the Department for Environment, Food and Rural Affairs. Retrieved August 12 2007 from http://orgprints.org/8169/01/OF0182_181_FRP.pdf

    Google Scholar 

  • Conway, G. R. (1987). The properties of agroecosystems. Agricultural Systems, 24, 95–117.

    Article  Google Scholar 

  • Courville, S. (2006). Organic standards and certification. (In P. Kristiansen, A. Taji, J. & J. Reganold (Eds), Organic agriculture. A global perspective. (pp. 201–220) CSIRO Publishing, Collingwood, Australia)

    Google Scholar 

  • Crutzen, P. J., Mosier, A. R., Smith, K. A., & Winiwarter, W. (2007). N$2$O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics., 7, 11191–11205. Retrieved September 15 2007 from http://www.atmos-chem-phys-discuss.net/7/11191/2007/acpd-7-11191-2007.pdf

    Google Scholar 

  • Delate, K, Duffy, M., Chase, C., Holste, A., Friedrich, H., & Wantate, N. (2003). An economic comparison of organic and conventional grain crops in a Long-Term Agroecological Research (LTAR) Site in Iowa. Journal of Alternative Agriculture, 18(2), 59–69.

    Article  Google Scholar 

  • Dalgaard, T., Hutchings, N.J., & Porter, J.R. (2003). Agroecology, scaling and interdisciplinarity. Agriculture Ecosystems and Environment, 100, 39–51.

    Article  Google Scholar 

  • Dalgaard, T., Halberg, N., & Porter, J. R. (2001). A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agriculture, Ecosystems and Environment, 87, 51–65.

    Article  Google Scholar 

  • DEFRA (Department for Environment Food and Rural Affairs – UK) (2005). The validity of food miles as an indicator of sustainable development. Report number ED50254. Retrieved September 16 2007 from http://statistics.defra.gov.uk/esg/reports/foodmiles/default.asp}.

    Google Scholar 

  • De Oliveira, M. E. D., Vaughan, B. E., & Rykiel, Jr. E. J. (2005). Ethanol as fuel: Energy, carbon dioxide balances, and ecological footprint. BioScience, 55(7), 593–602.

    Article  Google Scholar 

  • Diamond, J. (2005). Collapse: How societies choose to fail or succeed. (Penguin, London)

    Google Scholar 

  • Drinkwater, L. E., Wagoner, P., & Sarrantonio, M. (1998). Legume-based cropping systems have reduced carbon and nitrogen losses. Nature, 396, 262–265.

    Article  CAS  Google Scholar 

  • Dritschillo, W., & Wanner, D. (1980). Ground beetle abundance in organic and conventional corn fields. Environmental Entomology, 9, 629–631.

    Google Scholar 

  • Dunlap, R. E., Beus, C. E., Howell, R., &Waud, J. (1992). What is sustainable agriculture? An empirical examination of faculty and farmer definitions. Journal of Sustainable Agriculture, 3(1), 5–39.

    Article  Google Scholar 

  • EC (European Commission) (2007). Council Regulation (EC) No 834/2007, of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092. Retrieved July 30 2007 from http://eur-lex.europa.eu/LexUriServ/ site/en/oj/2007/l_189/l_18920070720en00010023.pdf

    Google Scholar 

  • EC (European Commission) (2005). Annex to the communication from the Commission biomass action plan impact assessment. Retrieved 20 July 2007 from http://ec.europa.eu/energy/ res/biomass_action_plan/doc/sec_2005_1573_impact_assessment_en.pdf

    Google Scholar 

  • Edens, T. (1984). Sustainable agriculture and integrated farming systems. (Michigan State Univ. Pr.)

    Google Scholar 

  • EEA (European Environmental Agency) (2006). How much bioenergy can Europe produce without harming the environment? Report No 7/2006 Roland Siemons, Martijn Vis, Douwe van den Berg (BTG) Ian Mc Chesney MBA, Mark Whiteley MSc (ESD). Retrieved June 15 2007 from 1http://reports.eea.europa.eu/eea_report_2006_7/en/eea_report_7_2006.pdf

    Google Scholar 

  • EEC (European Economic Community) (1991). Council Regulation (EEC) No 2092/91 of 24 June 1991 on organic production of agricultural products and indications referring thereto on agricultural products and foodstuffs (OJ L 198, 22.7.1991, p. 1)

    Google Scholar 

  • Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land Clearing and the Biofuel Carbon Debt. Science, www.sciencexpress.org/7 February 2008/Page 1/10.1126/science. 1152747

    Google Scholar 

  • FAO (2004). The scope of organic agriculture, sustainable forest management and ecoforestry in protected area management. (FAO, Rome) Retrieved August 15 2007 from http://www.fao.org/docrep/007/y5558e/y5558e00.htm#}toc

    Google Scholar 

  • FAO (2003).World agriculture: towards 2015/2030 – An FAO perspective. (FAO, Rome) Retrieved 15 August 15 2007 from http://www.fao.org/DOCREP/005/Y4252E/Y4252E00.HTM

    Google Scholar 

  • FAO (2002). Organic agriculture, environment and food security. Environment and Natural Resources Service Sustainable Development Department. Retrieved July 20 2007 from http://www.fao.org/DOCREP/005/Y4137E/y4137e00.htm{#}TopOfPage

    Google Scholar 

  • Feenstra, G., Ingels, C., & Campbell, D. (1997). What is sustainable agriculture? Retrieved July 30, 2007 from University of California Sustainable Agriculture Research and Education Programme Web Site: http://www.sarep.ucdavis.edu/concept.htm

    Google Scholar 

  • Foereid, B., & Høgh-Jensen, H. (2004). Carbon sequestration potential of organic agriculture in northern Europe – a modelling approach. Nutrient Cycling in Agroecosystems, 68, 13–24.

    Article  CAS  Google Scholar 

  • Foster, C., Green, K., Bleda, M., Evans, B., Flynn, A., & Myland, J. (2006). Environmental impact of food production and consumption. A report to the Department of Environment, Food and Rural Affair (DEFRA). Manchester Business School, DEFRA, London. Retrieved July 15 2007 from http://www.defra.gov.uk/science/project_data/Document Library/EV02007/EV02007_4601_FRP.pdf

    Google Scholar 

  • Genghini, M., Gellini, S., & Gustin, M. (2006). Organic and integrated agriculture: the effects on bird communities in orchard farms in northern Italy. Biodiversity and Conservation, 15, 3077–3094.

    Article  Google Scholar 

  • Giampietro, M. (2004). Multi-scale integrated analysis of agroecosystems. (CRC Press, Boca Raton, London)

    Google Scholar 

  • Giampietro, M., Bukkens S. G. F., & Pimentel, D. (1994). Models of energy analysis to assess the performance of food systems. Agricultural Systems, 45(1), 19–41.

    Article  Google Scholar 

  • Gliessmann, S. R. (2000). Agroecology: Ecological processes in sustainable agriculture. (Lewis Publisher, Boca Raton, New York)

    Google Scholar 

  • Gliessmann, S. R. (Ed.) (1990). Agroecology: Researching the ecological basis for sustainable agriculture. (Springer-Verlag, New York)

    Google Scholar 

  • Goklany, I. M. (2002). The ins and outs of organic farming. Science, 298, 1889.

    Google Scholar 

  • Goldemberg, J. (2007). Ethanol for a sustainable energy future. Science, 315, 808–810.

    Google Scholar 

  • Gold, M. V., & Gates, J. P. (2007). Tracing the evolution of organic/sustainable agriculture: A selected and annotated bibliography, Beltsville, Md.: United States Dept. of Agriculture, National Agricultural Library, [1988] ; updated and expanded, May 2007 Retrieved July 25 2007 from http://www.nal.usda.gov/afsic/pubs/tracing/tracing.shtml

    Google Scholar 

  • Gomiero, T., Giampietro, M., & Mayumi, K. (2006). Facing complexity on agro-ecosystems: a new approach to farming system analysis. International Journal of Agricultural Resources, Governance and Ecology, 5(2/3), 116–144.

    Google Scholar 

  • Gomiero, T., Giampietro, M., Bukkens, S. M., & Paoletti, G. M. (1997). Biodiversity use and technical performance of freshwater fish culture in different socio-economic context: China and Italy. Agriculture, Ecosystems and Environment, 62 (2,3), 169–185.

    Article  Google Scholar 

  • Grandy, A. S., & Robertson, G. P. (2007). Land-use intensity effects on soil organic carbon accumulation rates and mechanisms. Ecosystems, 10, 58–73.

    Article  CAS  Google Scholar 

  • Guthman, J. (2004). Agrarian dreams: The paradox of organic farming in California. (University of California Press, Los Angeles)

    Google Scholar 

  • Haas, G., Wetterich, F., & Kopke, U. (2001). Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agriculture, Ecosystems and Environment, 83, 43–53.

    Article  Google Scholar 

  • Haden, A. C. (2003). Emergy evaluations of Denmark and Danish agriculture assessing the limits of agricultural systems to power society. Ekologiskt Lantbrunknr, 37 March 2003. Retrieved July 24 2007 from http://www.cul.slu.se/information/publik/ekolantbruk37.pdf

    Google Scholar 

  • Hansen, B., Fjelsted, H., Kristensen, E. S. (2001). Approaches to assess the environmental impact of organic farming with particular regard to Denmark. Agriculture, Ecosystems and Environment, 83, 11–26.

    Article  Google Scholar 

  • Hansson, P-A., Baky, A., Ahlgren, S., Bernesson, S., Nordberg, A., Nore’n, O., & Pettersson, O. (2007). Self-sufficiency of motor fuels on organic farms – Evaluation of systems based on fuels produced in industrial-scale plants. Agricultural Systems, 94, 704–714.

    Article  Google Scholar 

  • Heaton, S. (2001). Organic farming, food quality and human health: A review of the evidence, (Soil Association, Bristol, UK) Retrievd the 12 June 2007 from http://www.soilassociation.org/Web/ SA/saweb.nsf/9f788a2d1160a9e580256a71002a3d2b/de88ae6e5aa94aed80256abd00378489/ $}FILE/foodqualityreport.pdf

    Google Scholar 

  • Heemsbergen, D. A., Berg, M. P., Loreau, M., van Hal, J. R., Faber, J. H., & Verhoef, H. A. 2004. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science, 306, 1019–1020.

    Article  CAS  Google Scholar 

  • Heckman, J. (2006). A history of organic farming: Transitions from Sir Albert Howard’s war in the soil to the USDA National Organic Program. Wise Traditions in Food, Farming, and the Healing Arts,winter 2006. Retrieved July 30 2007 from http://www.westonaprice.org/ farming/history-organic-farming.html

    Google Scholar 

  • Hendrix, J. (2007). Editorial response by Jim Hendrix. Renewable Agriculture and Food Systems, 22(2), 84–85.

    Google Scholar 

  • Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS, 103, 11206–11210.

    Article  CAS  Google Scholar 

  • Hillel, D. (1991). Out of the earth: Civilization and the life of the soil. (University of California Press).

    Google Scholar 

  • Himmel, M. E., Ding, S-Y, Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315, 804–807.

    Article  CAS  Google Scholar 

  • Hoeppner, J., Hentz, M., McConkey, B., Zentner, R., & Nagy, C. (2006). Energy use and efficiency in two Canadian organic and conventional crop production systems. Renewable Agriculture and Food Systems, 21(1), 60–67.

    Article  Google Scholar 

  • Hole, D. G., Perkings, A. J., Wilson, J. D., Alexander, I. H., Grice, P. V., & Evans, A.D. (2005). Does organic farming benefits biodiversity. Biological Conservation, 122, 113–130.

    Article  Google Scholar 

  • Holland, J. M. (2004). The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agriculture, Ecosystems and Environment, 103, 1–25.

    Article  Google Scholar 

  • Howard, A. (1943). An agricultural testament. (Oxford University Press, New York)

    Google Scholar 

  • Hudson Institute (2007). “Organic Abundance” Report: Fatally Flawed. Retrieved September 12 2007 from http://www.cgfi.org/cgficommentary/organic-abundance-report-fatally-flawed

    Google Scholar 

  • IEA (International Energy Agency) (2002). Sustainable production of woody biomass for energy. International Energy Agency (IEA), Retrieved July 30 2007 from http://www.ieabioenergy. com/library/157_PositionPaper-SustainableProductionofWoodyBiomassforEnergy.pdf

    Google Scholar 

  • Ikerd, J. E. (1993). The need for a system approach to sustainable agriculture. Agriculture, Ecosystems and Environment, 46, 147–160.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA) Retrieved June 15 2007 from http://www.ipcc.ch/

    Google Scholar 

  • Janzen, H. H. (2004). Carbon cycling in earth systems—a soil science perspective. Agriculture, Ecosystems and Environment, 104, 399–417.

    Article  CAS  Google Scholar 

  • Jørgensen, U., Dalgaar, T., & Kristensen, E. S. (2005). Biomass energy in organic farming – The potential role of short rotation Coppice. Biomass and Bioenergy, 28(2), 237–248.

    Article  Google Scholar 

  • Kasperczyk, N., & Knickel, K. (2006). Environmental impact of organic agriculture. (In P., Kristiansen, A., Taji, J., Reganold, J., (Eds), Organic agriculture. A global perspective. (pp. 259–294) CSIRO Publishing, Collingwood, Australia)

    Google Scholar 

  • Keeney, D. (2007). Sustainable biofuels: A new challenge for the Leopold Center. Leopold Center for Sustainable Agriculture 2007 Leopld Letters, Spring. Retrieved July 30 2007 from http://www.leopold.iastate.edu/pubs/nwl/2007/2007-1-leoletter/anniversary.htm

    Google Scholar 

  • Kirschenmann, F. (2004). A brief history of sustainable agriculture. The Networker, vol. 9, no. 2, March 2004. Retrieved July 30 2007. http://www.sehn.org/Volume_9-2.html

    Google Scholar 

  • Krebs, J. R., Wilson, J. D., Bradbury, R. B., & Siriwardena, G. M. (1999). The second Silent Spring? Nature, 400, 611–612.

    Article  CAS  Google Scholar 

  • Kristiansen, P. (2006). Overview of organic agriculture. (In P. Kristiansen, A. Taji, & J. Reganold (Eds.), Organic agriculture. A global perspective. (pp. 1–24}) CSIRO Publishing, Collingwood, Australia)

    Google Scholar 

  • Kristiansen, P., Taji, A., & Reganold, J. (Eds) (2006). Organic agriculture. A global perspective. (CSIRO Publishing, Collingwood, Australia)

    Google Scholar 

  • Koepf, H. H. (2006). The biodynamic farm. SteinerBooks, Dulles, VA.

    Google Scholar 

  • Koepf, H. H., Schaumann, W., & Haccius, M. (1996). Biologisch- Dynamische Landwirtschaft Eine Einführung. Ulmer (Eugen, Germany) in German. (trad. Biodynamic agriculture)

    Google Scholar 

  • Kotschi., J., & Müller-Sämann, K. (2004). The Role of Organic Agriculture in Mitigating Climate Change. (IFOAM – Bonn) Retrievend June 15 2007 from http://www.ifoam.org/ press/positions/pdfs/Role_of_OA_migitating_climate_change.pdf

    Google Scholar 

  • Koutinas, A. A., Wang, R.-H., & Webb, C. (2007). The biochemurgist: Bioconversion of agricultural raw materials for chemical mproduction. Biofuels, Bioprod. Bioref., 1, 24–38.

    Article  CAS  Google Scholar 

  • Kropff, M. J., Bouma, J., & Jones, J. W. (2001). Systems approaches for the design of sustainable agro-ecosystems. Agricultural Systems, 70(i}2–3): 369–393

    Article  Google Scholar 

  • Lange, J.-P. (2007). Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels, Bioprod. Bioref., 1, 39–48.

    Article  CAS  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration impact on global climate and food security. Science, 304, 1623–1627.

    Article  CAS  Google Scholar 

  • Lampkin, N. (2002). Organic Farming (revised edition). (Old Pond Publishing, Suffolk, UK)

    Google Scholar 

  • Lynd, L. R., Cushman, J. H., Nichols, R. J., & Wyman, C. E. (1991). Fuel ethanol from cellulosic biomass. Science, 251, 1318–1323.

    Article  CAS  Google Scholar 

  • Lockeretz, W. (1983). Energy price increases: How strong an incentive for decreasing energy use in agriculture? Biological Agriculture and Horticulture, 1, 255–267.

    Google Scholar 

  • Lockeretz, W., Shearer, G., & Kohl, D. H. (1981). Organic farming in the Corn Belt. Science, 211, 540–546.

    Article  CAS  Google Scholar 

  • Lowenberg-DeBoer, J. (1996). Precision farming and the new information technology: implications for farm management, policy, and research: Discussion. American Journal of Agricultural Economics, 78(5), 1281–1284.

    Article  Google Scholar 

  • Lotter, D. W. (2003). Organic agriculture. Journal of Sustainable Agriculture, 21(4), 59–128.

    Article  Google Scholar 

  • Lotter, D. W., Seidel, R., & Liebhart, W. (2003). The performance of organic and conventional cropping systems in an extreme climate year. American Journal of Alternative Agriculture, 18(3), 146–154.

    Article  Google Scholar 

  • Lu, C., Toepel, K., Irish, R., Fenske, R.A., Barr, D.B., & Bravo, R. (2006). Organic diets significantly lower children’s dietary exposure to organophosphorus pesticides. Environmental Health Perspectives, 114(2), 260–263.

    Article  CAS  Google Scholar 

  • Mäder, P., Flieβbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296, 1694–1697.

    Article  Google Scholar 

  • Mäder, P., Flieβbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). The ins and outs of organic farming. Science, 298, 1889–1890.

    Google Scholar 

  • Mason, J. (2003). Sustainable Agriculture. (CSIRO Publishing; 2nd edition)

    Google Scholar 

  • Matson, P. A., Parton, W. J., Power, A. G., Swift, M. J. (1997). Agricultural intensification and ecosystem properties. Science, 277, 504–509.

    Article  CAS  Google Scholar 

  • Maud, S. (2007). Sustainability of poultry production. Agriculture, Ecosystems and Environment, 120, 470–471}.

    Article  Google Scholar 

  • McDonald, A. J., Hobbs, P. R., & Riha, S. J. (2005). Does the system of rice intensification outperform conventional best management? A synopsis of the empirical record. Field Crops Research, 96,(1), 31–36.

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005). Ecosystems and human well-being: Synthesis. (Island Press, Washington, DC)

    Google Scholar 

  • Mollison, B., & Holmgren, D. (1978). Permaculture one: A perennial agriculture for human settlements. (Trasworld Publishers, London, UK)

    Google Scholar 

  • National Organic Standards Board (2007). Organic definition passed by the NOSB at its April 1995 meeting in Orlando, FL. Retrieved July 30 2007 from the Organic Trade Association http://www.ota.com/definition/nosb.html

    Google Scholar 

  • National Research Council (1998). Precision agriculture in the 21st century: Geospatial and informationtechnologies in crop management. (National Academies Press)

    Google Scholar 

  • Netuzhilin, I. Cerda, H., López-Hernández, D., Torres, F., Chacon, P., & Paoletti. M. G. (1999). Biodiversity tools to evaluate sustainability in savanna-forest ecotone in the Amazonas (Venezuela). (In: M.V., Reddy (ed), Management of tropical agroecosystems and the beneficial soil biota. (pp. 291–352) Science Publishers Inc., Enfield, New Hampshire)

    Google Scholar 

  • NRC (National Research Council) (1986). Alternative agriculture. (National Academy Press, Washington, D.C.)

    Google Scholar 

  • Odum, H. T. (1996). Environmental accounting: Emergy and environmental decision making. (Wiley, New York)

    Google Scholar 

  • Odum, H. T. (1988). Self-Organization, tranformity, and information. Science, 242, 1132–1139.

    Article  Google Scholar 

  • Paoletti, M. G. (2001). Biodiversity in agroecosystems and bioindicators of environmental health. (In M. Shiyomi & H. Koizumi) (Eds.), Structure and function in agroecosystems design and management. (pp. 11–44}) (CRC press, Boca Raton, FL, USA)

    Google Scholar 

  • Paoletti, M. G., & Bressan, M. (1996). Soil invertebrates as bioindicators of human disturbance. Critical reviews in plant sciences, 15(1), 21–62.

    Article  CAS  Google Scholar 

  • Paoletti, M. G., & Pimentel, D. (2000). Environmental risks of pesticides versus genetic engineering for agricultural pest control. J. Agricultural and Environmental Ethics, 12(3), 279–303.

    Article  Google Scholar 

  • Paoletti, G. M., & Pimentel, D. (1992). Biotic diversity in agroecosystems. (Elsevier, Amsterdam)

    Google Scholar 

  • Paoletti, M. G., Stinner, B. R., & Lorenzoni, G. G. (Eds.), (1989). Agriculture, ecology and environment. (Elsevier, Amsterdam)

    Google Scholar 

  • Paoletti M. G., Tsitsilas A., Thomson L. J., Taiti S., & Umina, P. A. (2008). The flood bug, Australiodillo bifrons (Isopoda: Armadillidae): A potential pest of cereals in Australia? Applied Soil Ecology, 39(1), 76–83.

    Article  Google Scholar 

  • Paoletti, M. G., Favretto, M. R., Marchiorato, A., Bressan, M., & Babetto, M. (1993). Biodiversitá in pescheti forlivesi. In: Paoletti M.G. et al. Biodiversitá negli Agroecosistemi. (Osservatorio Agroambientale, Centrale Ortofrutticola, Forlì), pp. 20–56. (in Italian)

    Google Scholar 

  • Paoletti M.G., Giampietro, M., Han, C-R., Pastore, G., Bukkens, S. G.F., & Baudry, J. (Eds.) (1999). Agricultural intensification and sustainability in PR China. Critical Reviews of Plant Sciences, 18(3), 257–487.

    Article  Google Scholar 

  • Perrings, C., Jackson, L., Bawa, K., Brussaard, L., Brush, S., Gavin, T., Papa, R., Pascual, U., & de Ruiter, P. (2006). Biodiversity in agricultural landscapes: saving natural capital without losing interest. Conservation Biological, 20, 263–264.

    Article  Google Scholar 

  • Pete, S., Olof, A., Thord, K., Paula, P., Kristiina, R., Mark, R., & Bas, W. (2005). Carbon sequestration potential in European croplands has been overestimated. Global Change Biology, 11(12), 2153–2163.

    Article  Google Scholar 

  • Pimentel, D. (2007). Soil erosion. (In D. Pimentel, & M. Pimentel (Eds.) Food, energy, and society: Third edition., (201–214) CRC Press)

    Google Scholar 

  • Pimentel, D., & Pimentel., M. (2007a). Food, energy, and society: Third edition. (CRC Press, Boca Raton, FL)

    Google Scholar 

  • Pimentel, D., & Pimentel., M. (2007b). Transport of agriculture supplies and food. (In D. Pimentel, & M. Pimentel (Eds.) Food, energy, and society: Third edition., (257–259) CRC Press)

    Google Scholar 

  • Pimentel, D. (2006a). Impacts of organic farming on the efficiency of energy use in agriculture an organic center state of science review. (The Organic Center), Retrieved September 15 2007 from http://www.organic-center.org/reportfiles/ENERGY_SSR.pdf

    Google Scholar 

  • Pimentel., D. (2006b). Soil erosion: A food and environmental threat. Environment, Development and Sustainability, 8(1), 119–137.

    Google Scholar 

  • Pimentel, D. (2003). Ethanol fuels: Energy balance, economics, and environmental impacts are negative. Natural Resources Research, 12(2), 127–134.

    Article  Google Scholar 

  • Pimentel, D. (1993). Economic and energetics of organic and convention farming. Journal of Agricultural and Environmental Ethics, 6, 53–60.

    Article  Google Scholar 

  • Pimentel, D. (1991). Ethanol fuels: Energy security, economics, and the environment. Journal of Agricultural and Environmental Ethics, 4(1), 1–13.

    Article  Google Scholar 

  • Pimentel, D. (1989). Energy flow in food system. (In D. Pimentel, & C. W. Hall (Eds.). Food and natural resources. (pp. 1–24) Academic press, New York)

    Google Scholar 

  • Pimentel, D., & Patzek, T. (2005). Ethanol production using corn, switchgrass, and wood: biodiesel production using soybean and sunflower. Natural Resources Research, 14(1), 65–76.

    Article  CAS  Google Scholar 

  • Pimentel, D., & Kounang, N. (1998). Ecology of soil erosion in ecosystems. Ecosystems, 1, 416–426.

    Article  CAS  Google Scholar 

  • Pimentel, D., Berardi, G., & Fast, S. (1983). Energy efficiency of farming systems: organic and conventional agriculture. Agriculture Ecosystems and Environment, 9, 359–337.

    Article  Google Scholar 

  • Pimentel, D., Hepperly, P., Hanson, J., Douds, D., & Seidel, R. (2005). Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience, 55(7), 573–582.

    Article  Google Scholar 

  • Pimentel, D., Hurd, E., Bellotti, A. C., Forster, M. J., Oka, I. N., Sholes, O.D., & Whitman, R. J. (1973). Food production and the energy crisis. Science, 182, 443–449.

    Google Scholar 

  • Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M, Crist, S., Sphpritz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267, 1117–23.

    Article  CAS  Google Scholar 

  • Pimentel, D., Moran, M. A., Fast, S., Weber, G., Bukantis, R., Balliett, L., Boveng, P., Cleveland, C., Hindman, S., & Young, M. (1981). Biomass energy from crop and forest residues. Science, 212, 1110–1115.

    Article  Google Scholar 

  • Poincelot, R. P. (1986). Towards a more sustainable agriculture. (AVI Publishing co. Co.)

    Google Scholar 

  • Pointing, C. (2007). A new green history of the world. (Vintage books, London)

    Google Scholar 

  • Pretty, J. (Eds.) (2005). The earthscan reader in sustainable agriculture. (Earthscan Publisher, London)

    Google Scholar 

  • Pretty, J., & Hine, R. (2001). Reducing food poverty with sustainable agriculture: a summary of new evidence. Final report from the ‘SAFE World’ Research Project, University of Essex. Retrieved June 20 2007 from http://www.essex.ac.uk/ces/esu/occasionalpapers/ SAFE%}20FINAL{%}20-%}20Pages1-22.pdf

    Google Scholar 

  • Pretty, J. N., Morison, J. I. L., & Hine, R. E. (2003). Reducing food poverty by increasing agricultural sustainability in developing countries. Agriculture, Ecosystems and Environment, 95, 217–234.

    Article  Google Scholar 

  • Pretty, J. N., Ball, A. S., Xiaoyun, L., & Ravindranath, N. H. (2002). The role of sustainable agriculture and renewable-resource management in reducing greenhouse-gas emissions and increasing sinks in China and India. Philosophical transactions of the Royal Society of London. Series B, Biological sciences A, 360, 1741–1761.

    CAS  Google Scholar 

  • Pretty, J. N., Ball, A. S., Lang, T., & Morison, J. I. L. (2005). Farm costs and food miles: An assessment of the full cost of the UK weekly food basket. Food Policy, 30, 1–19.

    Article  Google Scholar 

  • Rasmussen, P. E., Goulding, K. W. T., Brown, J. R., Grace, P. R., Janzen, H. H., & Körschens, M. (1998). Long-Term Agroecosystem Experiments: Assessing agricultural sustainability and global change. Science, 282, 893–896.

    Article  CAS  Google Scholar 

  • Reganold, J. P. (1995). Soil quality and profitability of biodynamic and conventional farming systems: a review. American Journal of Alternative Agriculture, 10(1), 36–46.

    Article  Google Scholar 

  • Reganold, J., Elliott, L., & Unger, Y. (1987). Long-term effects of organic and conventional farming on soil erosion. Nature, 330, 370–372.

    Article  Google Scholar 

  • Reganold, J., Glover, J., Andrews, P., & Hinman, H. (2001). Sustainability of three apple production systems. Nature, 410, 926–929.

    Article  CAS  Google Scholar 

  • Refsgaard, K., Halberg, N., & Kristensen, E. S. (1998). Energy utilization in crop and dairy production in organic and conventional livestock production systems. Agricultural Systems, 57(4), 599–630.

    Article  Google Scholar 

  • Rigby, D., & Cáceras, D. (2001). Organic farming and the sustainability of agricultural systems. Agricultural Systems, 68, 21–40.

    Article  Google Scholar 

  • Robertson, G. P., Paul, E. A., & Harwood, R. R. (2000). Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science, 289, 1922–1925.

    Article  CAS  Google Scholar 

  • Rodale, J. I. (1945). Paydirt: Farming & gardening with composts. (Devin-Adair Co., New York)

    Google Scholar 

  • Roschewitz, I., Gabriel, D., Tscharntke, T., & Thies, C. (2005). The effects of landscape complexity on arable weed species diversity in organic and conventional farming. Journal of Applied Ecology, 42, 873–882.

    Article  Google Scholar 

  • Roviglioni, R. (2005). Bio consuma meno energia. BioAgricoltura, marzo/aprile: 5-7. (in Italian)

    Google Scholar 

  • Searchinger, T., Heimlich, R., Houghton, A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., & Yu, T-H., (2008). Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land Use Change www.sciencexpress.org/7 February 2008/Page1/ 10.1126/science.1151861

    Google Scholar 

  • Service, R. F. (2007). Biofuel researchers prepare to reap a new harvest. Science, 315, 1488–1491.

    Article  CAS  Google Scholar 

  • Siegrist, S., Schaub, D., Pfiffner, L., & Mäder, P. (1998). Does organic agriculture reduce soil erodibility? The results of a long-term field study on loess in Switzerland. Agriculture, Ecosystem and Environment, 69, 253–264.

    Article  Google Scholar 

  • Schlesinger, W. H. (1999). Carbon and agriculture: Carbon sequestration in soils. Science, 284, 2095.

    Article  CAS  Google Scholar 

  • Schlich, E., & Fleissner, U. (2005). The ecology of scale: Assessment of regional energy turnover and comparison with global food. The International Journal of Life Cycle Assessment, 10(3), 213–223.

    Google Scholar 

  • Smil, V. (2001). Feeding the world: A challenge for the twenty-first century. (MIT Press, Cambridge, MC)

    Google Scholar 

  • Smil, V. (1999). Crop residues: Agriculture’s largest harvest. BioScience, 49(4): 299–308.

    Article  Google Scholar 

  • Smith, P., Andrén, O., Karlsson,T., Perälä, P., Regina, K., Rounsevell, M., & Van Wesemael, B. (2005). Carbon sequestration potential in European croplands has been overestimated. Global Change Biology, 11(12), 2153–2163.

    Article  Google Scholar 

  • Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H. H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, R. J., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., & Smith, J. U. (2008): Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society of London, B, 363, 789–813.

    Article  CAS  Google Scholar 

  • Smolik, J. D., Dobbs, T. L., & Rickerl, D. H. (1995). The relative sustainability of alternative, conventional and reduced-till farming system. American Journal of Alternative Agriculture, 10(1), 25, 25–35.

    Google Scholar 

  • Soil Association (2004). Towards a UK strategy for biofuels – Soil Association response to Department of Transport consultation, July 2004. Retrieved July 30 2007 from http://www.soilassociation.org/web/sa/saweb.nsf/b0062cf005bc02c180256a6b003d987f/ 5401483e80739c88802570cb005919a6?OpenDocument

    Google Scholar 

  • Solomon, B. D., Barnes, J. R., & Halvorsen, K. E. (2007). Grain and cellulosic ethanol: History, economics, and energy policy. Biomass and Bioenergy, 31, 416–425.

    Article  Google Scholar 

  • Srinivasan, A. (Ed.) (2006). Handbook of precision agriculture: Principles and applications. (Food Products Press)

    Google Scholar 

  • Stanhill, G. (1990). The comparative productivity of organic agriculture. Agriculture Ecosystems and Environment, 30(1–2), 1–26.

    Article  Google Scholar 

  • Steinhart, J. S., & Steinhart, C. E. (1974). Energy Use in the U.S. Food System. Science, 184, 307–316.

    Article  CAS  Google Scholar 

  • Stephanopoulos, G. (2007). Challenges in engineering microbes forn biofuels production. Science, 315, 801–804.

    Article  CAS  Google Scholar 

  • Stevens, T. O. (1997). Lithoautotrophy in the subsurface. FEMS Microbiology Reviews, 20, 327–337.

    Article  CAS  Google Scholar 

  • Stevens, T. O., & Mckinley, J. P. (1995). Lithoautotrophic microbia, ecosystems in deep basalt aquifers.Science, 270, 450–454}.

    Google Scholar 

  • Stockdale, E. A., Lampkin, N. H., Hovi, M., Keatinge, R., Lennartsson, E. K. M., Macdonald, D. W., Padel, S., Tattersall, F. H., Wolfe, M. S., & Watson, C. A. (2001). Agronomic and environmental implications for organic farming systems. Advances in Agronomy, 70, 261–327}.

    Google Scholar 

  • Stölze, M.,. Piorr, A. Häring, & Dabbert, S. (2000). The environmental impact of organic farming in Europe. In: Organic Farming in Europe: Economics and Policy. University of Hohenheim: Hohenheim, Germany. Retrieved July 30 2007 from http://orgprints.org/2366/02/Volume6.pdf

    Google Scholar 

  • Thies, C., & Tscharntke, T. (1999). Landscape structure and biological control in agroecosystems. Science, 285, {893–895}.

    Google Scholar 

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677.

    Google Scholar 

  • Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W.H., Simberloff, D., & Swackhamer, D. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 281–284. %%\AQAU:

    Google Scholar 

  • Trewavas, A. (2001). Urban myths of organic farming. Nature, 410, 409–410.

    Google Scholar 

  • Ulgiati, S. & Brown, M. T. (1998). Monitoring patterns of sustainability in natural and man-made ecosystems. Ecological Modelling, 108, 23–36.

    Google Scholar 

  • Ulgiati, S., Odum, H.T., & Bastioni, S. (1994). Emergy use, environmental loading and sustainability: an emergy analysis of Italy. Ecological Modelling, 73, 215–268.

    Google Scholar 

  • USDAa (2007). Background information. Retrieved July 30 2007 from http://www.ams.usda.gov/ nop/FactSheets/Backgrounder.html

    Google Scholar 

  • USDAb (2007). Organic production/Organic food: Information access tools. Retrieved July 30 2007 from http://www.nal.usda.gov/afsic/pubs/ofp/ofp.shtml.

    Google Scholar 

  • USDAc (2007). Organic production. Retrieved July 30 2007 from http://www.ers.usda.gov/ data/organic/

    Google Scholar 

  • USDA (1990). Food, Agriculture, Conservation, and Trade Act of 1990 (FACTA), Public Law 101-624, Title XVI, Subtitle A, Section 1603, Government Printing Office, Washington, DC, 1990 NAL Call # KF1692.A31 1990. %%\AQAU:

    Google Scholar 

  • Vasilikiotis, C. (2000). Can organic farming “feed the world”? Retrieved July 12 2007 from http://www.cnr.berkeley.edu/$∼ $christos/articles/CV-Organic%20Farming.pdf

    Google Scholar 

  • Vogl, C. R., Kilcher, L., & Schmidt, H. (2005). Are standards and regulations of organic farming moving a way from small farmers’ knowledge? Journal of Sustainable Agriculture, 26(1), 5–25.

    Google Scholar 

  • Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., van der Putten, W. H., & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629–1633.

    Google Scholar 

  • Wes, J. (1980). New roots for agriculture. (University of Nebraska Press, Lincoln NE)

    Google Scholar 

  • Willer, H., & Yussefi, M. (Eds.) (2006). The World of organic agriculture: Statistics and emerging trends. International Federation of Organic Agriculture Movements (IFOAM), Bonn Germany & Research Institute of Organic Agriculture FiBL, Frick, SwitzerlandSOEL-Survey 2006 http://www.soel.de/inhalte/publikationen/s/s_74_08.pdf

    Google Scholar 

  • Winter, C. K., & Davis, S. F. (2006). Organic Foods. Journal of Food Science, 71(9), 117–124.

    Google Scholar 

  • Wolf, S. A., & Allen, T. F. H. (1995). Recasting alternative agriculture as a management model: The value of adept scaling. Ecological Economics, 12, 5–12.

    Google Scholar 

  • Worster, D. (2004). Dust Bowl: The Southern Plains in the 1930s. (Oxford Univ. Press, New York)

    Google Scholar 

  • Ziesemer, J. (2007).Energy use in organic food systems. (FAO, Rome) Retrieved October 4 2007 from http://www.fao.org/docs/eims/upload/233069/energy-use-oa.pdf

    Google Scholar 

  • Zimmer, G. F. (2000). The biological farmer: A complete guide to the sustainable & profitable biological system of farming. (Acres USA)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gomiero, T., Paoletti, M.G. (2008). Organic and Sustainable Agriculture and Energy Conservation. In: Pimentel, D. (eds) Biofuels, Solar and Wind as Renewable Energy Systems. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8654-0_17

Download citation

Publish with us

Policies and ethics