Skip to main content

Hydrothermal Processes and Wall Rock Alteration

  • Chapter
Book cover Hydrothermal Processes and Mineral Systems

Abstract

In this chapter, I discuss the effects that hydrothermal fluids derived from internal processes have on the ambient lithologies. I begin by describing the main components of a hydrothermal system and models of magmatic-related hydrothermal processes. Circulation of these hydrothermal solutions or fluids, produces physico-chemical changes in the rocks through which they circulate. This is what is commonly referred to as hydrothermal alteration. When these fluids come into contact with rocks they set off chemical reactions, which tend to approach equilibrium and through processes of dissolution and precipitation develop new mineral assemblages There are different types and styles of hydrothermal alteration, depending on the nature, chemistry, temperature and pressure of the circulating fluids as well as the nature and composition of the rocks through which the fluids circulate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alderton DHM, Fallick AE (2000) The nature and genesis of gold-silver-tellurium mineralization in the Metalliferi Mountains of western Romania. Econ Geol 95:495–515

    Google Scholar 

  • Arribas A, Cunningham CG, Rytuba JJ, Rye RO, Kelly WC, Podwysocki MH, Mckee EH, Tosdal RM (1995) Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain. Econ Geol 90:795–822

    Google Scholar 

  • Babcock RS (1973) Computational models of metasomatic processes. Lithos 6:270–290

    Google Scholar 

  • Bailey DK (1978) Mantle metasomatism, continuing chemical changes within the Earth. Nature (London) 296:525–530

    Google Scholar 

  • Beane RE, Titley SR (1981) Porphyry copper deposits. Part II. Hydrothermal alteration and mineralization. Econ Geol 75th Anniv Vol: 235–269

    Google Scholar 

  • Best MG (1982) Ignneous and metamorphic petrology. WH Freeman and Co, New York

    Google Scholar 

  • Black R, Bowden P (eds) (1985) Alkaline ring complexes in Arica. J Afr Earth Sci 3(1/2)

    Google Scholar 

  • Bonin B (1986) Ring complex granites and anorogenic magmatism. North Oxford Academic, London

    Google Scholar 

  • Bonny S, Jones B (2003) Microbes and mineral precipitation, Miette Hot Springs, Jasper National Park, Alberta, Canada. Can J Earth Sci 40:1483–1500

    Google Scholar 

  • Bons PD (2001) The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics 336:1–17

    Google Scholar 

  • Bowden P (1985) The geochemistry and mineralization of alkaline ring complexes in Africa (a review). J Afr Earth Sci 3:17–40

    Google Scholar 

  • Bowden P, Kinnaird JA, Abaa SI, Ike EC, Turaki UM (1984) Geology and mineralization of the Nigerian anorogenic ring complexes. Geol Jahrb B 56:1–65

    Google Scholar 

  • Boyle AP (ed) (1993) Sulphide Metamorphism and Deformation – introduction. Mineral Mag 57, Iss 386

    Google Scholar 

  • Brogger WC (1921) Die Eruptivgesteine des Kristianiagebiets IV. Das Fengebiet in Telemarken, Norwegen. Nors Vidensk Akad Oslo Skr Nat Kl 9:408

    Google Scholar 

  • Bucher K, Frey M (2002) Petrogenesis of metamorphic rocks, 7th edn. Springer, Berlin

    Google Scholar 

  • Burnham CW (1979) Magmas and hydrothermal fluids. In: Barnes LH (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. John Wiley & Sons, New York, pp 71–136

    Google Scholar 

  • Burnham CW (1997) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal deposits, 3rd edn. Wiley, New York, pp 63–123

    Google Scholar 

  • Burnham CW, Ohmoto H (1980) Late stage processes of felsic magmatism. Soc Min Geol Jpn 8:1–11

    Google Scholar 

  • Burt DM (1981) Acidity-salinity diagrams – Application to greisenand porphyry deposits. Econ Geol 76:832–843

    Google Scholar 

  • Carmichael IS, Turner FJ, Verhoogen J (1974) Igneous petrology. McGraw-Hill, New York

    Google Scholar 

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174

    Google Scholar 

  • Chen YJ, Bao JX, Zhang ZJ, Chen HY, Liu YL (2003) Laumontitization as an exploration indicator of epithermal gold deposits; a case study of the Axi and other epithermal systems in West Tianshan, China. Chinese J Geochem 22:289–301

    Google Scholar 

  • Coleman RG (1977) Ophiolites. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to south-eastern Australia. Contrib Mineral Petrol 80:189–200

    Google Scholar 

  • Cox SF (2005) Coupling between deformation fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust. Econ Geol 100th Ann 1905–2005:39–75

    Google Scholar 

  • Criss RE, Taylor HP (1986) Meteoric-hydrothermal systems. In: Valley JW, Taylor HP, O'Neil JR (eds) Stable isotopes in high temperature geological processes. Rev Mineral 16. Min Soc Am 373–424

    Google Scholar 

  • Crocker IT (1985) Volcanogenic fluorite-hematite deposits and associated pyroclastic rock suite at Vergenoeg, Bushveld Complex. EconGeol 80:1181–1200

    Google Scholar 

  • Dietrich RV (1985) The tourmaline group. Van Nostrand Reinhold, New York

    Google Scholar 

  • Dilles JH, Einaudi MT (1992) Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada – a 6-km vertical reconstruction: Econ Geol 87:1963–2001

    Google Scholar 

  • Drury SA (1987) Image interpretation in geology. Allen & Unwin, Boston

    Google Scholar 

  • Edmond JM, von Damm K (1983) Hot springs on the ocean floor. Sci Am 248:70–85

    Google Scholar 

  • Eilu PK, Mathison CI, Groves DI, Allardyce WJ (1999) Atlas of alteration assemblages, styles and zoning in orogenic lode-gold deposits in a variety of host rock and metamorphic settings. UWA Ext, Univ West Aust Publ 30

    Google Scholar 

  • Evans AM (1987) An introduction to ore geology, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Facca G, Tonani F (1967) The self-sealing geothermal field. Bull Volcanol 30:271–273

    Google Scholar 

  • Faure G (1986) Principles of isotope geology, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  • Faure G (2001) Origin of igneous rocks – The isotopic evidence. Springer, Berlin

    Google Scholar 

  • Ferguson J, McIver JR, Danchin RV (1975) Fenitization associated with the alkaline carbonatite complex of Epemba, South West Africa. Trans Geol Soc S Afr 78:111–122

    Google Scholar 

  • Ferry JM (1983) Regional metamorphism of the Vassalboro Formation, south-central Maine, USA: a case study of the role of fluid in metamorphic petrogenesis. J Geol Soc London 140:551–576

    Google Scholar 

  • Fitton JG, Upton BGJ (eds) (1987) Alkaline igneous rocks. Geol Soc Spec Publ 30. Blackwell Scientific Publ, Oxford

    Google Scholar 

  • Fleet ME (2003) Sheet silicates: Micas. In: Deer WA, Howie RA, Zussman J (eds) Rock-forming minerals, vol 3A, Geol Soc, London

    Google Scholar 

  • Flint D, Abeysinghe PB (2000) Geology and mineral resources of the Gascoyne region. Geol Surv West Aust Record 2000/7

    Google Scholar 

  • Fournier RO (1989) Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. Ann Rev Earth Planet Sci 17:13–53

    Google Scholar 

  • Frost BR, Mavrogenes JA, Tomkins AG (2002) Partial melting of sulfide ore deposits during medium- and high-grade metamorphism. Can Mineral 40:1–18

    Google Scholar 

  • Gifkins C, Herrmann W, Large R (2005) Altered volcanic rocks – A guide to description and interpretation. Centre Ore Depos Res, Univ Tasmania, Hobart

    Google Scholar 

  • Gozzard JR (2006) Image processing of ASTER multispectral data. Geol Surv West Aust Rec 2006/9

    Google Scholar 

  • Grant JA (1986) The isocon diagram – A simple solution to Gresens' equation for metasomatic alteration. Econ Geol 81:1976–1982

    Google Scholar 

  • Green GR, Ohmoto H, Date J, Takahashi T (1983) Whole-rock oxygen isotope distribution in the Fukazawa-Kosaka area, Hokoruku District, Japan, and its potential application to mineral exploration. Econ Geol Monogr 5:395–411

    Google Scholar 

  • Gregory RT, Criss RE (1986) Isotopic exchange in open and closed systems. In: Valley JW, Taylor HP, O'Neil JR (eds) Stable isotopes in high temperature processes. Rev Mineral 16, Min Soc Am 91–128

    Google Scholar 

  • Gresens RL (1967) Composition-volume relationships of metasomatism. Chem Geol 2:47–65

    Google Scholar 

  • Guilbert JM, Lowell JD (1974) Variations in zoning patterns in porphyry ore deposits. Can Inst Min Metall Bull 67:99–109

    Google Scholar 

  • Guilbert JM, Park CF (1986) The geology of ore deposits. Freeman, New York, San Francisco

    Google Scholar 

  • Gupta RP (1991) Remote sensing geology. Springer-Verlag, Berlin

    Google Scholar 

  • Haapala I (1986) Origin of albites in mineralised granites. Proceedings of joint meeting of working group Gp2-4. IGCP Proj 220. BMR Rec 1986/10:22–23

    Google Scholar 

  • Hanson GN (1980) Rare earth elements in petrogenetic studies of igneous systems. Annu Rev Earth Planet Sci 8:371–406

    Google Scholar 

  • Hardie LA (1987) Dolomitisation: A critical view of some current views. J Sediment Petrol 57:166–183

    Google Scholar 

  • Hedenquist JW (1986) Geothermal systems of the Taupo Volcanic Zone: their characteristics and relation to volcanism and mineralisation. R Soc N Z Bull 23:134–168

    Google Scholar 

  • Hedenquist JW, Browne PRL (1989) The evolution of the Waiotapu geothermal system, New Zealand, based on the chemical and isotopic composition of its fluids, minerals and rocks. Geochim Cosmochim Acta 53:2235–2257

    Google Scholar 

  • Hedenquist JW, Henley RW (1985) Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand: origin, breccia deposits and effect on precious metal mineralization. Econ Geol 80:1640–1666

    Google Scholar 

  • Hedenquist JW, Izawa E, Arribas A, White NC (1996) Epithermal gold deposits: styles, characteristics and exploration. Poster, Soc Res Geol Sp Publ 1

    Google Scholar 

  • Hemley JJ, Jones WR (1964) Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism. Econ Geol 59:538–569

    Google Scholar 

  • Hemley JJ, Hostetler PB, Gude AJ, Mountjoy WT (1969) Some stability relations of alunite. Econ Geol 64:599–612

    Google Scholar 

  • Henderson P (1996) The rare earth elements: introduction and review. In: Jones AP, Wall F, Williams CT (eds) Rare earth minerals – chemistry, orgin and ore deposits. Chapman & Hall, London, pp 1–20

    Google Scholar 

  • Henley RW, Ellis AJ (1983) Geothermal systems ancient and modern: a geological review. Earth Sci Rev 19:1–50

    Google Scholar 

  • Hoefs J (2004) Stable isotope geochemistry, 5th edn. Springer, Berlin

    Google Scholar 

  • Hollister VF (1978) Geology of the porphyry copper deposits of the western hemisphere. Am Inst Min Metall Pet Eng

    Google Scholar 

  • Huston DL (2001) Geochemical dispersion about the Western Tharsis Cu-Au deposit, Mt Lyell, Tasmania. J Geochem Expl 72:23–46

    Google Scholar 

  • Ishikawa Y, Sawaguchi T, Iwaya S, Horiuchi M (1976) Delineation of prospective targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration halos. Mining Geol 26:105–117

    Google Scholar 

  • Jia YF, Kerrich R (2000) Giant quartz vein systems in accretionary orogenic belts: the evidence for a metamorphic fluid origin from δ15N and δ13C studies. Earth Planet Sci Lett 184:211–224

    Google Scholar 

  • Kawahata H, Furuta T (1985) Sub-sea-floor hydrothermal alteration in the Galapagos spreading center. Chem Geol 49:259–274

    Google Scholar 

  • Kinnaird JA (1985) Hydrothermal alteration and mineralisation of the alkaline anorogenic ring complexes of Nigeria. J Afr Earth Sci 3:229–252

    Google Scholar 

  • Kirwin DJ (1985) Tourmaline breccia pipes. Unpublished Msc Thesis, James Cook Univ, N Queensl, 139 pp

    Google Scholar 

  • Kornprobst J (2002) Metamorphic rocks and their geodynamic significance. Kluwer Acad Publ, Dordrecht

    Google Scholar 

  • Kresten P (1988) The chemistry of fenitisation: examples from Fen, Norway. Chem Geol 68:329–349

    Google Scholar 

  • Kwak TAP (1994) Hydrothermal alteration in carbonate-replacement deposits; ore skarns and distal equivalents. In: Lentz DR (ed) Alteration and alteration processes associated with ore-forming systems. Short Course Notes 11, Geol Ass Can 381–402

    Google Scholar 

  • Lambert IB, Sato T (1974) The kuroko and associated deposits of Japan: a review of their features and metallogenesis. Econ Geol 69:1215–1236

    Google Scholar 

  • Large RR, Gemmell JB, Paulick H (2001) The aleration box plot – a simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulphide deposits. Econ Geol 96:957–971

    Google Scholar 

  • Larson PB, Taylor HP (1986) 18O/16O relationships in hydrothermally altered rocks from the Lake City caldera, San Juan Mountains, Colorado. J Volcanol Geothermal Res 30:47–82

    Google Scholar 

  • Le Bas MJ (1977) Carbonatite nepheline volcanism. John Wiley & Sons, New York

    Google Scholar 

  • Le Bas MJ (1987) Nephelinites and carbonatites. Geol Soc London, Sp Publ 30:53–83

    Google Scholar 

  • Leblanc M, Lbouabi M (1988) Native silver mineralisation along a rodingite tectonic contact between serpentinite and quartz-diorite (Bon Azzer, Morocco). Econ Geol 83:1379–1391

    Google Scholar 

  • Lentz DR (ed) (1994) Alteration and alteration processes associated with ore-forming systems. Short Course Notes 11, Geol Ass Can, Waterloo, Ont, 467pp

    Google Scholar 

  • Lexa J, Štohl J, Konecny V (1999) The Banska Stiavnica ore district: relationship between metallogenic processes and the geological evolution of a stratovolcano. Miner Depos 34:639–654

    Google Scholar 

  • Lillesand TM, Kiefer RW (1987) Remote sensing and image interpretation, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  • Lottermoser BL (1990) Rare-earth element and heavy metal behaviour associated with the epithermal gold deposit on Lihir Island, Papua New Guinea. J Volcanol Geothermal Res 40:269–289

    Google Scholar 

  • Lowell JD, Guilbert JM (1970) Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ Geol 65:373–408

    Google Scholar 

  • Manning DC (1982) An experimental study of the effects of fluorine on the crystallization of granite melts. In: Evans AM (ed) Metallization associated with acid magmatism. John Wiley & Sons, Chichester, pp 191–203

    Google Scholar 

  • Mariano AN (1989) Economic geology of rare earth elements. Rev Mineral 21:309–337

    Google Scholar 

  • Marshall B, Vokes FM, Larocque ACL (2000) Regional metamorphic remobilization: upgrading and formation of ore deposits. Rev Econ Geol 11:19–38

    Google Scholar 

  • Martini JEJ (1988) As-Zn mineralisation associated with a Proterozoic geothermal system in the Rooiberg Group. S Afr J Geol 91:337–345

    Google Scholar 

  • Mauger AJ, Keeleing, JL, Huntington JF (2007) Alteration mapping of the Tarcoola Goldfield (South Australia) using a suite of hyperspectral methods. Trans Inst Min Metall, App Earth Sci B 116:2–12

    Google Scholar 

  • McGregor GJ (1986) Geology of the Black Mountain orebody. In: Abstr Geocongress '86, Johannesburg. Geol Soc S Afr 1025–1028

    Google Scholar 

  • McLeod RL, Stanton RL (1984) Phyllosilicate and associated minerals in some Paleozoic stratiform sulfide deposits of south-eastern Australia. Econ Geol 79:1–22

    Google Scholar 

  • Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. Econ Geol 100th Anniv Vol: 299–336

    Google Scholar 

  • Meyer C, Hemley JJ (1967) Wall rock alteration. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 1st edn. Holt Rinehart & Winston, New York, pp 166–235

    Google Scholar 

  • Michard A (1989) Rare earth element systematics in hydrothermal fluids. Geochim Cosmochim Acta 53:745–750

    Google Scholar 

  • Morrow DW (1982a) Diagenesis 1. Dolomite – Part 1: the chemistry of dolomitisation and dolomite precipitation. Geosci Can 9: 5–13

    Google Scholar 

  • Morrow DW (1982b) Diagenesis 2. Dolomite-Part 2: dolomitizing models and ancient dolostones. Geosci Can 9:95–107

    Google Scholar 

  • Mottl MJ (1983) Metabasalts, axial hot springs, and the structure of hydrothermal systems at mid-ocean ridges. Geol Soc Am Bull 94:161–180

    Google Scholar 

  • Mutschler FE, Wright EG, Ludington S, Abbott JT (1981) Granite molybdenite systems. Econ Geol 76:874–897

    Google Scholar 

  • Mutschler FE, Griffin ME, Scott Stevens D, Shannon SS (1985) Precious metal deposits related to alkaline rocks in the north American Cordillera- An interpretive view. Trans Geol Soc S Afr 88:355–377

    Google Scholar 

  • Nash JT, Granger HC, Adams SS (1981) Geology and concepts of genesis of important types of uranium deposits. Econ Geol 75th Anniv Vol: 63–116

    Google Scholar 

  • Nesbitt BE (1996) Applications of oxgen and hydrogern isotopes to exploration for hydrothermal mineralization. Soc Econ Geol, SEG Newsletter 27:1–13

    Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299:715–717

    Google Scholar 

  • Neumann ER, Wilson M., Heeremans M, Spencer EA,Obst K, Timmerman MJ, Kirstein L (2004) Carboniferous-Permian rifting and magmatism in southern Scandinavia, the North Sea and northern Germany: a review. Geol Soc, Lond Sp Publ 223:11–40

    Google Scholar 

  • Ninomiya Y (2002) Mapping quartz, carbonate minerals, and mafic–ultramafic rocks using remotely sensed multispectral thermal infrared ASTER data. In: Thermosense XXIV Maldagueand XP, Rozlosnik AE (eds), Proceed SPIE — Int Soc Opt Eng 4710:191–202

    Google Scholar 

  • Ohmoto H (1986) Stable isotope geochemistry of ore deposits. In: Valley JW, Taylor HP, O'Neil JR (eds) Stable isotopes in high temperature geological processes. Rev Mineral 16, Min Soc Am 491–560

    Google Scholar 

  • Palandri JL, Reed MH (2004) Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization and seafloor carbonate chimney precipitation. Geochim Cosmochim Acta 68:1115–1133

    Google Scholar 

  • Pearson JM, Taylor WR, Barley ME (1995) Geology of the alkaline Gifford Creek Complex, Gascoyne Complex, Western Australia. Aus J Earth Sci 43:299–309

    Google Scholar 

  • Pearson JM, Taylor WR (1996) Mineralogy and geochemistry of fenitized alkaline ultrabasic sills of the Gifford Creek Complex, Gascoyne Province, Western Australia. Can Miner 34:201–219

    Google Scholar 

  • Pearton TN, Viljoen MJ (1986) Antimony mineralisation in the Murchison greenstone belt. In: Anhaeusser CR, Maske S (eds) Mineral deposits of Southern Africa. Geol Soc S Afr 1:293–321

    Google Scholar 

  • Pentecost A (2003) Cyanobacteria associated with hot spring travertines. Can J Earth Sci 40:1447–1457

    Google Scholar 

  • Phillips GN (1986) Geology and alteration in the Golden Mile, Kalgoorlie, Econ Geol 81:779–808

    Google Scholar 

  • Pichavant M (1981) An experimental study of the effect of boron on a water saturated haplogranite at 1kbar vapour pressure. Contrib Mineral Petrol 76:430–439

    Google Scholar 

  • Pichavant M, Manning D (1984) Petrogenesis of tourmaline granites and topaz granites; the contribution of experimental data. Phys Earth Planet Int 35:31–50

    Google Scholar 

  • Pirajno F (1992) Hydrothermal mineral deposits – Principles and fundamental concepts for the Exploration Geologist. Springer-Verlag

    Google Scholar 

  • Pirajno F (1994) Mineral resources of anorogenic alkaline complexes, Namibia: a review. Aus J Earth Sci 41:157–168

    Google Scholar 

  • Pirajno F, Jacob RE (1987) Sn-W metallogeny in the Damara Orogen, South West Africa/Namibia. S Afr J Geol 90:239–255

    Google Scholar 

  • Pirajno F, Schlögl HU (1987) The alteration-mineralisation of the Krantzberg tungsten deposit, South West Africa/Namibia. S Afr J Geol 90:499–508

    Google Scholar 

  • Pirajno F, Smithies RH (1992) The FeO/Feo + MgO ratio of tourmaline: a useful indicator of spatial variations in granite-related hydrothermal mineral deposits. J Geochem Expl 42:371–382

    Google Scholar 

  • Pisutha-Arnond V, Ohmoto H (1983) Thermal history, and chemical and isotopic compositions of ore-forming fluids responsible for kuroko massive sulfide deposits in the Hokoruku district of Japan. Econ Geol Monogr 5:523–558

    Google Scholar 

  • Plimer IR (1987) The association of tourmalinite with stratiform scheelite deposits. Mineral Depos 22:82–291

    Google Scholar 

  • Pollard PJ (1983) Magmatic and postmagmatic processes in the formation of rocks associated with rare element deposits. Trans Inst Min Metall 92:B1–B9

    Google Scholar 

  • Prins P (1981) The geochemical evolution of the alkaline and carbonatite complexes of the Damaraland igneous province, South West Africa. Ann Univ Stellenbosch Ser A1 Geol 3:145–278

    Google Scholar 

  • Proskurowski G, Lilley MD, Seewald JS, Früh-Green GL, Olson EJ, Lupton JE, Sylva SP, Kelley DS (2008) Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 319:604–607

    Google Scholar 

  • Rona PA (1984) Hydrothermal mineralization at seafloor spreading centers. Earth Sci Rev 20:1–104

    Google Scholar 

  • Rose AW, Burt DM (1979) Hydrothermal alteration. In: Barnes H L (ed) Geochemistry of hydrothermal ore deposits. John Wiley & Sons, New York, pp 173–227

    Google Scholar 

  • Rosenbauer RJ, Bischoff JL (1983) Uptake and transport of heavy metals by seawater: a summary of the experimental results. In: Rona PA, Bostrom K, Laubier L, Smith KL (eds) Hydrothermal processes at seafloor spreading centers. Plenum, New York, pp 177–198

    Google Scholar 

  • Rozendaal A, Stumpfl EF (1984) Mineral chemistry and genesis of Gamsberg zinc deposit, South Africa. Trans Inst Min Metall 93:B161–B175

    Google Scholar 

  • Seedorff E, Dilles JH, Proffett JM, Einaudi MT, Zurcher L, Stavast WJA, Johnson, DA, Barton MD (2005) Porphyry deposits: characteristics and origin of hypogene features. Econ Geol 100th Anniv Vol: 251–298

    Google Scholar 

  • Seyfried WE, Janecky DR (1985) Heavy metal and sulfur transport during subcritical and supercritical hydrothermal alteration of basalt: Influence of fluid pressure and basalt composition and crystallinity. Geochim Cosmochim Acta 49:2545–2560

    Google Scholar 

  • Seyfried WE, Berndt ME, Seewald JS (1988) Hydrothermal alteration processes at mid-ocean ridges: constraints from diabase alteration experiments, hot spring fluids and composition of the oceanic crust. Can Mineral 26:787–804

    Google Scholar 

  • Sheppard SMF (1971) Hydrogen and oxygen isotope ratios in minerals from porphyry copper deposits. Econ Geol 66:515–542

    Google Scholar 

  • Sheppard SMF (1986) Characterization and isotopic variations in natural waters. Rev Mineral 16, Min Soc Am 165–183

    Google Scholar 

  • Sheppard S, Rasmussen B, Muhling JR, Farrell TR, Feltcher IR (2007) Grenvillian-aged orogenesis in the Palaeoproterozoic Gascoyne Complex, Western Australia: 1030-950 Ma reworking of the Proterozoic Capricorn Orogen. J Metam Geol 25:477–494

    Google Scholar 

  • Shirozu H (1974) Clay minerals in altered wall rocks of the kuroko-type deposits. Min Geol Spec Issue 6:303–311

    Google Scholar 

  • Siemiatkowska KM, Martin RF (1975) Fenitization of the Mississagi quartzite, Sudbury area, Ontario. Bull Geol Soc Am 86:1109–1122

    Google Scholar 

  • Slack JF (1996) Tourmaline associations with hydrothermal ore deposits. Rev Mineral 33:559–641

    Google Scholar 

  • Slack JF, Herriman N, Barnes RG, Plimer IR (1984) Stratiform tourmalinites in metamorphic terranes and their geologic significance. Geology 12:713–716

    Google Scholar 

  • Smith MP, Henderson P, Campbell LS (2000) Fractionation of the REE during hydrothermal processes: constraints from the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. Geochim Cosmochim Acta 64:3141–3160

    Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineral Soc Am Monogr Ser, 799pp

    Google Scholar 

  • Spooner ETC, Fyfe WS (1973) Sub-sea-floor metamorphism, heat and mass transfer. Contr Mineral Petrol 42:287–304

    Google Scholar 

  • Spry PG, Marshall B, Vokes FM (eds) (2000) Metamorphosed and metamorpogenic ore deposits. Rev Econ Geol 11, 310pp

    Google Scholar 

  • Stanton RL (1972) Ore petrology. McGraw-Hill, New York, 713 pp

    Google Scholar 

  • Stanton RL (1982) An alternative to the Barrovian interpretation? Proc Australas Inst Min Metall 82:11–32

    Google Scholar 

  • Stanton RL (1983) The direct derivation of sillimanite from a kaolinitic precursor: evidence from the Geco Mine, Manitouwadge, Ontario. Econ Geol 78:422–437

    Google Scholar 

  • Stanton RL (1989) The precursor principle and the possible significance of stratiform ores and related chemical sediments in the elucidation of processes of regional metamorphic mineral formation. Phil Trans R Soc London A 328:529–646

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. Geol Soc Sp Publ 42:3131–3145

    Google Scholar 

  • Taylor HP (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol 69:843–883

    Google Scholar 

  • Taylor HP (1983) Oxygen and hydrogen isotope studies of hydrothermal interactions at submarine and subaerial spreading centers. In: Rona PA, Bostrom K, Laubier L, Smith KL (eds) Hydrothermal processes at sea-floor spraeding centers. Plenum, New York, pp 83–139

    Google Scholar 

  • Taylor HP (1997) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes HL (ed) geochemistry of hydrothermal ore deposits, 3rd edn. John Wiley & Sons, New York, pp 229–302

    Google Scholar 

  • Taylor RP, Fryer BJ (1982) Rare earth element geochemistry as an aid to interpreting hydrothermal ore deposits. In: Evans AM (ed) Mineralisation associated with acid magmatism. John Wiley & Sons, New York, pp 357–365

    Google Scholar 

  • Taylor RP, Fryer BJ (1983) Rare earth element lithogeochemistryof granitoid mineral deposits. CIM Bull 76:74–84

    Google Scholar 

  • Taylor RP, Pollard PJ (1996) Rare earth element mineralization in peralkaline systems: the T-zone REE-Y-Be deposit, thor lake, Northwest Territories, Canada. In: Jones AP, Wall F, Williams CT (eds) Rare earth minerals – chemistry, orgin and ore deposits. Chapman & Hall, London, pp 167–192

    Google Scholar 

  • Thompson AJB, Thompson JFH (eds) (1996) Atlas of alteration – A field and petrographic guide to hydrothermal alteration minerals. Min Depos Div, Geol Ass Can, Mem Univ Newfoundland, St John’s Newfoundland

    Google Scholar 

  • Thompson AJB, Hauff PL, Robitaille AJ (1999) Alteration mapping in exploration: Application of short-wave infrared (SWIR) spectroscopy. SEG Newslett 39:1–27

    Google Scholar 

  • Titley SR, Beane RE (1981) Porphyry copper deposits. Part I. Geologic settings, petrology, and tectogenesis. Econ Geol 75th Anniv Vol: 214–235

    Google Scholar 

  • Van Kranendonk MJ, Pirajno F (2004) Geochemistry of metabsalts and hydrothermal alteration zonesassociated with c. 3.45 Ga chert and barite deposits: implications for the geological setting of the Warrawoona Group, Pilbara Craton, Australia. Geochem Expl Envir Anal 4:253–278

    Google Scholar 

  • Vearncombe JR (1993) Quartz vein morphology and implications for formation depth and classification of Archaean gold-vein deposits. Ore Geol Rev 8:407–424

    Google Scholar 

  • Verwoerd WJ (1966) Fenitization of basic igneous rocks. In: Tuttle DF, Gittens J (eds) Carbonatites. Wiley Interscience, New York, pp 295–308

    Google Scholar 

  • Volesky JC, Stern RJ, Johnson PR (2003) Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies. Precambr Res 123:235–247

    Google Scholar 

  • Walter MR, Bauld J, Brock TD (1972) Siliceous algal and bacterial stromatolites in hot springs and geyser deposits of Yellowstone National Park. Science 178:402–405

    Google Scholar 

  • White NC, Hedenquist JW (1995) Epithermal gold deposits: styles, characteristics and exploration. SEG Newsletter 23:1–13

    Google Scholar 

  • White WH, Bookstrom AA, Kamilli RJ, Ganster MW, Smith RP, Ranta DA, Steininger RC (1981) Character and origin of Climax-type molybdenum deposits. Econ Geol 75th Anniv Vol: 270–316

    Google Scholar 

  • William-Jones AE, Heinrich CA (2005) Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ Geol 100:1287–1312

    Google Scholar 

  • Woolley AR (1987) The alkaline rocks and carbonatites of the world. Part 1: North and South America. British Mus Nat Hist, Univ Texas Press

    Google Scholar 

  • Woolley AR (2001) Alkaline rocks and carbonatites of the world. Part 3: Africa. Geol Soc, Lond

    Google Scholar 

  • Woolley AF, Symes RF, Elliot CJ (1972) Metasomatised (fenitized) quartzites from the Barralam Complex, Scotland. Mineral Mag 38:819–836

    Google Scholar 

  • Wonder TD, Spry PG, Windom KE (1988) Geochemistry and origin of manganese rich rocks related to iron-formation and sulfide deposits, Western Georgia. Econ Geol 83:1070–1081

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Pirajno .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pirajno, F. (2009). Hydrothermal Processes and Wall Rock Alteration. In: Hydrothermal Processes and Mineral Systems. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8613-7_2

Download citation

Publish with us

Policies and ethics