Skip to main content

Bridging Mucosal Innate Immunity to the Adaptive Immune System

  • Chapter
Immunity Against Mucosal Pathogens
  • 1060 Accesses

Abstract

The human adult mucosa covers immense surface area 200 times greater than that of the skin, i.e., 400 m2. The mucosal immune system mediates the symbiotic relationship between hosts and endogenous microorganisms (commensal bacteria) and serves as a physical and immunological defense against invading pathogens and/or toxins. To accomplish this task, the mucosal immune system, consisting of an integrated network of tissues, lymphoid and non-lymphoid cells, and effector molecules such as antibodies, chemokines, and cytokines for host protection, tightly controls the balance between immune responsiveness (i.e., immunity and inflammation) and non-responsiveness (i.e., tolerance). The mucosal immune system, antigen-presenting cells, lymphocytes, and the factors they produce are essential for orchestrating specific mucosal immune responses. Cells of the mucosa initiate and support the development of both innate and adaptive immunity. Here, we discuss how the innate mucosal immune responses lead to host adaptive immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brenner S, Milstein C. 1966. Origin of antibody variation. Nature 211: 242–3

    Article  CAS  PubMed  Google Scholar 

  2. Zheng B, Xue W, Kelsoe G. 1994. Locus-specific somatic hypermutation in germinal centre T cells. Nature 372: 556–9

    Article  CAS  PubMed  Google Scholar 

  3. Tjoa B, Kranz DM. 1992. Diversity of T cell receptor-alpha chain transcripts from hyperimmune alloreactive T cells. Journal of Immunology 149: 253–9

    CAS  Google Scholar 

  4. Nagler-Anderson C. 2001. Man the barrier! Strategic defences in the intestinal mucosa. Nature Reviews. Immunology 1: 59–67

    Article  CAS  PubMed  Google Scholar 

  5. Renes IB, Verburg M, Van Nispen DJ, Buller HA, Dekker J, Einerhand AW. 2002. Distinct epithelial responses in experimental colitis: implications for ion uptake and mucosal protection. American Journal of Physiology – Gastrointestinal & Liver Physiology 283: G169–79

    CAS  Google Scholar 

  6. Kelly CP, O’Keane JC, Orellana J, Schroy PC, 3rd, Yang S, LaMont JT, Brady HR. 1992. Human colon cancer cells express ICAM-1 in vivo and support LFA-1-dependent lymphocyte adhesion in vitro. American Journal of Physiology 263: G864–70

    CAS  PubMed  Google Scholar 

  7. McNabb PC, Tomasi TB. 1981. Host defense mechanisms at mucosal surfaces. Annual Review of Microbiology 35: 477–96

    Article  CAS  PubMed  Google Scholar 

  8. Belley A, Keller K, Gottke M, Chadee K. 1999. Intestinal mucins in colonization and host defense against pathogens.[erratum appears in Am J Trop Med Hyg 1999 Jun;60(6):1062 Note: Goettke M [corrected to Gottke M]]. American Journal of Tropical Medicine & Hygiene 60: 10–5

    CAS  Google Scholar 

  9. Deplancke B, Gaskins HR. 2001. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. American Journal of Clinical Nutrition 73: 1131S–41S

    CAS  PubMed  Google Scholar 

  10. Sands BE, Podolsky DK. 1996. The trefoil peptide family. Annual Review of Physiology 58: 253–73

    Article  CAS  PubMed  Google Scholar 

  11. Podolsky DK. 1997. Lessons from genetic models of inflammatory bowel disease. Acta Gastroenterologica Belgica 60: 163–5

    CAS  Google Scholar 

  12. Walker WA. 1975. Antigen absorption from the small intestine and gastrointestinal disease. Pediatric Clinics of North America 22: 731–46

    CAS  PubMed  Google Scholar 

  13. Walker WA, Isselbacher KJ. 1974. Uptake and transport of macromolecules by the intestine. Possible role in clinical disorders. Gastroenterology 67: 531–50

    CAS  PubMed  Google Scholar 

  14. Kuvaeva IB. 1979. Permeability of the gastronintestinal tract for macromolecules in health and disease. Human Physiology 4: 272–83

    CAS  PubMed  Google Scholar 

  15. Weaver LT, Laker MF, Nelson R. 1984. Intestinal permeability in the newborn. Archives of Disease in Childhood 59: 236–41

    Article  CAS  PubMed  Google Scholar 

  16. Vukavic T. 1984. Timing of the gut closure. Journal of Pediatric Gastroenterology and Nutrition 3: 700–3

    CAS  PubMed  Google Scholar 

  17. Ganz T. 2003. Defensins: antimicrobial peptides of innate immunity. Nature reviews. Immunology 3: 710–20

    Article  CAS  PubMed  Google Scholar 

  18. Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M. 1992. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. Journal of Applied Bacteriology 73: 472–9

    CAS  PubMed  Google Scholar 

  19. Kang JH, Lee MK, Kim KL, Hahm KS. 1996. Structure-biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin. International Journal of Peptide & Protein Research 48: 357–63

    CAS  Google Scholar 

  20. Porter EM, Liu L, Oren A, Anton PA, Ganz T. 1997. Localization of human intestinal defensin 5 in Paneth cell granules. Infection and Immunity 65: 2389–95

    CAS  PubMed  Google Scholar 

  21. Porter EM, van Dam E, Valore EV, Ganz T. 1997. Broad-spectrum antimicrobial activity of human intestinal defensin 5. Infection & Immunity 65: 2396–401

    CAS  Google Scholar 

  22. Quayle AJ., Porter EM, Nussbaum AA, Wang YM, Brabec C, Yip KP, Mok SC. 1998. Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. American Journal of Pathology 152: 1247–58

    CAS  PubMed  Google Scholar 

  23. Zhao X, Deak E, Soderberg K, Linehan M, Spezzano D, Zhu J, Knipe DM, Iwasaki A. 2003. Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. Journal of Experimental Medicine 197: 153–62

    Article  CAS  PubMed  Google Scholar 

  24. Singh PK, Jia HP, Wiles K, Hesselberth J, Liu L, Conway BA, Greenberg EP, Valore EV, Welsh MJ, Ganz T, Tack BF, McCray PB. Jr. 1998. Production of beta-defensins by human airway epithelia. Proceedings of the National Academy of Sciences of the United States of America. 95: 14961–6

    Google Scholar 

  25. Mathews M, Jia HP, Guthmiller JM, Losh G, Graham S, Johnson GK, Tack BF, McCray PB, Jr. 1999. Production of beta-defensin antimicrobial peptides by the oral mucosa and salivary glands. Infection & Immunity 67: 2740–5

    CAS  Google Scholar 

  26. Jones DE, Bevins CL. 1992. Paneth cells of the human small intestine express an antimicrobial peptide gene. Journal of Biological Chemistry 267: 23216–25

    CAS  PubMed  Google Scholar 

  27. Eisenhauer PB, Harwig SS, Lehrer RI. 1992. Cryptdins: antimicrobial defensins of the murine small intestine. Infection and Immunity 60: 3556–65

    CAS  PubMed  Google Scholar 

  28. Chertov O, Michiel DF, Xu L, Wang JM, Tani K, Murphy WJ, Longo DL, Taub DD, Oppenheim JJ. 1996. Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. Journal of Biological Chemistry 271: 2935–40

    Article  CAS  PubMed  Google Scholar 

  29. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM, Oppenheim JJ. 1999. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286: 525–8

    Article  CAS  PubMed  Google Scholar 

  30. Ganz T. 1999. Defensins and host defense.[comment]. Science 286: 420–1

    Article  CAS  PubMed  Google Scholar 

  31. Territo MC, Ganz T, Selsted ME, Lehrer R. 1989. Monocyte-chemotactic activity of defensins from human neutrophils. Journal of Clinical Investigation 84: 2017–20

    Article  CAS  PubMed  Google Scholar 

  32. Lillard JW, Jr., Boyaka PN, Chertov O, Oppenheim JJ, McGhee JR. 1999. Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proceedings of the National Academy of Sciences of the United States of America 96: 651–6

    Google Scholar 

  33. Milligan GN, Bourne N, Dudley KL. 2001. Role of polymorphonuclear leukocytes in resolution of HSV-2 infection of the mouse vagina. Journal of Reproductive Immunology49: 49–65

    Article  CAS  PubMed  Google Scholar 

  34. Schaller M, Boeld U, Oberbauer S, Hamm G, Hube B, Korting HC. 2004. Polymorphonuclear leukocytes (PMNs) induce protective Th1-type cytokine epithelial responses in an in vitro model of oral candidosis. Microbiology 150: 2807–13

    Article  CAS  PubMed  Google Scholar 

  35. Lewis DC, Walker-Smith JA, Phillips AD. 1987. Polymorphonuclear neutrophil leucocytes in childhood Crohn’s disease: a morphological study. Journal of Pediatric Gastroenterology & Nutrition 6: 430–8

    Article  CAS  Google Scholar 

  36. Cameron L, Christodoulopoulos P, Lavigne F, Nakamura Y, Eidelman D, McEuen A, Walls A, Tavernier J, Minshall E, Moqbel R, Hamid Q. 2000. Evidence for local eosinophil differentiation within allergic nasal mucosa: inhibition with soluble IL-5 receptor. Journal of Immunology 164: 1538–45

    CAS  Google Scholar 

  37. Denburg JA, Otsuka H, Ohnisi M, Ruhno J, Bienenstock J, Dolovich J. 1987. Contribution of basophil/mast cell and eosinophil growth and differentiation to the allergic tissue inflammatory response. International Archives of Allergy and Applied Immunology 82:321–6

    CAS  PubMed  Google Scholar 

  38. Mullol J, Xaubet A, Lopez E, Roca-Ferrer J, Carrion T, Rosello-Catafau J, Picado C. 1997. [Eosinophil activation by epithelial cells of the respiratory mucosa. Comparative study of normal mucosa and inflammatory mucosa]. Medicina clínica (Barc) 109: 6–11

    CAS  Google Scholar 

  39. Rydstrom A, Wick MJ. 2007. Monocyte recruitment, activation, and function in the gut-associated lymphoid tissue during oral Salmonella infection. Journal of Immunology 178: 5789–801

    Google Scholar 

  40. Rugtveit J, Bakka A, Brandtzaeg P. 1997. Differential distribution of B7.1 (CD80) and B7.2 (CD86) costimulatory molecules on mucosal macrophage subsets in human inflammatory bowel disease (IBD). Clinical and Experimental Immunology 110: 104–13

    Article  CAS  PubMed  Google Scholar 

  41. Rugtveit J, Brandtzaeg P, Halstensen TS, Fausa O, Scott H. 1994. Increased macrophage subset in inflammatory bowel disease: apparent recruitment from peripheral blood monocytes. Gut 35: 669–74

    Article  CAS  PubMed  Google Scholar 

  42. Ohtoshi T, Vancheri C, Cox G, Gauldie J, Dolovich J, Denburg JA, Jordana M. 1991. Monocyte-macrophage differentiation induced by human upper airway epithelial cells. American Journal of Respiratory Cell and Molecular Biology 4: 255–63

    CAS  PubMed  Google Scholar 

  43. Reis e Sousa C. 2001. Dendritic cells as sensors of infection. Immunity 14: 495–8

    Article  CAS  PubMed  Google Scholar 

  44. Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity.[see comment]. Nature 388: 394–7

    Article  CAS  PubMed  Google Scholar 

  45. Bouchon A, Hernandez-Munain C, Cella M, Colonna M. 2001. A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. Journal of Experimental Medicine 194: 1111–22

    Article  CAS  PubMed  Google Scholar 

  46. Regnault A, Lankar D, Lacabanne V, Rodriguez A, Théry C, Rescigno M, Saito T, Verbeek S, Bonnerot C, Ricciardi-Castagnoli P, Amigorena S. 1999. Fc R-mediated induction of dendritic cell maturation and MHC classI–restricted antigen presentation after immune complex internalization. Journal of Experimental Medicine 189: 371–80

    Article  CAS  PubMed  Google Scholar 

  47. Piccioli D, Sbrana S, Melandri E, Valiante NM. 2002. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. Journal of Experimental Medicine 195: 335–41

    Article  CAS  PubMed  Google Scholar 

  48. Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G. 2002. Reciprocal activating interaction between natural killer cells and dendritic cells. Journal of Experimental Medicine 195: 327–33

    Article  CAS  PubMed  Google Scholar 

  49. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. 1996. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. Journal of Experimental Medicine 184: 747–52

    Article  CAS  PubMed  Google Scholar 

  50. Cella M, Sallusto F, Lanzavecchia A. 1997. Origin, maturation and antigen presenting function of dendritic cells. Current Opinion in Immunology 9: 10–6

    Article  CAS  PubMed  Google Scholar 

  51. Cumberbatch M, Kimber I. 1995. Tumour necrosis factor-alpha is required for accumulation of dendritic cells in draining lymph nodes and for optimal contact sensitization. Immunology 84: 31–5

    CAS  PubMed  Google Scholar 

  52. Melchers F, Rolink AG, Schaniel C. 1999. The role of chemokines in regulating cell migration during humoral immune responses. Cell 99: 351–4

    Article  CAS  PubMed  Google Scholar 

  53. Anderson JM, Van Itallie CM. 1999. Tight junctions: closing in on the seal. Current Biology 9: R922–4

    Google Scholar 

  54. Youakim A, Ahdieh M. 1999. Interferon-gamma decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin. American Journal of Physiology 276: G1279–88

    CAS  PubMed  Google Scholar 

  55. Kucharzik T, Walsh SV, Chen J, Parkos CA, Nusrat A. 2001. Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. American Journal of Pathology 159: 2001–9

    CAS  PubMed  Google Scholar 

  56. Dignass AU, Podolsky DK. 1993. Cytokine modulation of intestinal epithelial cell restitution: central role of transforming growth factor beta. Gastroenterology 105: 1323–32

    CAS  PubMed  Google Scholar 

  57. Dignass A, Lynch-Devaney K, Kindon H, Thim L, Podolsky DK. 1994. Trefoil peptides promote epithelial migration through a transforming growth factor beta-independent pathway. Journal of Clinical Investigation 94: 376–83

    Article  CAS  PubMed  Google Scholar 

  58. Dogan A, Wang ZD, Spencer J. 1995. E-cadherin expression in intestinal epithelium. Journal of Clinical Pathology 48: 143–6

    Article  CAS  PubMed  Google Scholar 

  59. Huang GT, Eckmann L, Savidge TC, Kagnoff MF. 1996. Infection of human intestinal epithelial cells with invasive bacteria upregulates apical intercellular adhesion molecule-1 (ICAM)-1 expression and neutrophil adhesion. Journal of Clinical Investigation 98: 572–83

    Article  CAS  PubMed  Google Scholar 

  60. Kvale D, Krajci P, Brandtzaeg P. 1992. Expression and regulation of adhesion molecules ICAM-1 (CD54) and LFA-3 (CD58) in human intestinal epithelial cell lines. Scandinavian Journal of Immunology 35: 669–76

    Article  CAS  PubMed  Google Scholar 

  61. Morales VM, Christ A, Watt SM, Kim HS, Johnson KW, Utku N, Texieira AM, Mizoguchi A, Mizoguchi E, Russell GJ, Russell SE, Bhan AK, Freeman GJ, Blumberg RS. 1999. Regulation of human intestinal intraepithelial lymphocyte cytolytic function by biliary glycoprotein (CD66a). Journal of Immunology 163: 1363–70

    CAS  Google Scholar 

  62. Parkos CA, Colgan SP, Diamond MS, Nusrat A, Liang TW, Springer TA, Madara JL. 1996. Expression and polarization of intercellular adhesion molecule-1 on human intestinal epithelia: consequences for CD11b/CD18-mediated interactions with neutrophils. Molecular Medicine 2: 489–505

    CAS  PubMed  Google Scholar 

  63. Yio XY, Mayer L. 1997. Characterization of a 180-kDa intestinal epithelial cell membrane glycoprotein, gp180. A candidate molecule mediating t cell-epithelial cell interactions. Journal of Biological Chemistry 272: 12786–92

    Article  CAS  PubMed  Google Scholar 

  64. Colgan SP, Hershberg RM, Furuta GT, Blumberg RS. 1999. Ligation of intestinal epithelial CD1d induces bioactive IL-10: critical role of the cytoplasmic tail in autocrine signaling. Proceedings of the National Academy of Sciences of the United States of America 96: 13938–43

    Google Scholar 

  65. Steinle A, Groh V, Spies T. 1998. Diversification, expression, and gamma delta T cell recognition of evolutionarily distant members of the MIC family of major histocompatibility complex class I-related molecules. Proceedings of the National Academy of Sciences of the United States of America 95: 12510–5

    Google Scholar 

  66. Reinecker HC, MacDermott RP, Mirau S, Dignass A, Podolsky DK. 1996. Intestinal epithelial cells both express and respond to interleukin 15. Gastroenterology 111: 1706–13

    Article  CAS  PubMed  Google Scholar 

  67. Varilek GW, Neil GA, Bishop WP. 1994. Caco-2 cells express type I interleukin-1 receptors: ligand binding enhances proliferation. American Journal of Physiology 267: G1101–7

    CAS  PubMed  Google Scholar 

  68. Colgan SP, Resnick MB, Parkos CA, Delp-Archer C, McGuirk D, Bacarra AE, Weller PF, Madara JL. 1994. IL-4 directly modulates function of a model human intestinal epithelium. Journal of Immunology 153: 2122–9

    CAS  Google Scholar 

  69. Reinecker HC, Podolsky DK. 1995. Human intestinal epithelial cells express functional cytokine receptors sharing the common gamma c chain of the interleukin 2 receptor. Proceedings of the National Academy of Sciences of the United States of America 92: 8353–7

    Google Scholar 

  70. Yamada K, Shimaoka M, Nagayama K, Hiroi T, Kiyono H, Honda T. 1997. Bacterial invasion induces interleukin-7 receptor expression in colonic epithelial cell line, T84. European Journal of Immunology 27: 3456–60

    Article  CAS  PubMed  Google Scholar 

  71. Panja A, Goldberg S, Eckmann L, Krishen P, Mayer L. 1998. The regulation and functional consequence of proinflammatory cytokine binding on human intestinal epithelial cells. Journal of Immunology 161: 3675–84

    CAS  Google Scholar 

  72. Fish SM, Proujansky R, Reenstra WW. 1999. Synergistic effects of interferon gamma and tumour necrosis factor alpha on T84 cell function. Gut 45: 191–8

    Article  CAS  PubMed  Google Scholar 

  73. Awane M, Andres PG, Li DJ, Reinecker HC. 1999. NF-kappa B-inducing kinase is a common mediator of IL-17-, TNF-alpha-, and IL-1 beta-induced chemokine promoter activation in intestinal epithelial cells. Journal of Immunology 162: 5337–44

    CAS  Google Scholar 

  74. Denning TL, Campbell NA, Song F, Garofalo RP, Klimpel GR, Reyes VE, Ernst PB. 2000. Expression of IL-10 receptors on epithelial cells from the murine small and large intestine. International Immunology 12: 133–9

    Article  CAS  PubMed  Google Scholar 

  75. Delezay O, Koch N, Yahi N, Hammache D, Tourres C, Tamalet C, Fantini J. 1997. Co-expression of CXCR4/fusin and galactosylceramide in the human intestinal epithelial cell line HT-29. AIDS 11: 1311–8

    Article  CAS  PubMed  Google Scholar 

  76. Dwinell MB, Eckmann L, Leopard JD, Varki NM, Kagnoff MF. 1999. Chemokine receptor expression by human intestinal epithelial cells. Gastroenterology 117: 359–67

    Article  CAS  PubMed  Google Scholar 

  77. Jordan NJ, Kolios G, Abbot SE, Sinai MA, Thompson DA, Petraki K, Westwick J. 1999. Expression of functional CXCR4 chemokine receptors on human colonic epithelial cells. Journal of Clinical Investigation 104: 1061–9

    Article  CAS  PubMed  Google Scholar 

  78. Brumell JH, Steele-Mortimer O, Finlay BB. 1999. Bacterial invasion: Force feeding by Salmonella. Current Biology 9: R277–80

    Article  CAS  PubMed  Google Scholar 

  79. Galan JE. 2001. Salmonella interactions with host cells: type III secretion at work. Annual Review of Cell & Developmental Biology 17: 53–86

    Article  CAS  Google Scholar 

  80. Kaisho T, Akira S. 2000. Critical roles of Toll-like receptors in host defense. Critical Reviews in Immunology 20: 393–405

    CAS  PubMed  Google Scholar 

  81. Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK. 2000. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. Journal of Immunology 164: 966–72

    CAS  Google Scholar 

  82. Gewirtz AT, Simon PO, Jr., Schmitt CK, Taylor LJ, Hagedorn CH, O’Brien AD, Neish AS, Madara JL. 2001. Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response.[see comment]. Journal of Clinical Investigation 107: 99–109

    Article  CAS  PubMed  Google Scholar 

  83. Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. 2001. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. Journal of Immunology 167: 1882–5

    CAS  Google Scholar 

  84. Marinaro M, Boyaka PN, Jackson RJ, Finkelman FD, Kiyono H, Jirillo E, McGhee JR. 1999. Use of intranasal IL-12 to target predominantly Th1 responses to nasal and Th2 responses to oral vaccines given with cholera toxin. Journal of Immunology 162: 114–21

    CAS  Google Scholar 

  85. Kelner GS, Kennedy J, Bacon KB, Kleyensteuber S, Largaespada DA, Jenkins NA, Copeland NG, Bazan JF, Moore KW, Schall TJ, et al. 1994. Lymphotactin: a cytokine that represents a new class of chemokine. Science 266: 1395–9

    Article  CAS  PubMed  Google Scholar 

  86. Hedrick JA, Zlotnik A. 1997. Lymphotactin: a new class of chemokine. Methods in Enzymology 287: 206–15

    Article  CAS  PubMed  Google Scholar 

  87. Lillard JW, Jr., Boyaka PN, Hedrick JA, Zlotnik A, McGhee JR. 1999. Lymphotactin acts as an innate mucosal adjuvant. Journal of Immunology 162: 1959–65

    CAS  Google Scholar 

  88. Fujihashi K, McGhee JR, Kweon MN, Cooper MD, Tonegawa S, Takahashi I, Hiroi T, Mestecky J, Kiyono H. 1996. gamma/delta T cell-deficient mice have impaired mucosal immunoglobulin A responses. Journal of Experimental Medicine 183: 1929–35

    Article  CAS  PubMed  Google Scholar 

  89. Lillard JW, Jr., Boyaka PN, Taub DD, McGhee JR. 2001. RANTES potentiates antigen-specific mucosal immune responses. Journal of Immunology 166: 162–9

    CAS  Google Scholar 

  90. Xin KQ, Lu Y, Hamajima K, Fukushima J, Yang J, Inamura K, Okuda K. 1999. Immunization of RANTES expression plasmid with a DNA vaccine enhances HIV-1-specific immunity. Clinical Immunology 92: 90–6

    Article  CAS  PubMed  Google Scholar 

  91. Lillard JW, Jr., Singh UP, Boyaka PN, Singh S, Taub DD, McGhee JR. 2003. MIP-1alpha and MIP-1beta differentially mediate mucosal and systemic adaptive immunity. Blood 101: 807–14

    Article  CAS  PubMed  Google Scholar 

  92. Eckmann L, Kagnoff MF, Fierer J. 1993. Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infection and Immunity 61: 4569–74

    CAS  PubMed  Google Scholar 

  93. Jung HC, Eckmann L, Yang SK, Panja A, Fierer J, Morzycka-Wroblewska E, Kagnoff MF. 1995. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion.[see comment]. Journal of Clinical Investigation 95: 55–65

    Article  CAS  PubMed  Google Scholar 

  94. Yang SK, Eckmann L, Panja A, Kagnoff MF. 1997. Differential and regulated expression of C-X-C, C-C, and C-chemokines by human colon epithelial cells. Gastroenterology 113: 1214–23

    Article  CAS  PubMed  Google Scholar 

  95. Reinecker HC, Loh EY, Ringler DJ, Mehta A, Rombeau JL, MacDermott RP. 1995. Monocyte-chemoattractant protein 1 gene expression in intestinal epithelial cells and inflammatory bowel disease mucosa. Gastroenterology 108: 40–50

    Article  CAS  PubMed  Google Scholar 

  96. Izadpanah A, Dwinell MB, Eckmann L, Varki NM, Kagnoff MF. 2001. Regulated MIP-3alpha/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity. American Journal of Physiology – Gastrointestinal & Liver Physiology 280: G710–9

    CAS  Google Scholar 

  97. Dwinell MB, Lugering N, Eckmann L, Kagnoff MF. 2001. Regulated production of interferon-inducible T-cell chemoattractants by human intestinal epithelial cells.[see comment]. Gastroenterology 120: 49–59

    Article  CAS  PubMed  Google Scholar 

  98. Shibahara T, Wilcox JN, Couse T, Madara JL. 2001. Characterization of epithelial chemoattractants for human intestinal intraepithelial lymphocytes.[see comment]. Gastroenterology 120: 60–70

    Article  CAS  PubMed  Google Scholar 

  99. Kunkel EJ, Campbell JJ, Haraldsen G, Pan J, Boisvert J, Roberts AI, Ebert EC, Vierra MA, Goodman SB, Genovese MC, Wardlaw AJ, Greenberg HB, Parker CM, Butcher EC, Andrew DP, Agace WW. 2000. Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: Epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. Journal of Experimental Medicine 192: 761–8

    Article  CAS  PubMed  Google Scholar 

  100. Wurbel MA, Philippe JM, Nguyen C, Victorero G, Freeman T, Wooding P, Miazek A, Mattei MG, Malissen M, Jordan BR, Malissen B, Carrier A, Naquet P. 2000. The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double- and single-positive thymocytes expressing the TECK receptor CCR9. European Journal of Immunology 30:262–71

    Article  CAS  PubMed  Google Scholar 

  101. Pan J, Kunkel EJ, Gosslar U, Lazarus N, Langdon P, Broadwell K, Vierra MA, Genovese MC, Butcher EC, Soler D. 2000. A novel chemokine ligand for CCR10 and CCR3 expressed by epithelial cells in mucosal tissues. Journal of Immunology 165: 2943–9

    CAS  Google Scholar 

  102. Wang W, Soto H, Oldham ER, Buchanan ME, Homey B, Catron D, Jenkins N, Copeland NG, Gilbert DJ, Nguyen N, Abrams J, Kershenovich D, Smith K, McClanahan T, Vicari AP, Zlotnik A. 2000. Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2). Journal of Biological Chemistry 275: 22313–23

    Article  CAS  PubMed  Google Scholar 

  103. Eckmann L, Reed SL, Smith JR, Kagnoff MF. 1995. Entamoeba histolytica trophozoites induce an inflammatory cytokine response by cultured human cells through the paracrine action of cytolytically released interleukin-1 alpha. Journal of Clinical Investigation 96: 1269–79

    Article  CAS  PubMed  Google Scholar 

  104. Maaser C, Eckmann L, Paesold G, Kim HS, Kagnoff MF. 2002. Ubiquitous production of macrophage migration inhibitory factor by human gastric and intestinal epithelium. Gastroenterology 122: 667–80

    Article  CAS  PubMed  Google Scholar 

  105. Maaser C, Schoeppner S, Kucharzik T, Kraft M, Schoenherr E, Domschke W, Luegering N. 2001. Colonic epithelial cells induce endothelial cell expression of ICAM-1 and VCAM-1 by a NF-kappaB-dependent mechanism. Clinical and Experimental Immunology 124:208–13

    Article  CAS  PubMed  Google Scholar 

  106. Eckmann L, Jung HC, Schurer-Maly C, Panja A, Morzycka-Wroblewska E, Kagnoff MF. 1993. Differential cytokine expression by human intestinal epithelial cell lines: regulated expression of interleukin 8.[see comment][comment]. Gastroenterology 105: 1689–97

    CAS  PubMed  Google Scholar 

  107. Elewaut D, DiDonato JA, Kim JM, Truong F, Eckmann L, Kagnoff MF. 1999. NF-kappa B is a central regulator of the intestinal epithelial cell innate immune response induced by infection with enteroinvasive bacteria. Journal of Immunology 163: 1457–66

    CAS  Google Scholar 

  108. Meijer LK, Schesser K, Wolf-Watz H, Sassone-Corsi P, Pettersson S. 2000. The bacterial protein YopJ abrogates multiple signal transduction pathways that converge on the transcription factor CREB. Cellular Microbiology 2: 231–8

    Article  CAS  PubMed  Google Scholar 

  109. Schesser K, Spiik AK, Dukuzumuremyi JM, Neurath MF, Pettersson S, Wolf-Watz H. 1998. The yopJ locus is required for Yersinia-mediated inhibition of NF-kappaB activation and cytokine expression: YopJ contains a eukaryotic SH2-like domain that is essential for its repressive activity. Molecular Microbiology 28: 1067–79

    Article  CAS  PubMed  Google Scholar 

  110. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease.[see comment]. Nature 411: 599–603

    Article  CAS  PubMed  Google Scholar 

  111. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nunez G, Cho JH. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease.[see comment]. Nature 411: 603–6

    Article  CAS  PubMed  Google Scholar 

  112. Hampe J, Cuthbert A, Croucher PJ, Mirza MM, Mascheretti S, Fisher S, Frenzel H, King K, Hasselmeyer A, MacPherson AJ, Bridger S, van Deventer S, Forbes A, Nikolaus S, Lennard-Jones JE, Foelsch UR, Krawczak M, Lewis C, Schreiber S, Mathew CG. 2001. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations.[see comment][erratum appears in Lancet 2002 Sep 7;360(9335):806]. Lancet 357: 1925–8

    Article  CAS  PubMed  Google Scholar 

  113. Ahmad T, Armuzzi A, Bunce M, Mulcahy-Hawes K, Marshall SE, Orchard TR, Crawshaw J, Large O, de Silva A, Cook JT, Barnardo M, Cullen S, Welsh KI, Jewell DP. 2002. The molecular classification of the clinical manifestations of Crohn’s disease.[see comment][erratum appears in Gastroenterology. 2003 Jul;125(1):281]. Gastroenterology 122: 854–66

    Article  CAS  PubMed  Google Scholar 

  114. Cuthbert AP, Fisher SA, Mirza MM, King K, Hampe J, Croucher PJ, Mascheretti S, Sanderson J, Forbes A, Mansfield J, Schreiber S, Lewis CM, Mathew CG. 2002. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease.[see comment]. Gastroenterology 122: 867–74

    Article  CAS  PubMed  Google Scholar 

  115. Lesage S, Zouali H, Cezard JP, Colombel JF, Belaiche J, Almer S, Tysk C, O’Morain C, Gassull M, Binder V, Finkel Y, Modigliani R, Gower-Rousseau C, Macry J, Merlin F, Chamaillard M, Jannot AS, Thomas G, Hugot JP, Group E-I, Group E, Group G. 2002. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. American Journal of Human Genetics 70:845–57

    Article  CAS  PubMed  Google Scholar 

  116. Fukata M, Michelsen KS, Eri R, Thomas LS, Hu B, Lukasek K, Nast CC, Lechago J, Xu R, Naiki Y, Soliman A, Arditi M, Abreu MT. 2005. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. American Journal of Physiology – Gastrointestinal & Liver Physiology 288:G1055–65

    Article  CAS  Google Scholar 

  117. Cronstein BN, Terkeltaub R. 2006. The inflammatory process of gout and its treatment. Arthritis Research & Therapy 8 Suppl 1: S3

    Google Scholar 

  118. Liu-Bryan R, Scott P, Sydlaske A, Rose DM, Terkeltaub R. 2005. Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis & Rheumatism 52: 2936–46

    Article  CAS  Google Scholar 

  119. Shi Y, Evans JE, Rock KL. 2003. Molecular identification of a danger signal that alerts the immune system to dying cells.[see comment]. Nature 425: 516–21

    Article  CAS  PubMed  Google Scholar 

  120. Laudanna C, Kim JY, Constantin G, Butcher E. 2002. Rapid leukocyte integrin activation by chemokines. Immunological Reviews 186: 37–46

    Article  CAS  PubMed  Google Scholar 

  121. Huang Q, Liu D, Majewski P, Schulte LC, Korn JM, Young RA, Lander ES, Hacohen N. 2001. The plasticity of dendritic cell responses to pathogens and their components.[see comment]. Science 294: 870–5

    Article  CAS  PubMed  Google Scholar 

  122. Mantovani A. 1999. The chemokine system: redundancy for robust outputs.[see comment]. Immunology Today 20: 254–7

    Article  CAS  PubMed  Google Scholar 

  123. Hayashi F, Means TK, Luster AD. 2003. Toll-like receptors stimulate human neutrophil function. Blood 102: 2660–9

    Article  CAS  PubMed  Google Scholar 

  124. Neufert C, Pai RK, Noss EH, Berger M, Boom WH, Harding CV. 2001. Mycobacterium tuberculosis 19-kDa lipoprotein promotes neutrophil activation. Journal of Immunology 167: 1542–9

    CAS  Google Scholar 

  125. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G. 2002. Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. Journal of Immunology 168: 4531–7

    CAS  Google Scholar 

  126. Nagase H, Okugawa S, Ota Y, Yamaguchi M, Tomizawa H, Matsushima K, Ohta K, Yamamoto K, Hirai K. 2003. Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. Journal of Immunology 171: 3977–82

    CAS  Google Scholar 

  127. McCurdy JD, Olynych TJ, Maher LH, Marshall JS. 2003. Cutting edge: distinct Toll-like receptor 2 activators selectively induce different classes of mediator production from human mast cells. Journal of Immunology 170: 1625–9

    CAS  Google Scholar 

  128. Supajatura V, Ushio H, Nakao A, Akira S, Okumura K, Ra C, Ogawa H. 2002. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. Journal of Clinical Investigation 109: 1351–9

    CAS  PubMed  Google Scholar 

  129. Supajatura V, Ushio H, Nakao A, Okumura K, Ra C, Ogawa H. 2001. Protective roles of mast cells against enterobacterial infection are mediated by Toll-like receptor 4. Journal of Immunology 167: 2250–6

    CAS  Google Scholar 

  130. Fan J, Malik AB. 2003. Toll-like receptor-4 (TLR4) signaling augments chemokine-induced neutrophil migration by modulating cell surface expression of chemokine receptors.[erratum appears in Nat. Med. 2003 Apr; 9(4):477]. Nature Medicine 9: 315–21

    Article  CAS  PubMed  Google Scholar 

  131. Ashkar AA, Bauer S, Mitchell WJ, Vieira J, Rosenthal KL. 2003. Local delivery of CpG oligodeoxynucleotides induces rapid changes in the genital mucosa and inhibits replication, but not entry, of herpes simplex virus type 2. Journal of Virology 77: 8948–56

    Article  CAS  PubMed  Google Scholar 

  132. Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S. 2004. A toll-like receptor that prevents infection by uropathogenic bacteria.[see comment]. Science 303: 1522–6

    Article  CAS  PubMed  Google Scholar 

  133. Kagnoff MF, Eckmann L. 1997. Epithelial cells as sensors for microbial infection. Journal of Clinical Investigation 100: 6–10

    Article  CAS  PubMed  Google Scholar 

  134. Andonegui G, Bonder CS, Green F, Mullaly SC, Zbytnuik L, Raharjo E, Kubes P. 2003. Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs.[erratum appears in J Clin Invest. 2003 Oct;112(8):1264]. Journal of Clinical Investigation 111: 1011–20

    CAS  PubMed  Google Scholar 

  135. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R. 2001. Toll-like receptors control activation of adaptive immune responses. Nature Immunology 2: 947–50

    Article  CAS  PubMed  Google Scholar 

  136. Banchereau J, Steinman RM. 1998. Dendritic cells and the control of immunity. Nature 392: 245–52

    Article  CAS  PubMed  Google Scholar 

  137. Palliser D, Ploegh H, Boes M. 2004. Myeloid differentiation factor 88 is required for cross-priming in vivo. Journal of Immunology 172: 3415–21

    CAS  Google Scholar 

  138. Visintin A, Mazzoni A, Spitzer JH, Wyllie DH, Dower SK, Segal DM. 2001. Regulation of Toll-like receptors in human monocytes and dendritic cells. Journal of Immunology 166: 249–55

    CAS  Google Scholar 

  139. Muzio M, Bosisio D, Polentarutti N, D’Amico G, Stoppacciaro A, Mancinelli R, van’t Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A. 2000. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. Journal of Immunology 164: 5998–6004

    CAS  Google Scholar 

  140. Jarrossay D, Napolitani G, Colonna M, Sallusto F, Lanzavecchia A. 2001. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. European Journal of Immunology 31: 3388–93

    Article  CAS  PubMed  Google Scholar 

  141. Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, Liu YJ. 2001. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. Journal of Experimental Medicine 194: 863–9

    Article  CAS  PubMed  Google Scholar 

  142. Krug A, Towarowski A, Britsch S, Rothenfusser S, Hornung V, Bals R, Giese T, Engelmann H, Endres S, Krieg AM, Hartmann G. 2001. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. European Journal of Immunology 31: 3026–37

    Article  CAS  PubMed  Google Scholar 

  143. Ito T, Amakawa R, Kaisho T, Hemmi H, Tajima K, Uehira K, Ozaki Y, Tomizawa H, Akira S, Fukuhara S. 2002. Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. Journal of Experimental Medicine 195: 1507–12

    Article  CAS  PubMed  Google Scholar 

  144. Edwards AD, Diebold SS, Slack EM, Tomizawa H, Hemmi H, Kaisho T, Akira S, Reis e Sousa C. 2003. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 α+ DC correlates with unresponsiveness to imidazoquinolines. European Journal of Immunology 33: 827–33

    Article  CAS  PubMed  Google Scholar 

  145. Doxsee CL, Riter TR, Reiter MJ, Gibson SJ, Vasilakos JP, Kedl RM. 2003. The immune response modifier and Toll-like receptor 7 agonist S-27609 selectively induces IL-12 and TNF-alpha production in CD11c+CD11b+CD8- dendritic cells. Journal of Immunology 171: 1156–63

    CAS  Google Scholar 

  146. Boonstra A, Asselin-Paturel C, Gilliet M, Crain C, Trinchieri G, Liu YJ, O’Garra A. 2003. Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. Journal of Experimental Medicine 197: 101–9

    Article  CAS  PubMed  Google Scholar 

  147. Ahmad-Nejad P, Hacker H, Rutz M, Bauer S, Vabulas RM, Wagner H. 2002. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. European Journal of Immunology 32: 1958–68

    Article  CAS  PubMed  Google Scholar 

  148. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A. 1998. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. European Journal of Immunology 28: 2760–9

    Article  CAS  PubMed  Google Scholar 

  149. Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Ait-Yahia S, Briere F, Zlotnik A, Lebecque S, Caux C. 1998. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. Journal of Experimental Medicine 188: 373–86

    Article  CAS  PubMed  Google Scholar 

  150. Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E, Lipp M. 1999. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99: 23–33

    Article  CAS  PubMed  Google Scholar 

  151. Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT, Nakano H. 1999. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization.[see comment]. Journal of Experimental Medicine 189: 451–60

    Article  CAS  PubMed  Google Scholar 

  152. Constant SL, Bottomly K. 1997. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annual Review of Immunology 15: 297–322

    Article  CAS  PubMed  Google Scholar 

  153. Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP. 2003. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421: 852–6

    Article  CAS  PubMed  Google Scholar 

  154. Shedlock DJ, Shen H. 2003. Requirement for CD4 T cell help in generating functional CD8 T cell memory.[see comment]. Science 300: 337–9

    Article  CAS  PubMed  Google Scholar 

  155. Sun JC, Bevan MJ. 2003. Defective CD8 T cell memory following acute infection without CD4 T cell help.[see comment]. Science 300: 339–42

    Article  CAS  PubMed  Google Scholar 

  156. Bourgeois C, Veiga-Fernandes H, Joret AM, Rocha B, Tanchot C. 2002. CD8 lethargy in the absence of CD4 help. European Journal of Immunology 32: 2199–207

    Article  CAS  PubMed  Google Scholar 

  157. Hemmi H, Kaisho T, Takeda K, Akira S. 2003. The roles of Toll-like receptor 9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. Journal of Immunology 170: 3059–64

    CAS  Google Scholar 

  158. Janeway CA, Jr., Bottomly K. 1994. Signals and signs for lymphocyte responses. Cell 76: 275–85

    Article  CAS  PubMed  Google Scholar 

  159. Trinchieri G. 2003. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Reviews Immunology 3: 133–46

    Article  CAS  PubMed  Google Scholar 

  160. Kaisho T, Hoshino K, Iwabe T, Takeuchi O, Yasui T, Akira S. 2002. Endotoxin can induce MyD88-deficient dendritic cells to support T(h)2 cell differentiation. International Immunology 14: 695–700

    Article  CAS  PubMed  Google Scholar 

  161. Redecke V, Hacker H, Datta SK, Fermin A, Pitha PM, Broide DH, Raz E. 2004. Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. Journal of Immunology 172: 2739–43

    CAS  Google Scholar 

  162. Pulendran B, Kumar P, Cutler CW, Mohamadzadeh M, Van Dyke T, Banchereau J. 2001. Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. Journal of Immunology 167: 5067–76

    CAS  Google Scholar 

  163. Agrawal S, Agrawal A, Doughty B, Gerwitz A, Blenis J, Van Dyke T, Pulendran B. 2003. Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. Journal of Immunology 171: 4984–9

    CAS  Google Scholar 

  164. Martin P, Del Hoyo GM, Anjuere F, Arias CF, Vargas HH, Fernandez LA, Parrillas V, Ardavin C. 2002. Characterization of a new subpopulation of mouse CD8alpha+B220+ dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential. Blood 100: 383–90

    Article  CAS  PubMed  Google Scholar 

  165. Bowman EP, Campbell JJ, Soler D, Dong Z, Manlongat N, Picarella D, Hardy RR, Butcher EC. 2000. Developmental switches in chemokine response profiles during B cell differentiation and maturation. Journal of Experimental Medicine 191: 1303–18

    Article  CAS  PubMed  Google Scholar 

  166. Martin F, Oliver AM, Kearney JF. 2001. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14: 617–29

    Article  CAS  PubMed  Google Scholar 

  167. Saikh KU, Kissner TL, Sultana A, Ruthel G, Ulrich RG. 2004. Human monocytes infected with Yersinia pestis express cell surface TLR9 and differentiate into dendritic cells. Journal of Immunology 173: 7426–34

    CAS  Google Scholar 

  168. Ha S-a, Tsuji M, Suzuki K, Meek B, Yasuda N, Kaisho T, Fagarasan S. 2006. Regulation of B1 cell migration by signals through Toll-like receptors. Journal of Experimental Medicine 203: 2541–50

    Article  CAS  PubMed  Google Scholar 

  169. Dasari P, Nicholson IC, Hodge G, Dandie GW, Zola H. 2005. Expression of toll-like receptors on B lymphocytes. Cellular Immunology 236: 140–5

    Article  CAS  PubMed  Google Scholar 

  170. Fagarasan S, Shinkura R, Kamata T, Nogaki F, Ikuta K, Tashiro K, Honjo T. 2000. Alymphoplasia (aly)-type nuclear factor kappaB-inducing kinase (NIK) causes defects in secondary lymphoid tissue chemokine receptor signaling and homing of peritoneal cells to the gut-associated lymphatic tissue system. Journal of Experimental Medicine 191:1477–86

    Article  CAS  PubMed  Google Scholar 

  171. Ishikawa S, Sato T, Abe M, Nagai S, Onai N, Yoneyama H, Zhang Y, Suzuki T, Hashimoto S, Shirai T, Lipp M, Matsushima K. 2001. Aberrant high expression of B lymphocyte chemokine (BLC/CXCL13) by C11b+CD11c+ dendritic cells in murine lupus and preferential chemotaxis of B1 cells towards BLC.[see comment]. Journal of Experimental Medicine 193: 1393–402

    Article  CAS  PubMed  Google Scholar 

  172. Rui L, Vinuesa CG, Blasioli J, Goodnow CC. 2003. Resistance to CpG DNA-induced autoimmunity through tolerogenic B cell antigen receptor ERK signaling. Nature Immunology 4: 594–600

    Article  CAS  PubMed  Google Scholar 

  173. Bernasconi NL, Traggiai E, Lanzavecchia A. 2002. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298: 2199–202

    Article  CAS  PubMed  Google Scholar 

  174. Re F, Strominger JL. 2001. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. Journal of Biological Chemistry 276: 37692–9

    Article  CAS  PubMed  Google Scholar 

  175. Parker LC, Whyte MKB, Vogel SN, Dower SK, Sabroe I. 2004. Toll-like receptor (TLR)2 and TLR4 agonists regulate CCR expression in human monocytic cells. Journal of Immunology 172: 4977–86

    CAS  Google Scholar 

  176. Smith MF, Jr., Mitchell A, Li G, Ding S, Fitzmaurice AM, Ryan K, Crowe S, Goldberg JB. 2003. Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-kappa B activation and chemokine expression by epithelial cells. Journal of Biological Chemistry 278: 32552–60

    Article  CAS  PubMed  Google Scholar 

  177. Kuroshima S, Sawa Y, Kawamoto T, Yamaoka Y, Notani K, Yoshida S, Inoue N. 2004. Expression of Toll-like receptors 2 and 4 on human intestinal lymphatic vessels. Microvascular Research 67: 90–5

    Article  CAS  PubMed  Google Scholar 

  178. Proost P, Verpoest S, Van de Borne K, Schutyser E, Struyf S, Put W, Ronsse I, Grillet B, Opdenakker G, Van Damme J. 2004. Synergistic induction of CXCL9 and CXCL11 by Toll-like receptor ligands and interferon-gamma in fibroblasts correlates with elevated levels of CXCR3 ligands in septic arthritis synovial fluids. Journal of Leukocyte Biology 75: 777–84

    Article  CAS  PubMed  Google Scholar 

  179. Schaefer TM, Fahey JV, Wright JA, Wira CR. 2005. Innate immunity in the human female reproductive tract: antiviral response of uterine epithelial cells to the TLR3 agonist poly(I:C). Journal of Immunology 174: 992–1002

    CAS  Google Scholar 

  180. Wang Y, Abel K, Lantz K, Krieg AM, McChesney MB, Miller CJ. 2005. The Toll-like receptor 7 (TLR7) agonist, imiquimod, and the TLR9 agonist, CpG ODN, induce antiviral cytokines and chemokines but do not prevent vaginal transmission of simian immunodeficiency virus when applied intravaginally to rhesus macaques.[erratum appears in J Virol. 2006 Sep;80(17):8846]. Journal of Virology 79: 14355–70

    Article  CAS  PubMed  Google Scholar 

  181. Holmgren J, Lonnroth I, Mansson J, Svennerholm L. 1975. Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. Proceedings of the National Academy of Sciences of the United States of America 72: 2520–4

    Google Scholar 

  182. Bromander AK, Kjerrulf M, Holmgren J, Lycke N. 1993. Cholera toxin enhances alloantigen presentation by cultured intestinal epithelial cells. Scandinavian Journal of Immunology 37: 452–8

    Article  CAS  PubMed  Google Scholar 

  183. McGee DW, Elson CO, McGhee JR. 1993. Enhancing effect of cholera toxin on interleukin-6 secretion by IEC-6 intestinal epithelial cells: mode of action and augmenting effect of inflammatory cytokines. Infection and Immunity 61: 4637–44

    CAS  PubMed  Google Scholar 

  184. Bromander A, Holmgren J, Lycke N. 1991. Cholera toxin stimulates IL-1 production and enhances antigen presentation by macrophages in vitro. Journal of Immunology 146:2908–14

    CAS  Google Scholar 

  185. Hieshima K, Kawasaki Y, Hanamoto H, Nakayama T, Nagakubo D, Kanamaru A, Yoshie O. 2004. CC chemokine ligands 25 and 28 play essential roles in intestinal extravasation of IgA antibody-secreting cells. Journal of Immunology 173: 3668–75

    CAS  Google Scholar 

  186. Anjuere F, Luci C, Lebens M, Rousseau D, Hervouet C, Milon G, Holmgren J, Ardavin C, Czerkinsky C. 2004. In vivo adjuvant-induced mobilization and maturation of gut dendritic cells after oral administration of cholera toxin. Journal of Immunology 173: 5103–11

    CAS  Google Scholar 

  187. Yamamoto S, Takeda Y, Yamamoto M, Kurazono H, Imaoka K, Yamamoto M, Fujihashi K, Noda M, Kiyono H, McGhee JR. 1997. Mutants in the ADP-ribosyltransferase cleft of cholera toxin lack diarrheagenicity but retain adjuvanticity. Journal of Experimental Medicine 185: 1203–10

    Article  CAS  PubMed  Google Scholar 

  188. Fontaine A, Arondel J, Sansonetti PJ. 1988. Role of Shiga toxin in the pathogenesis of bacillary dysentery, studied by using a Tox- mutant of Shigella dysenteriae 1. Infection and Immunity 56: 3099–109

    CAS  PubMed  Google Scholar 

  189. Miyamoto Y, Iimura M, Kaper JB, Torres AG, Kagnoff MF. 2006. Role of Shiga toxin versus H7 flagellin in enterohaemorrhagic Escherichia coli signalling of human colon epithelium in vivo. Cellular Microbiology 8: 869–79

    Article  CAS  PubMed  Google Scholar 

  190. Thorpe CM, Hurley BP, Lincicome LL, Jacewicz MS, Keusch GT, Acheson DW. 1999. Shiga toxins stimulate secretion of interleukin-8 from intestinal epithelial cells. Infection and Immunity 67: 5985–93

    CAS  PubMed  Google Scholar 

  191. de Silva DG, Mendis LN, Sheron N, Alexander GJ, Candy DC, Chart H, Rowe B. 1993. Concentrations of interleukin 6 and tumour necrosis factor in serum and stools of children with Shigella dysenteriae 1 infection.[see comment]. Gut 34: 194–8

    Article  PubMed  Google Scholar 

  192. Harrison LM, van den Hoogen C, van Haaften WCE, Tesh VL. 2005. Chemokine expression in the monocytic cell line THP-1 in response to purified shiga toxin 1 and/or lipopolysaccharides. Infection and Immunity 73: 403–12

    Article  CAS  PubMed  Google Scholar 

  193. Sasaki S, Omoe K, Tagawa Yi, Iwakura Y, Sekikawa K, Shinagawa K, Nakane A. 2002. Roles of gamma interferon and tumor necrosis factor-alpha in shiga toxin lethality. Microbial Pathogenesis 33: 43–7

    Article  CAS  PubMed  Google Scholar 

  194. Ohmura M, Yamamoto M, Tomiyama-Miyaji C, Yuki Y, Takeda Y, Kiyono H. 2005. Nontoxic Shiga toxin derivatives from Escherichia coli possess adjuvant activity for the augmentation of antigen-specific immune responses via dendritic cell activation. Infection and Immunity 73: 4088–97

    Article  CAS  PubMed  Google Scholar 

  195. Duverger A, Jackson RJ, van Ginkel FW, Fischer R, Tafaro A, Leppla SH, Fujihashi K, Kiyono H, McGhee JR, Boyaka PN. 2006. Bacillus anthracis edema toxin acts as anadjuvant for mucosal immune responses to nasally administered vaccine antigens. Journal of Immunology 176: 1776–83

    CAS  Google Scholar 

  196. Aloni-Grinstein R, Gat O, Altboum Z, Velan B, Cohen S, Shafferman A. 2005. Oral spore vaccine based on live attenuated nontoxinogenic Bacillus anthracis expressing recombinant mutant protective antigen. Infection and Immunity 73: 4043–53

    Article  CAS  PubMed  Google Scholar 

  197. Ghosh D, Porter E, Shen B, Lee SK, Wilk D, Drazba J, Yadav SP, Crabb JW, Ganz T, Bevins CL. 2002. Paneth cell trypsin is the processing enzyme for human defensin-5.[see comment]. Nature Immunology 3: 583–90

    Article  CAS  PubMed  Google Scholar 

  198. Katze MG, He Y, Gale M, Jr. 2002. Viruses and interferon: a fight for supremacy. Nature Reviews Immunology 2: 675–87

    Article  CAS  PubMed  Google Scholar 

  199. Taniguchi T, Takaoka A. 2002. The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Current Opinion in Immunology 14: 111–6

    Article  CAS  PubMed  Google Scholar 

  200. Tough DF, Sun S, Zhang X, Sprent J. 1999. Stimulation of naive and memory T cells by cytokines. Immunological Reviews 170: 39–47

    Article  CAS  PubMed  Google Scholar 

  201. Nguyen KB, Watford WT, Salomon R, Hofmann SR, Pien GC, Morinobu A, Gadina M, O’Shea JJ, Biron CA. 2002. Critical role for STAT4 activation by type 1 interferons in the interferon-gamma response to viral infection. Science 297: 2063–6

    Article  CAS  PubMed  Google Scholar 

  202. Sareneva T, Matikainen S, Kurimoto M, Julkunen I. 1998. Influenza A virus-induced IFN-alpha/beta and IL-18 synergistically enhance IFN-gamma gene expression in human T cells. Journal of Immunology 160: 6032–8

    CAS  Google Scholar 

  203. Rogge L, D’Ambrosio D, Biffi M, Penna G, Minetti LJ, Presky DH, Adorini L, Sinigaglia F. 1998. The role of Stat4 in species-specific regulation of Th cell development by type I IFNs. Journal of Immunology 161: 6567–74

    CAS  Google Scholar 

  204. Le Bon A, Etchart N, Rossmann C, Ashton M, Hou S, Gewert D, Borrow P, Tough DF. 2003. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon.[see comment]. Nature Immunology 4: 1009–15

    Article  CAS  PubMed  Google Scholar 

  205. Le Bon A, Schiavoni G, D’Agostino G, Gresser I, Belardelli F, Tough DF. 2001. Type i interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14: 461–70

    Article  CAS  PubMed  Google Scholar 

  206. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. 1999. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annual Review of Immunology 17: 189–220

    Article  CAS  PubMed  Google Scholar 

  207. Hoshino K, Kaisho T, Iwabe T, Takeuchi O, Akira S. 2002. Differential involvement of IFN-beta in Toll-like receptor-stimulated dendritic cell activation. International Immunology 14: 1225–31

    Article  CAS  PubMed  Google Scholar 

  208. Honda K, Sakaguchi S, Nakajima C, Watanabe A, Yanai H, Matsumoto M, Ohteki T, Kaisho T, Takaoka A, Akira S, Seya T, Taniguchi T. 2003. Selective contribution of IFN-alpha/beta signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proceedings of the National Academy of Sciences of the United States of America 100: 10872–7

    Google Scholar 

  209. Hoebe K, Janssen EM, Kim SO, Alexopoulou L, Flavell RA, Han J, Beutler B. 2003. Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways.[see comment]. Nature Immunology 4: 1223–9

    Article  CAS  PubMed  Google Scholar 

  210. MacKay I, Rosen F. 2000. Innate immunity. The New England Journal of Medicine 343: 338–44

    Article  Google Scholar 

  211. Parkin J, Cohen B. 2001. An overview of the immune system. Lancet 357: 1777–89

    Article  CAS  PubMed  Google Scholar 

  212. Iwata F, Joh T, Tada T, Okada N, Morgan BP, Yokoyama Y, Itoh M. 1999. Role of complement regulatory membrane proteins in ischaemia-reperfusion injury of rat gastric mucosa. Journal of Gastroenterology & Hepatology 14: 967–72

    Article  CAS  Google Scholar 

  213. Robertson J, Caldwell JR, Castle JR, Waldman RH. 1976. Evidence for the presence of components of the alternative (properdin) pathway of complement activation in respiratory secretions. Journal of Immunology 117: 900–3

    CAS  Google Scholar 

  214. Emancipator SN, Gallo GR, Lamm ME. 1985. IgA nephropathy: perspectives on pathogenesis and classification. Clinical Nephrology 24: 161–79

    CAS  PubMed  Google Scholar 

  215. Katz SI, Hall RP, 3rd, Lawley TJ, Strober W. 1980. Dermatitis herpetiformis: the skin and the gut. Annals of Internal Medicine 93: 857–74

    CAS  PubMed  Google Scholar 

  216. Tauber PF, Wettich W, Nohlen M, Zaneveld LJ. 1985. Diffusable proteins of the mucosa of the human cervix, uterus, and fallopian tubes: distribution and variations during the menstrual cycle. American Journal of Obstetrics & Gynecology 151: 1115–25

    CAS  Google Scholar 

  217. Laufer J, Oren R, Goldberg I, Horwitz A, Kopolovic J, Chowers Y, Passwell JH. 2000. Cellular localization of complement C3 and C4 transcripts in intestinal specimens from patients with Crohn’s disease. Clinical and Experimental Immunology 120: 30–7

    Article  CAS  PubMed  Google Scholar 

  218. Andoh A, Fujiyama Y, Bamba T, Hosoda S. 1993. Differential cytokine regulation of complement C3, C4, and factor B synthesis in human intestinal epithelial cell line, Caco-2. Journal of Immunology 151: 4239–47

    CAS  Google Scholar 

  219. da Rosa Utiyama SR, da Silva Kotze LM, de Messias Reason IT. 2005. Complement factor B allotypes in the susceptibility and severity of coeliac disease in patients and relatives. International Journal of Immunogenetics 32: 307–14

    Article  CAS  PubMed  Google Scholar 

  220. Pellis V, De Seta F, Crovella S, Bossi F, Bulla R, Guaschino S, Radillo O, Garred P, Tedesco F. 2005. Mannose binding lectin and C3 act as recognition molecules for infectious agents in the vagina. Clinical and Experimental Immunology 139: 120–6

    Article  CAS  PubMed  Google Scholar 

  221. Kelly P, Jack DL, Naeem A, Mandanda B, Pollok RC, Klein NJ, Turner MW, Farthing MJ. 2000. Mannose-binding lectin is a component of innate mucosal defense against Cryptosporidium parvum in AIDS. Gastroenterology 119: 1236–42

    Article  CAS  PubMed  Google Scholar 

  222. Smythies LE, Sellers M, Clements RH, Mosteller-Barnum M, Meng G, Benjamin WH, Orenstein JM, Smith PD. 2005. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. Journal of Clinical Investigation 115: 66–75

    CAS  PubMed  Google Scholar 

  223. Lundahl J, Skedinger M, Hed J, Johansson SG, Zetterstrom O. 1992. Lability in complement receptor mobilization of granulocytes in patients with bronchial hyperreactivity. Clinical & Experimental Allergy 22: 834–8

    Article  CAS  Google Scholar 

  224. Miyaguchi M, Uda H, Sakai S, Kubo T, Matsunaga T. 1988. Immunohistochemical studies of complement receptor (CR1) in cases with normal sinus mucosa and chronic sinusitis. Archives of Oto-Rhino-Laryngology 244: 350–4

    Article  CAS  PubMed  Google Scholar 

  225. Gallucci S, Matzinger P. 2001. Danger signals: SOS to the immune system. 13: 114–9

    CAS  Google Scholar 

  226. Wagner L, Yang OO, Garcia-Zepeda EA, Ge Y, Kalams SA, Walker BD, Pasternack MS, Luster AD. 1998. Beta-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans. Nature 391: 908–11

    Article  CAS  PubMed  Google Scholar 

  227. Rossi D, Zlotnik A. 2000. The biology of chemokines and their receptors. Annual Review of Immunology 18: 217–42

    Article  CAS  PubMed  Google Scholar 

  228. Sallusto F, Mackay CR, Lanzavecchia A. 2000. The role of chemokine receptors in primary, effector, and memory immune responses. Annual Review of Immunology 18:593–620

    Article  CAS  PubMed  Google Scholar 

  229. Randolph DA, Huang G, Carruthers CJ, Bromley LE, Chaplin DD. 1999. The role of CCR7 in TH1 and TH2 cell localization and delivery of B cell help in vivo. Science 286: 2159–62

    Article  CAS  PubMed  Google Scholar 

  230. Luster AD, Unkeless JC, Ravetch JV. 1985. Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 315: 672–6

    Article  CAS  PubMed  Google Scholar 

  231. Farber JM. 1990. A macrophage mRNA selectively induced by gamma-interferon encodes a member of the platelet factor 4 family of cytokines. Proceedings of the National Academy of Sciences of the United States of America 87: 5238–42

    Google Scholar 

  232. Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, Lin W, Boyd JG, Moser B, Wood DE, Sahagan BG, Neote K. 1998. Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. The Journal of Experimental Medicine 187: 2009–21

    Article  CAS  PubMed  Google Scholar 

  233. Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L, Clark-Lewis I, Baggiolini M, Moser B. 1996. Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. The Journal of Experimental Medicine 184: 963–9

    Article  CAS  PubMed  Google Scholar 

  234. Ziegler SF, Tough TW, Franklin TL, Armitage RJ, Alderson MR. 1991. Induction of macrophage inflammatory protein-1 beta gene expression in human monocytes by lipopolysaccharide and IL-7. Journal of Immunology 147: 2234–9

    CAS  Google Scholar 

  235. van der Velden VH, Verheggen MM, Bernasconi S, Sozzani S, Naber BA, van der Linden-van Beurden CA, Hoogsteden HC, Mantovani A, Versnel M. 1998. Interleukin-1beta and interferon-gamma differentially regulate release of monocyte chemotactic protein-1 and interleukin-8 by human bronchial epithelial cells. European Cytokine Network 9: 269–77

    PubMed  Google Scholar 

  236. Schrum S, Probst P, Fleischer B, Zipfel PF. 1996. Synthesis of the CC-chemokines MIP-1alpha, MIP-1beta, and RANTES is associated with a type 1 immune response. Journal of Immunology 157: 3598–604

    CAS  Google Scholar 

  237. John M, Hirst SJ, Jose PJ, Robichaud A, Berkman N, Witt C, Twort CH, Barnes PJ, Chung KF. 1997. Human airway smooth muscle cells express and release RANTES in response to T helper 1 cytokines: regulation by T helper 2 cytokines and corticosteroids. Journal of Immunology 158: 1841–7

    CAS  Google Scholar 

  238. Kim CH, Kunkel EJ, Boisvert J, Johnston B, Campbell JJ, Genovese MC, Greenberg HB, Butcher EC. 2001. Bonzo/CXCR6 expression defines type 1-polarized T-cell subsets with extralymphoid tissue homing potential. Journal of Clinical Investigation 107: 595–601

    Article  CAS  PubMed  Google Scholar 

  239. Palaniappan R, Singh S, Singh UP, Singh R, Ades EW, Briles DE, Hollingshead SK, Royal W, 3rd, Sampson JS, Stiles JK, Taub DD, Lillard JW, Jr. 2006. CCL5 modulates pneumococcal immunity and carriage. Journal of Immunology 176: 2346–56

    CAS  Google Scholar 

  240. Elson CO, Beagley KW, Sharmanov AT, Fujihashi K, Kiyono H, Tennyson GS, Cong Y, Black CA, Ridwan BW, McGhee JR. 1996. Hapten-induced model of murine inflammatory bowel disease: mucosa immune responses and protection by tolerance. Journal of Immunology 157: 2174–85

    CAS  Google Scholar 

  241. Singh UP, Singh S, Taub DD, Lillard JW, Jr. 2003. Inhibition of IFN-gamma-inducible protein-10 abrogates colitis in IL-10-/- mice. Journal of Immunology 171: 1401–6

    CAS  Google Scholar 

  242. Singh UP, Singh S, Iqbal N, Weaver CT, McGhee JR, Lillard JW, Jr. 2003. IFN-gamma-inducible chemokines enhance adaptive immunity and colitis. Journal of Interferon & Cytokine Research 23: 591–600

    Article  CAS  Google Scholar 

  243. Lezcano-Meza D, Davila-Davila B, Vega-Miranda A, Negrete-Garcia MC, Teran LM. 2003. Interleukin (IL)-4 and to a lesser extent either IL-13 or interferon-gamma regulate the production of eotaxin-2/CCL24 in nasal polyps. Allergy 58: 1011–7

    Article  CAS  PubMed  Google Scholar 

  244. Panina-Bordignon P, Papi A, Mariani M, Di Lucia P, Casoni G, Bellettato C, Buonsanti C, Miotto D, Mapp C, Villa A, Arrigoni G, Fabbri LM, Sinigaglia F. 2001. The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. Journal of Clinical Investigation 107: 1357–64

    Article  CAS  PubMed  Google Scholar 

  245. Balding CE, Howie AJ, Drake-Lee AB, Savage CO. 2001. Th2 dominance in nasal mucosa in patients with Wegener’s granulomatosis. Clinical and Experimental Immunology 125: 332–9

    Article  CAS  PubMed  Google Scholar 

  246. Terada N, Nomura T, Kim WJ, Otsuka Y, Takahashi R, Kishi H, Yamashita T, Sugawara N, Fukuda S, Ikeda-Ito T, Konno A. 2001. Expression of C-C chemokine TARC in human nasal mucosa and its regulation by cytokines.[see comment]. Clinical & Experimental Allergy 31: 1923–31

    Article  CAS  Google Scholar 

  247. Miyazaki E, Nureki S-i, Fukami T, Shigenaga T, Ando M, Ito K, Ando H, Sugisaki K, Kumamoto T, Tsuda T. 2002. Elevated levels of thymus- and activation-regulated chemokine in bronchoalveolar lavage fluid from patients with eosinophilic pneumonia. American Journal of Respiratory & Critical Care Medicine 165: 1125–31

    Google Scholar 

  248. Ma W, Bryce PJ, Humbles AA, Laouini D, Yalcindag A, Alenius H, Friend DS, Oettgen HC, Gerard C, Geha RS. 2002. CCR3 is essential for skin eosinophilia and airway hyperresponsiveness in a murine model of allergic skin inflammation. Journal of Clinical Investigation 109: 621–8

    CAS  PubMed  Google Scholar 

  249. Chiu B-C, Freeman CM, Stolberg VR, Komuniecki E, Lincoln PM, Kunkel SL, Chensue SW. 2003. Cytokine-chemokine networks in experimental mycobacterial and schistosomal pulmonary granuloma formation. American Journal of Respiratory Cell and Molecular Biology 29: 106–16

    Article  CAS  PubMed  Google Scholar 

  250. Zimmermann N, Hershey GK, Foster PS, Rothenberg ME. 2003. Chemokines in asthma: cooperative interaction between chemokines and IL-13. The Journal of Allergy and Clinical Immunology 111: 227–42; quiz 43

    Article  CAS  PubMed  Google Scholar 

  251. Singh UP, Singh S, Ravichandran P, Taub DD, Lillard JW, Jr. 2004. Viral macrophage-inflammatory protein-II: a viral chemokine that differentially affects adaptive mucosal immunity compared with its mammalian counterparts. Journal of Immunology 173: 5509–16

    CAS  Google Scholar 

  252. Hoover DM, Boulegue C, Yang D, Oppenheim JJ, Tucker K, Lu W, Lubkowski J. 2002. The structure of human macrophage inflammatory protein-3alpha/CCL20. Linking antimicrobial and CC chemokine receptor-6-binding activities with human beta-defensins. Journal of Biological Chemistry 277: 37647–54

    Article  CAS  PubMed  Google Scholar 

  253. Shiba H, Mouri Y, Komatsuzawa H, Ouhara K, Takeda K, Sugai M, Kinane DF, Kurihara H. 2003. Macrophage inflammatory protein-3alpha and beta-defensin-2 stimulate dentin sialophosphoprotein gene expression in human pulp cells. Biochemical & Biophysical Research Communications 306: 867–71

    Article  CAS  Google Scholar 

  254. Petkovic V, Moghini C, Paoletti S, Uguccioni M, Gerber B. 2004. I-TAC/CXCL11 is a natural antagonist for CCR5. Journal of leukocyte biology 76: 701–8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Singh, R., Lillard, J.W. (2008). Bridging Mucosal Innate Immunity to the Adaptive Immune System. In: Vajdy, M. (eds) Immunity Against Mucosal Pathogens. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8412-6_4

Download citation

Publish with us

Policies and ethics