Skip to main content

Alternative Means to Obtain Pluripotent Stem Cells

  • Chapter
Book cover Stem Cells, Human Embryos and Ethics
  • 986 Accesses

The isolation and use of pluripotent stem cell lines from human embryos is ethically controversial because it normally involves the destruction of embryos. Pluripotent human stem cells are by definition able to produce all cell types in adult individuals. Thus, they are highly valuable as research tools for both basic and applied research, in addition to an anticipated usage in regenerative medicine. Currently, the human embryo is the main source of pluripotent stem cells. Recently, however, a number of alternative strategies has been proposed indicating that pluripotent stem cells can be obtained without destructing viable human embryos. I will here give an introduction to some of these alternative strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chen, Y., He, Z. X., Liu, A., Wang, K., Mao, W. W., Chu, J. X., Lu, Y., Fang, Z. F., Shi, Y. T., Yang, Q. Z., Chen, da. Y., Wang, M. K., Li, J. S., Huang, S. L., Kong, X. Y., Shi, Y. Z., Wang, Z. Q., Xia, J. H., Long, Z. G., Xue, Z. G., Ding, W. X., and Sheng, H. Z. (2003). “Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes”, Cell Res., vol. 13, no. 4, pp. 251–263.

    Article  PubMed  Google Scholar 

  • Chung, Y., Klimanskaya, I., Becker, S., Marh, J., Lu, S. J., Johnson, J., Meisner, L., and Lanza, R. (2006). “Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres”, Nature, vol. 439, no. 7073, pp. 216–219.

    Article  PubMed  CAS  Google Scholar 

  • Collas, P. and Hakelien, A. M. (2003). “Teaching cells new tricks”, Trends Biotechnol., vol. 21, no. 8, pp. 354–361.

    Article  PubMed  CAS  Google Scholar 

  • Colman, A. and Burley, J. (2007). “Stem cells: recycling the abnormal”, Nature, vol. 447, no. 7145, pp. 649–650.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, C. A., Atienza, J., Melton, D. A., and Eggan, K. (2005). “Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells”, Science, vol. 309, no. 5739, pp. 1369–1373.

    Article  PubMed  CAS  Google Scholar 

  • Cyranoski, D. (2006). “Stem cells from testes: could it work?”, Nature, vol. 440, no. 7084, pp. 586–587.

    Article  PubMed  CAS  Google Scholar 

  • Cyranoski, D. (2007). “Teams trail genes for human ‘stemness’ ”, Nat. Med., vol. 13, no. 7, p. 766.

    Article  PubMed  CAS  Google Scholar 

  • Daley, G. Q., Ahrlund, R. L., Auerbach, J. M., Benvenisty, N., Charo, R. A., Chen, G., Deng, H. K., Goldstein, L. S., Hudson, K. L., Hyun, I., Junn, S. C., Love, J., Lee, E. H., McLaren, A., Mummery, C. L., Nakatsuji, N., Racowsky, C., Rooke, H., Rossant, J., Scholer, H. R., Solbakk, J. H., Taylor, P., Trounson, A. O., Weissman, I. L., Wilmut, I., Yu, J., and Zoloth, L. (2007). “Ethics. The ISSCR guidelines for human embryonic stem cell research”, Science, vol. 315, no. 5812, pp. 603–604.

    Article  PubMed  CAS  Google Scholar 

  • De, C. P., Bartsch, G., Jr., Siddiqui, M. M., Xu, T., Santos, C. C., Perin, L., Mostoslavsky, G., Serre, A. C., Snyder, E. Y., Yoo, J. J., Furth, M. E., Soker, S., and Atala, A. (2007). “Isolation of amniotic stem cell lines with potential for therapy”, Nat. Biotechnol., vol. 25, no. 1, pp. 100–106.

    Article  CAS  Google Scholar 

  • Egli, D., Rosains, J., Birkhoff, G., and Eggan, K. (2007). “Developmental reprogramming after chromosome transfer into mitotic mouse zygotes”, Nature, vol. 447, no. 7145, pp. 679–685.

    Article  PubMed  CAS  Google Scholar 

  • Guan, K., Nayernia, K., Maier, L. S., Wagner, S., Dressel, R., Lee, J. H., Nolte, J., Wolf, F., Li, M., Engel, W., and Hasenfuss, G. (2006). “Pluripotency of spermatogonial stem cells from adult mouse testis”, Nature, vol. 440, no. 7088, pp. 1199–1203.

    Article  PubMed  CAS  Google Scholar 

  • Holden, C. and Vogel, G. (2004). “Cell biology. A technical fix for an ethical bind?”, Science, vol. 306, no. 5705, pp. 2174–2176.

    Article  PubMed  CAS  Google Scholar 

  • Hurlbut, W. B. (2005). “Altered nuclear transfer: a way forward for embryonic stem cell research”, Stem Cell Rev., vol. 1, no. 4, pp. 293–300.

    Article  PubMed  Google Scholar 

  • Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W. C., Largaespada, D. A., and Verfaillie, C. M. (2002). “Pluripotency of mesenchymal stem cells derived from adult marrow”, Nature, vol. 418, no. 6893, pp. 41–49.

    Article  PubMed  CAS  Google Scholar 

  • Kawase, E., Yamazaki, Y., Yagi, T., Yanagimachi, R., and Pedersen, R. A. (2000). “Mouse embryonic stem (ES) cell lines established from neuronal cell-derived cloned blastocysts”, Genesis, vol. 28, no. 3–4, pp. 156–163.

    Article  PubMed  CAS  Google Scholar 

  • Kiessling, A. A. (2005). “Eggs alone”, Nature, vol. 434, no. 7030, p. 145.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K., Lerou, P., Yabuuchi, A., Lengerke, C., Ng, K., West, J., Kirby, A., Daly, M. J., and Daley, G. Q. (2007). “Histocompatible embryonic stem cells by parthenogenesis”, Science, vol. 315, no. 5811, pp. 482–486.

    Article  PubMed  CAS  Google Scholar 

  • Klimanskaya, I., Chung, Y., Becker, S., Lu, S. J., and Lanza, R. (2006). “Human embryonic stem cell lines derived from single blastomeres”, Nature, vol. 444, no. 7118, pp. 481–485.

    Article  PubMed  CAS  Google Scholar 

  • Kogler, G., Sensken, S., Airey, J. A., Trapp, T., Muschen, M., Feldhahn, N., Liedtke, S., Sorg, R. V., Fischer, J., Rosenbaum, C., Greschat, S., Knipper, A., Bender, J., Degistirici, O., Gao, J., Caplan, A. I., Colletti, E. J., meida-Porada, G., Muller, H. W., Zanjani, E., and Wernet, P. (2004). “A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential”, J. Exp. Med., vol. 200, no. 2, pp. 123–135.

    Article  PubMed  Google Scholar 

  • Kono, T., Obata, Y., Wu, Q., Niwa, K., Ono, Y., Yamamoto, Y., Park, E. S., Seo, J. S., and Ogawa, H. (2004). “Birth of parthenogenetic mice that can develop to adulthood”, Nature, vol. 428, no. 6985, pp. 860–864.

    Article  PubMed  CAS  Google Scholar 

  • Landry, D. W. and Zucker, H. A. (2004). “Embryonic death and the creation of human embryonic stem cells”, J. Clin. Invest., vol. 114, no. 9, pp. 1184–1186.

    PubMed  CAS  Google Scholar 

  • Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., Stadtfeld, M., Yachechko, R., Tchieu, J., Jaenisch, R., Plath, K., and Hochedlinger, K. (2007). “Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution”, Cell Stem Cell, vol. 1, no. 1, pp. 55–70.

    Article  PubMed  CAS  Google Scholar 

  • Meissner, A. and Jaenisch, R. (2006). “Generation of nuclear transfer-derived pluripotent ES cells from cloned Cdx2-deficient blastocysts”, Nature, vol. 439, no. 7073, pp. 212–215.

    Article  PubMed  CAS  Google Scholar 

  • Miki, T. and Strom, S. C. (2006). “Amnion-derived pluripotent/multipotent stem cells”, Stem Cell Rev., vol. 2, no. 2, pp. 133–142.

    Article  PubMed  CAS  Google Scholar 

  • Munsie, M. J., Michalska, A. E., O’Brien, C. M., Trounson, A. O., Pera, M. F., and Mountford, P. S. (2000). “Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei”, Curr. Biol., vol. 10, no. 16, pp. 989–992.

    Article  PubMed  CAS  Google Scholar 

  • NIH (2007). Information on Eligibility Criteria for Federal Funding of Research on Human Embryonic Stem Cells.

    Google Scholar 

  • Okita, K., Ichisaka, T., and Yamanaka, S. (2007). “Generation of germline-competent induced pluripotent stem cells”, Nature, vol. 448, no. 7151, pp. 313–317.

    Article  PubMed  CAS  Google Scholar 

  • Revazova, E. S., Turovets, N. A., Kochetkova, O. D., Kindarova, L. B., Kuzmichev, L. N., Janus, J. D., and Pryzhkova, M. V. (2007). “Patient-specific stem cell lines derived from human parthenogenetic blastocysts”, Cloning and Stem Cells. vol. 9 no. 3, pp. 432–449.

    Article  PubMed  CAS  Google Scholar 

  • Rossant, J. (2007). “Stem cells: the magic brew”, Nature, vol. 448, no. 7151, pp. 260–262.

    Article  PubMed  CAS  Google Scholar 

  • Shamblott, M. J., Axelman, J., Wang, S., Bugg, E. M., Littlefield, J. W., Donovan, P. J., Blumenthal, P. D., Huggins, G. R., and Gearhart, J. D. (1998). “Derivation of pluripotent stem cells from cultured human primordial germ cells” [published erratum appears in Proc Natl Acad Sci U S A 1999 Feb 2; 96(3):1162], Proc. Natl. Acad. Sci. U S A, vol. 95, no. 23, pp. 13726–13731.

    Article  PubMed  CAS  Google Scholar 

  • Sritanaudomchai, H., Pavasuthipaisit, K., Kitiyanant, Y., Kupradinun, P., Mitalipov, S., and Kusamran, T. (2007). “Characterization and multilineage differentiation of embryonic stem cells derived from a buffalo parthenogenetic embryo”, Mol. Reprod. Dev., vol. 74, no. 10, pp. 1295–1302.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K. and Yamanaka, S. (2006). “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors”, Cell, vol. 126, no. 4, pp. 663–676.

    Article  PubMed  CAS  Google Scholar 

  • The President’s Council on Bioethics 2005, White paper: alternative sources of human pluripotent stem cells.

    Google Scholar 

  • Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M. (1998). “Embryonic stem cell lines derived from human blastocysts” [published erratum appears in Science 1998 Dec 4; 282(5395):1827], Science, vol. 282, no. 5391, pp. 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  • Verlinsky, Y., Strelchenko, N., Kukharenko, V., Rechitsky, S., Verlinsky, O., Galat, V., and Kuliev, A. (2005). “Human embryonic stem cell lines with genetic disorders”, Reprod. Biomed. Online., vol. 10, no. 1, pp. 105–110.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, G. (2006). “Stem cells. Scientists derive line from single embryo cell”, Science, vol. 313, no. 5790, p. 1031.

    Article  PubMed  CAS  Google Scholar 

  • Vrana, K. E., Hipp, J. D., Goss, A. M., McCool, B. A., Riddle, D. R., Walker, S. J., Wettstein, P. J., Studer, L. P., Tabar, V., Cunniff, K., Chapman, K., Vilner, L., West, M. D., Grant, K. A., and Cibelli, J. B. (2003). “Nonhuman primate parthenogenetic stem cells”, Proc. Natl. Acad. Sci. U.S.A, vol. 100 Suppl 1, pp. 11911–11916.

    Article  PubMed  CAS  Google Scholar 

  • Wakayama, S., Hikichi, T., Suetsugu, R., Sakaide, Y., Bui, H. T., Mizutani, E., and Wakayama, T. (2007). “Efficient establishment of mouse embryonic stem cell lines from single blastomeres and polar bodies”, Stem Cells, vol. 25, no. 4, pp. 986–993.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., Tang, X., Niu, Y., Chen, H., Li, B., Li, T., Zhang, X., Hu, Z., Zhou, Q., and Ji, W. (2007). “Generation and characterization of rabbit embryonic stem cells”, Stem Cells, vol. 25, no. 2, pp. 481–489.

    Article  PubMed  CAS  Google Scholar 

  • Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., Bernstein, B. E., and Jaenisch, R. (2007). “In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state”, Nature, vol. 448, no. 7151, pp. 318–324.

    Article  PubMed  CAS  Google Scholar 

  • Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. (1997). “Viable offspring derived from fetal and adult mammalian cells” [published erratum appears in Nature 1997 Mar 13; 386(6621):200], Nature, vol. 385, no. 6619, pp. 810–813.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Stojkovic, P., Przyborski, S., Cooke, M., Armstrong, L., Lako, M., and Stojkovic, M. (2006). “Derivation of human embryonic stem cells from developing and arrested embryos”, Stem Cells, vol. 24, no. 12, pp. 2669–2676.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Borge, O.J. (2008). Alternative Means to Obtain Pluripotent Stem Cells. In: Østnor, L. (eds) Stem Cells, Human Embryos and Ethics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6989-5_3

Download citation

Publish with us

Policies and ethics