Skip to main content

Apricots

  • Chapter

Abstract

Several dozen publicly-sponsored breeding programs around the world are developing new fresh market and processing apricot cultivars. Apricots have a more limited environmental range than other tree fruits, and therefore, many breeders are interested in broadening adaptations for specific growing regions. Plum Pox Virus resistance is a widely pursued objective and there are ongoing efforts to identify molecular markers that are closely linked to disease resistance. Fruit sugars, acids, pigments and volatile aromatic compounds are being quantified in newly bred and historically important cultivars. Researchers have identified and characterized several stylar ribonucleases associated with self-unfruitfulness. Molecular phylogenetic studies are examining the dispersion routes of apricot germplasm from its centers of origin to those cultivars currently in production. Although several linkage maps have been developed using diverse parents and a wide variety of molecular markers from apricot and other Prunus crops, the scarcity of documented monogenic characters in apricot limits the effectiveness of marker assisted selection for economically important traits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad R, Potter D, Southwick SM (2004) Identification and characterization of plum and pluot cultivars by microsatellite markers. J Hortic Sci Biotechnol 79:164–169

    Google Scholar 

  • Alburquerque N, Egea J, Pérez-Tornero O, Burgos L (2002) Genotyping apricot cultivars for self-(in)compatibility by means of RNases associated with S alleles. Plant Breeding 121:343–347

    Article  CAS  Google Scholar 

  • Asma BM, Ozturk K (2005) Analysis of morphological, pomological and yield characteristics of some apricot germplasm in Turkey. Genet Resour Crop Evol 52:305–313

    Article  Google Scholar 

  • Badenes ML, Asins MJ, Carbonell EA, Llácer G (1996) Genetic diversity in apricot (Prunus armeniaca L.) aimed at improving resistance to plum pox virus. Plant Breeding 115:133–139

    Article  CAS  Google Scholar 

  • Badenes ML, Martínez-Calvo J, Llácer G (1998) Analysis of apricot germplasm from the European ecogeographical group. Euphytica 102:93–99

    Article  Google Scholar 

  • Badenes ML, Hurtado MA, Sanz F, Archelos DM, Burgos L, Egea J, Llácer G (2000) Searching for molecular markers linked to male sterility and self-compatibility in apricot. Plant Breeding 119:157–160

    Article  CAS  Google Scholar 

  • Bailey LH (1916) Prunus. In: The standard cyclopedia of horticulture, vol. V. P–R. Mount Pleasant Press, J. Horace McFarland Co., Harrisburg, PA, pp 2822–2845

    Google Scholar 

  • Bassi D, Bartolozzi F, Muzzi E (1996) Patterns and heritability of carboxylic acids and soluble sugars in fruits of apricot (Prunus armeniaca L.). Plant Breeding 115:67–70

    Article  CAS  Google Scholar 

  • Benedikova D (2004) The importance of genetic resources for apricot breeding in Slovakia. J Fruit Orn Plant Res 12:107–113

    Google Scholar 

  • Bordeianu T, Constantinescu N, Stefan N (1967) Pomologia Republicii Socialiste Romania. V. Caisul – Piersicul. (in Romanian) Bucuresti, Romania

    Google Scholar 

  • Bortiri E, Oh SH, Jiang J, Baggett S, Granger A, Weeks C, Buckingham M, Potter D, Parfitt DE (2001) Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA. Syst Bot 26:797–807

    Google Scholar 

  • Bortiri E, Oh SH, Gao FY, Potter D (2002) The phylogenetic utility of nucleotide sequences of sorbitol 6-phosphate dehydrogenase in Prunus (Rosaceae). Am J Bot 89:1697–1708

    CAS  Google Scholar 

  • Brooks RM, Olmo HP (1952) Apricots. In: Registry of New Fruit and Nut Varieties 1920–1950. University of California Press, Berkeley, CA, pp 24–28

    Google Scholar 

  • Brooks RM, Olmo HP (1972) Apricots. In: Registry of New Fruit and Nut Varieties, 2nd edn. University of California Press, Berkeley, CA, pp 120–134

    Google Scholar 

  • Brown DS (1957) The rest period of apricot flower buds as described by a regression of time of bloom on temperature. Plant Physiol 32:75–85

    Article  PubMed  CAS  Google Scholar 

  • Burgos L, Berenguer T, Egea J (1993) Self- and cross-compatibility among apricot cultivars. HortScience 28:148–150

    Google Scholar 

  • Burgos L, Ledbetter CA (1993) Improved efficiency in apricot breeding: effects of embryo development and nutrient media on in vitro germination and seedling establishment. Plant Cell Tiss Organ Cult 35:217–222

    Article  Google Scholar 

  • Burgos L, Ledbetter CA (1994) Observations on inheritance of male sterility in apricot. HortScience 29:127

    Google Scholar 

  • Burgos L, Ledbetter CA, Pérez-Tornero O, Ortín-Párraga F, Egea J (1997) Inheritance of sexual incompatibility in apricot. Plant Breeding 116:383–386

    Article  Google Scholar 

  • Burgos L, Pérez-Tornero O, Ballester J, Olmos E (1998) Detection and inheritance of stylar ribonucleases associated with incompatibility alleles in apricot. Sex Plant Reprod 11:153–158

    Article  CAS  Google Scholar 

  • Burgos L, Alburquerque N (2003) Ethylene inhibitors and low kanamycin concentrations improve adventitious regeneration from apricot leaves. Plant Cell Reports 21:1167–1174

    Google Scholar 

  • Byrne DH, Littleton TG (1989a) Interspecific hybrid verification of plum × apricot hybrids via isozymes analyses. HortScience 24:132–134

    Google Scholar 

  • Byrne DH, Littleton TG (1989b) Characterization of isozymes variability in apricots. J Am Soc HortSci 114:674–678

    Google Scholar 

  • California Tree Fruit Agreement (2002) Press Release 5/9/2002. Tree fruit industry examines interspecific issues. http://eatcaliforniafruit.com/ppn/media/prDetail.asp?prID=15

    Google Scholar 

  • Candresse T, Mac Quaire G, Lanneau M, Busalem T, Wetzel T, Quiot-Douine L, Quiot JB, Dunez J (1994) Detection of Plum Pox potyvirus and analysis of its molecular variability using immunocapture-PCR. Eur Plant Prot Organ Bull 24:585–595

    Google Scholar 

  • Cesaraccio C, Spano D, Snyder RL, Duce P (2004) Chilling and forcing model to predict bud-burst of crop and forest species. Agric Forest Meteorology 126:1–13

    Article  Google Scholar 

  • Chao L, Walker DR (1966) Effects of temperature, chemicals and seed coat on apricot and peach seed germination and growth. Proc Amer Soc Hort Sci 88:232–238

    CAS  Google Scholar 

  • Couranjou J (1995) Genetic studies of 11 quantitative characters in apricot. Scientia Hort 61:61–75

    Article  Google Scholar 

  • Couvillon GA (1982) Leaf elemental content comparisons of own-rooted peach cultivars to the same cultivars on several peach seedling rootstocks. J Amer Soc Hort Sci 107:555–558

    CAS  Google Scholar 

  • Day LH (1953) Rootstocks for stone fruits. University of California, California Agricultural Experiment Station Extension Service Bull 736. 74p

    Google Scholar 

  • Dicenta F, Martínez-Gómez P, Burgos L, Egea J (2000) Inheritance of resistance to plum pox potyvirus (PPV) in apricot, Prunus armeniaca. Plant Breeding 119:161–164

    Article  Google Scholar 

  • Dondini L, Costa F, Tataranni G, Tartarini S, Sansavini S (2004) Cloning of apricot RGAs (Resistant Gene Analogs) and development of molecular markers associated with Sharka (PPV) resistance. J Hortic Sci Biotechnol 79: 729–734

    CAS  Google Scholar 

  • Dragovic-Uzelac V, Delonga K, Levaj B, Djakovic S, Pospisil J (2005) Phenolic profiles of raw apricots, pumpkins and their purees in the evaluation of apricot nectar and jam authenticity. J Agric Food Chem 53:4836–4842

    Article  PubMed  CAS  Google Scholar 

  • Egea J, Burgos L (1996) Detecting cross-incompatibility of three North American apricot cultivars and establishing the first incompatibility group in apricot. J Amer Soc Hort Sci 121:1002–1005

    Google Scholar 

  • Ercisli S (2004) A short review of the fruit germplasm resources of Turkey. Genet Resour Crop Evol 51:419–435

    Article  Google Scholar 

  • FAOSTAT data (2006) Last accessed February 2006. http://faostat.fao.org/faostat/

    Google Scholar 

  • Faust M, Surányi D, Nyujtó F (1998) Origin and dissemination of apricot. In: Janick J (ed) Horticultural Reviews, vol 22. John Wiley & Sons, Inc., pp 225–266

    Google Scholar 

  • French DA, Kader AA, Labavitch JM (1989) Softening of canned apricots: a chelation hypothesis. J Food Sci 54:86–89

    Article  Google Scholar 

  • García JE, Egea J, Egea L, Berenguer T (1988) The floral biology of certain apricot cultivars in Murcia. Adv Hort Sci 2:84–87

    Google Scholar 

  • Gathercole FJ, Wachtel MF, Magarey PA, Stevens KM (1987) Resistance of potted apricot and plum rootstocks to Verticillium dahliae (Kleb.). Aust Plant Path 16:88–91

    Article  Google Scholar 

  • Genovese A, Ugliano M, Pessina R, Gambuti A, Piombino P, Moio L (2004) Comparison of the aroma compounds in apricot (Prunus armeniaca L. cv Pellecchiella) and apple (Malus pumila L. cv Annurca) raw distillates. Ital J Food Sci 16:185–196

    CAS  Google Scholar 

  • Geuna F, Toschi M, Bassi D (2003) The use of AFLP markers for cultivar identification in apricot. Plant Breeding 122:526–531

    Article  CAS  Google Scholar 

  • Goffreda JC, Scope AL, Fiola JA (1995) Indole butyric acid induces regeneration of phenotypically normal apricot (Prunus armeniaca L.) plants from immature embryos. Plant Growth Regul 17:41–46

    CAS  Google Scholar 

  • Gómez E, Ledbetter CA (1993) Transmission of biochemical flavor constituents from apricot and plum to their interspecific hybrid. Plant Breeding 111:236–241

    Article  Google Scholar 

  • Gómez E, Ledbetter CA, Hartsell PL (1993) Volatile compounds in apricot, plum and their interspecific hybrids. J Agri Food Chem 41:1669–1676

    Article  Google Scholar 

  • Gómez E, Ledbetter CA (1997) Development of volatile compounds during fruit maturation: characterization of apricot and plum × apricot hybrids. J Sci Food Agric 74:541–546

    Article  Google Scholar 

  • Gómez E, Burgos L, Soriano C, Marín J (1998) Amygdalin content in the seeds of several apricot cultivars. J Sci Food Agric 77:184–186

    Article  Google Scholar 

  • Grisel TJ (1974) Prunus L. Cherry, peach and plum. pp 658–673 In: Seeds of Woody Plants in the United States (Schopmeyer CS, Technical Coordinator) Agriculture Handbook No. 450. Forest Service, USDA, Washington DC

    Google Scholar 

  • Gu C, Li C, Lu L, Jiang S, Alexander C, Bartholomew B, Brach AR, Boufford DE, Ikeda H, Ohba H, Robertson KR, Spongberg SA (2003) Rosaceae. In: Wu CY, Raven PH (eds) Flora of China, vol 9. (Pittosporaceae through Connaraceae). Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis, pp 46–434

    Google Scholar 

  • Guichard E, Fournier N (1990) Dosage des composés volatils présents dans différentes variétés d’abricots et corrélation avec la typicité d’arôme. 9° Colloque sur les recherches fruitières. Avignon, France, 4–6 December 1990. p 229–237

    Google Scholar 

  • Guichard E, Schlich P, Issanchou S (1990) Composition of apricot aroma: correlations between sensory and instrumental data. J Food Sci 55:735–738

    Article  CAS  Google Scholar 

  • Guichard E (1995) Chiral g-lactones, key compounds to apricot flavor. Sensory evaluation, quantification and chirospecific analysis in different varieties. In: Rouseff RL, Leahy MM (eds) Fruit Flavors: Biogenesis, Characterization and Authentication, American Chemical Society, Oxford University Press, New York, NY USA pp 258–267

    Google Scholar 

  • Gurrieri F, Audergon JM, Albagnac G, Reich M (2001) Soluble sugars and carboxylic acids in ripe apricot fruit as parameters for distinguishing different cultivars. Euphytica 117:183–189

    Article  CAS  Google Scholar 

  • Hagen LS, Khadari B, Lambert P, Audergon JM (2002) Genetic diversity in apricot revealed by AFLP markers: species and cultivar comparisons. Theor Appl Genet105:298–305

    Article  PubMed  CAS  Google Scholar 

  • Harada Y, Nakao S, Sasaki M, Sasaki Y, Ichihashi Y, Sano T (2004) Monilia mumecola, a new brown rot fungus on Prunus mume in Japan. J Gen Plant Path 70:297–307

    Article  Google Scholar 

  • Hedrick UP (1925) Varieties of Apricots. In: Bailey LH (ed.) Systematic Pomology. The Macmillan Company, New York, pp 313–319

    Google Scholar 

  • Hesse CO (1952) Apricot Culture in California. California Agricultural Experiment Station Extension Service Circular 412

    Google Scholar 

  • Hormaza JI (2002) Molecular characterization and similarity relationships among apricot(Prunus armeniaca L.) genotypes using simple sequence repeats. Theor Appl Genet 104:321–328

    Article  PubMed  CAS  Google Scholar 

  • Hou HY (1983) Vegetation of China with reference to its geographical distribution. Ann Missouri Bot Gard 70:509–548

    Article  Google Scholar 

  • Hurtado MA, Romero C, Vilanova S, Abbott AG, Llácer G, Badenes ML (2002) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.), and mapping of PPV (sharka) resistance. Theor Appl Genet 105:182–191

    Article  PubMed  CAS  Google Scholar 

  • Hurtado MA, Westman A, Beck E, Abbott GA, Llácer G, Badenes ML (2002) Genetic diversity in apricot cultivars based on AFLP markers. Euphytica 127:297–301

    Article  CAS  Google Scholar 

  • Joshi VK, Bhutani VP, Sharma RC (1990) The effect of dilution and addition of nitrogen source on chemical, mineral and sensory qualities of wild apricot wine. American J Enol Vit 41:229–231

    CAS  Google Scholar 

  • Karayiannis I, Mainou A (1994) Resistance to plum pox potyvirus in apricots. Bulletin OEPP 24:761–765

    Google Scholar 

  • Khadari B, Krichen L, Lambert P, Marrakchi M, Audergon JM (2006) Genetic structure in Tunisian apricot, Prunus armeniaca L., populations propagated by grafting: a signature of bottleneck effects and ancient propagation by seedlings. Genet Resour Crop Evol 53:811–819

    Article  Google Scholar 

  • Kollerová E, Nováková S, Subr Z, Glasa M (2006) Plum Pox Virus Mixed Infection Detected on Apricot in Pakistan. Plant Dis 90:1108

    Article  Google Scholar 

  • Kostina KF (1936) The Apricot. (in Russian) Supplement No. 83 to the bulletin of applied botany, genetics and plant breeding. Lenin Academy of Agricultural Sciences, Institute of Plant Industry, Leningrad, Russia

    Google Scholar 

  • Kostina KF (1969) The use of varietal resources of apricots for breeding. (in Russian) Trud Nikit Bot Sad 40:45–63

    Google Scholar 

  • Kyotani H, Yoshida M, Yamaguchi M, Ishizawa Y, Kozono T, Nishida T, Kanato K (1988) Breeding of plum-mume parental lines ‘PM-1-1’ and ‘PM-1-4’, interspecific hybrids of Japanese Plum (Prunus salicina Lindl.) and Mume (P. mume Sieb. et Zucc.). (in Japanese). Bull Fruit Tree Res Sta (Ministry of Agriculture, Forestry and Fisheries). Series A, 15:1–10

    Google Scholar 

  • Laimer da Câmara Machado M, da Câmara Machado A., Hanzer V, Weiss H, Regner F, Steinkellner H, Mattanovich D, Plail R, Knapp E, Kalthoff B, Katinger H (1992) Regeneration of transgenic plants of Prunus armeniaca containing the coat protein gene of Plum Pox Virus. Plant Cell Rep 11:25–29

    Google Scholar 

  • Lambert P, Hagen LS, Arus P, Augerdon JM (2004) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond Texas × peach Earlygold reference map for Prunus. Theor Appl Genet 108:1120–1130

    Article  PubMed  CAS  Google Scholar 

  • Layne REC (1984) ‘Harglow’ apricot. HortScience 19:136–137

    Google Scholar 

  • Ledbetter CA, Gómez E, Burgos L, Peterson S (1996a) Evaluation of fruit quality of apricot cultivars and selections. J Tree Fruit Prod 1:73–86

    Article  Google Scholar 

  • Ledbetter CA, Peterson S, Palmquist D (1996b) In vitro tolerance of six clonally propagated Prunus accessions. J Genet Breed 50:1–6

    Google Scholar 

  • Ledbetter CA, Obenland D, Palmquist D (2000) Rutin and astragalin in dried apricot leaves as affected by leaf type, apricot accession and leaf harvest date. J Genet Breed 54:41–47

    CAS  Google Scholar 

  • Ledbetter CA, Aung LH, Palmquist DE (2002) The effect of fruit maturity on quality and colour shift of dried ‘Patterson’ apricot during eight months of cold storage. J Hortic Sci Biotechnol 77:526–533

    CAS  Google Scholar 

  • Ledbetter CA, Peterson SJ (2004) Utilization of Pakistani apricot (Prunus armeniaca L.) germplasm for improving Brix levels in California adapted apricots. Plant Genet Resour Newsl 140:14–22

    Google Scholar 

  • Ledbetter CA, Peterson S, Jenner J (2006) Modification of sugar profiles in California adapted apricots (Prunus armeniaca L.) through breeding with Central Asian germplasm. Euphytica 148:251–259

    Article  CAS  Google Scholar 

  • Lichou J, Audubert A (1989) L’abricotier. Centre Technique Interprofessionnel des Fruits et Légumes. (CTIFL). ISBN: 2-901002-69-2

    Google Scholar 

  • Lingdi L, Bartholomew B (2003) Armeniaca. In: Wu CY, Raven PH (eds.), Flora of China, vol 9 (Pittosporaceae through Connaraceae). Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis. pp 396–401

    Google Scholar 

  • Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc Internat Plant Propagators Soc 30:421–427

    Google Scholar 

  • Lopes MS, Sefc KM, Laimer M, Da Camara Machado A (2002) Identification of microsatellite loci in apricot. Mol Ecology Notes 2:24–26

    Article  CAS  Google Scholar 

  • Löschnig HJ, Passecker DF (1954) Die Marille (Aprikose) und ihre Kultur. (in German) Österreichischer Agrarverlag Druck – Austrian Agrarian Publishing Company, Vienna, Austria

    Google Scholar 

  • Lo Voi A, Impembo M, Fasanaro G, Castaldo D (1995) Chemical characterization of apricot puree. J Food Composit Anal 8:78–85

    Article  Google Scholar 

  • Maghuly F, Fernandez EB, Ruthner S, Pedryc A, Laimer M (2005) Microsatellite variability in apricots (Prunus armeniaca L.) reflects their geographic origin and breeding history. Tree Genet Genom 1:151–165

    Article  Google Scholar 

  • Marino G, Bertazza G, Magnanini E, Altan AD (1993) Comparative effects of sorbitol and sucrose as main carbon energy sources in micropropagation of apricot. Plant Cell Tissue Organ Cult 34:235–244

    Article  CAS  Google Scholar 

  • Martínez-Gómez P, Dicenta F (2000) Evaluation of resistance of apricot cultivars to a Spanish isolate of plum pox potyvirus (PPV). Plant Breed 119:179–181

    Article  Google Scholar 

  • Messina R, Lain O, Marrazzo MT, Cipriani G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Mol Ecology Notes 4:432–434

    Article  CAS  Google Scholar 

  • Mirzaev MM, Kuznetsov VV (1984) Apricot in Uzbekistan: Biology, Varieties, Selection and Agricultural Techniques. (in Russian) Central Asian Branch of the Science-Investigation Agricultural Laboratory, Scientific Investigation Institute of Horticulture, Grape Growing & Winemaking. FAN Publishing House, Tashkent, Uzbekistan, pp 22–101

    Google Scholar 

  • Pérez-Tornero O, Burgos L, Egea J (1999a) Introduction and establishment of apricot in vitro through regeneration of shoots from meristem tips. In Vitro Cell Develop Biol 35:249–253

    Article  Google Scholar 

  • Pérez-Tornero O, Ortín-Párraga F, Egea J, Burgos L (1999b) Medium-term storage of apricot shoot tips in vitro by minimal growth method. HortScience 34:1277–1278

    Google Scholar 

  • Pérez-Tornero O, Burgos L (2000) Different media requirements for micropropagation of apricot cultivars. Plant Cell Tiss Organ Cul 63:133–141

    Article  Google Scholar 

  • Pérez-Tornero O, Egea J, Vanoostende A, Burgos L (2000a) Assessment of factors affecting adventitious shoot regeneration from in vitro cultured leaves of apricot. Plant Sci 158:61–70

    Article  Google Scholar 

  • Pérez-Tornero O, López JM, Egea J, Burgos L (2000b) Effect of basal media and growth regulators on the in vitro propagation of apricot (Prunus armeniaca L.) cv. Canino. J Hortic Sci Biotechnol 75:283–286

    Google Scholar 

  • Pérez-Tornero O, Egea J, Olmos E, Burgos L (2001) Control of hyperhydricity in micropropagated apricot cultivars. In vitro Cell Develo Biol – Plant 37:250–254

    Article  Google Scholar 

  • Petri C, Alburquerque N, García-Castillo S, Egea J, Burgos L (2004) Factors affecting gene transfer efficiency to apricot leaves during early Agrobacterium-mediated transformation steps. J Hortic Sci Biotechnol 79:704–712

    CAS  Google Scholar 

  • Petri C, Alburquerque N, Pérez-Tornero O, Burgos L (2005a) Auxin pulses and a synergistic interaction between polyamines and ethylene inhibitors improve adventitious regeneration from apricot leaves and Agrobacterium-mediated transformation of leaf tissues. Plant Cell Tiss Organ Cult 82:105–111

    Article  CAS  Google Scholar 

  • Petri C, Alburquerque N, Burgos L (2005b) The effect of aminoglycoside antibiotics on the adventitious regeneration from apricot leaves and selection of nptII-transformed leaf tissues. Plant Cell Tiss Organ Cult 80:271–276

    Article  CAS  Google Scholar 

  • Pieterse RE (1989) Regeneration of plants from callus and embryos of ‘Royal’ apricot. Plant Cell Tiss Organ Cult 19:175–179

    Article  Google Scholar 

  • Polák J, Krska B, Pívalová J, Svoboda J (2005) Apricot cultivars ‘Harlayne’ and ‘Betinka’ were proved to be highly resistant to the six different strains and isolates of plum pox virus (PPV). Phytopath Poland 36:53–59

    Google Scholar 

  • Quoirin M, Lepoivre P (1977) Etude de milieux adaptes aux cultures in vitro de Prunus. Acta Hortic 78:437–442

    Google Scholar 

  • Rehder A (1940) Manual of cultivated trees and shrubs hardy in North America, exclusive of the subtropical and warmer temperate regions, 2nd revised and enlarged edition. Macmillan, New York, NY, USA

    Google Scholar 

  • Romero C, Pedryc A, Muñoz V, Llácer G, Badenes ML (2003) Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46:244–252

    Article  PubMed  CAS  Google Scholar 

  • Romero C, Vilanova S, Burgos L, Martínez-Calvo J, Vicente M, Llácer G, Badenes ML (2004) Analysis of the S-locus structure in Prunus armeniaca L. Identification of S-haplotype specific S-RNase and F-box genes. Plant Mol Biol 56:145–157

    Article  PubMed  CAS  Google Scholar 

  • Rubio M, Dicenta F, Martínez-Gómez P (2003) Susceptibility to sharka (Plum pox virus) in P. mandshurica × P. armeniaca seedlings. Plant Breeding 122:465–466

    Article  Google Scholar 

  • Rubio M, Martínez-Gómez P, Pinochet J, Dicenta F (2005) Evaluation of resistance to sharka (Plum pox virus) of several Prunus rootstocks. Plant Breeding 124:67–70

    Article  CAS  Google Scholar 

  • Rugini E, Verma DC (1982) Micropropagation of difficult-to-propagate almond (Prunus amygdalus, Batsh) cultivar. Plant Sci Letters 28:273–281

    Google Scholar 

  • Ruiz D, Egea J, Tomás-Barberán F, Gil M (2005a) Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color. J Agric Food Chem 53:6368–6374

    Article  CAS  Google Scholar 

  • Ruiz D, Egea J, Gil M, Tomás-Barberán F (2005b) Characterization and quantitation of phenolic compounds in new apricot (Prunus armeniaca L.) varieties. J Agric Food Chem 53:9544–9552

    Article  CAS  Google Scholar 

  • Salava J, Polák J, Krska B (2005) Oligogenic inheritance of resistance to plum pox virus in apricots. Czech J Genet Plant Breeding 41:167–170

    Google Scholar 

  • Salava J, Polák J, Krska B, Lalli DA, Abbott AG (2007) Construction of a genetic map for apricot with molecular markers and identification of markers associated with plum pox virus resistance. Acta Hort 738:657–661

    CAS  Google Scholar 

  • Shimada T, Hayama H, Nishimura K, Yamaguchi M, Yoshida M (2001) The genetic diversities of 4 species of subg. Lithocerasus (Prunus, Rosaceae) revealed by RAPD analysis. Euphytica 117:85–90

    Article  Google Scholar 

  • Skirvin RM, Chu MC, Rukan H (1979) Tissue culture of peach, sweet and sour cherry and apricot shoot tips. Trans Illi State Horti Soc 113:30–38

    Google Scholar 

  • Smykov VK (1978) Biology of apple and apricot, and principals of formation of industrial varieties. (in Russian). Moldovan Ministry of Agriculture. Scientific Research Institute of Moldova for Horticulture, Grape Growing and Winemaking. Sheentsa Publishing House. Kishinev, Moldova. p 128–131

    Google Scholar 

  • Snir I (1984) In vitro propagation of ‘Canino’ apricot. HortScience 19:229–230

    Google Scholar 

  • Soriano JM, Vilanova S, Romero C, Llácer G, Badenes ML (2005) Characterization and mapping of NBS-LRR resistance gene analogs in apricot (Prunus armeniaca L.). Theor Appl Genet 110:980–989

    Article  PubMed  CAS  Google Scholar 

  • Spiegel S, Kovalenko EM, Varga A, James D (2004) Detection and partial molecular characterization of two plum pox virus isolates from plum and wild apricot in southeast Kazakhstan. Plant Disease 88:973–979

    Article  CAS  Google Scholar 

  • Syrgianndis G (1979) Research on the sensitivity of apricot varieties to sharka (plum pox) virus disease (in Greek). Georgike Ereuna 3:42–48

    Google Scholar 

  • Takeda T, Shimada T, Nomura K, Ozaki T, Haji T, Yamaguchi M, Yoshida M (1998) Classification of apricot varieties by RAPD analysis. J Japan Soc Hort Sci 67:21–27

    Article  CAS  Google Scholar 

  • Takeoka GR, Flath RA, Mon TR, Teranishi R, Guentert M (1990) Volatile constituents of apricot (Prunus armeniaca). J Agric Food Chem 38:471–477

    Article  CAS  Google Scholar 

  • Tang CS, Jennings WG (1967) Volatile components of apricot. J Agric Food Chem 15:24–28

    Article  CAS  Google Scholar 

  • Tang CS, Jennings WG (1968) Lactonic compounds of apricot. J Agric Food Chem 16:252–254

    Article  CAS  Google Scholar 

  • Thibault B, Herman L (1982) Culture of Bartlett on its own roots: comparisons with quince and French seedling rootstocks. Acta Hort 124:21–26

    Google Scholar 

  • Thompson MM (1998) Plant quarantine: a personal experience. Fruit Var J 52:215–219

    Google Scholar 

  • Tomás-Lorente F, García-Viguera C, Ferreres F, Tomás-Barberán FA (1992) Phenolic compounds analysis in the determination of fruit jam genuineness. J Agric Food Chem 40:1800–1804

    Article  Google Scholar 

  • Uematsu C, Sasakuma T, Ogihara Y (1991) Phylogenetic relationships in the stone fruit group of Prunus as revealed by restriction fragment analysis of chloroplast DNA. Japan J Genet 66:59–69

    Article  CAS  Google Scholar 

  • Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, Hirano H (2003) Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15:771–781

    Article  PubMed  CAS  Google Scholar 

  • Vavilov NI (1992) The phyto-geographical basis for plant breeding. In: Dorofeyev VF (ed) Origin and Geography of Cultivated Plants. Cambridge University Press, Cambridge, UK, pp pp 316–366

    Google Scholar 

  • Vilanova S, Romero C, Abbott AG, Llácer G, Badenes ML (2003) An apricot (Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP markers, mapping plum pox virus resistance and self-incompatibility traits. Theor Appl Genet 107:239–247

    Article  PubMed  CAS  Google Scholar 

  • Vilanova S, Romero C, Llácer G, Burgos L, Badenes ML (2005) Identification of self-(in)compatibility alleles in apricot by PCR and sequence analysis. J Am Soc Hort Sci 130:893–898

    CAS  Google Scholar 

  • Vilanova S, Soriano JM, Lalli DA, Romero C, Abbott AG, Llácer G (2006) Development of SSR markers located in the G1 linkage group of apricot (Prunus armeniaca L.) using a bacterial artifical chromosome library. Mol Eco Notes 6:789–791

    Article  CAS  Google Scholar 

  • Witherspoon JM, Jackson JF (1995) Analysis of fresh and dried apricot. In: Linskens HF and Jackson JF (eds) Modern methods of plant analysis, vol 18. Springer-Verlag, Berlin, Germany, pp 111–131

    Google Scholar 

  • Yoshida M (1981) Breeding of peach rootstocks resistant to root knot nematode. I. Root knot nematode resistance in peaches and plums. (in Japanese). Bulletin of the Fruit Tree Research Station (Ministry of Agriculture, Forestry and Fisheries). Series A, 8:13–30

    Google Scholar 

  • Zhebentyayeva TN, Reighard GL, Gorina VM, Abbott AG (2003) Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theor Appl Genet 106:435–444

    PubMed  CAS  Google Scholar 

  • Zielinski QB (1977) Apricots. In: Modern Systematic Pomology. Pomona Books, Ontario, Canada, pp 127–131

    Google Scholar 

  • Zotto AD, Ortego JM, Raigón JM, Caloggero S, Rossini M, Ducasse DA (2006) First report in Argentina of plum pox virus causing Sharka disease in Prunus. Plant Disease 90:523

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ledbetter, C. (2008). Apricots. In: Hancock, J.F. (eds) Temperate Fruit Crop Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6907-9_2

Download citation

Publish with us

Policies and ethics