Skip to main content

Role of Flagellin Glycosylation in Bacterial Virulence

  • Chapter
  • 1726 Accesses

Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a causal agent for wildfire disease in tobacco. Recently, we found that flagellin, a major constituent in the flagella filament of this pathogen, is a potent elicitor of hypersensitive reaction in non-host plant species. We also found that flagellin is required for virulence against the host plant. In this study, we investigated the biochemical features of the glycosyl moiety of flagellin and the phytopathological role of flagellin glycosylation. DNA sequence analysis of the flagellum gene cluster revealed that two genes (orf1 and Δrf2) encoding a putative glycosyltransferase were located upstream of the fliC gene. To investigate the role of flagellin glycosylation, we generated deletion mutants for orf1 ( orf1) and Δrf2 ( Δrf2) in Pta6605 and pv. glycinea race 4 (Pgl4). The mutants, orf1 and Δrf2, of both pathovars produced nonglycosylated or partially glycosylated flagellins, respectively. Inoculation of host plants with these mutant strains confirmed that orf1 and Δrf2 had reduced ability to cause disease. Biochemical and genetic approaches revealed that a total of six serine residues of FliC were glycosylated in Pta6605. The serine residues were replaced individually with Ala by site-directed mutagenesis. All glycosylation-defective mutants including orf1 and Δrf2 and the six Ser/Ala-substituted mutants of pv. tabaci retained swimming ability but their swarming ability was reduced. The abilities to adhere to a polystyrene surface and to cause disease in host tobacco plants were also impaired in all Ser/Ala-substituted mutants of Pta6605. When tobacco leaves were inoculated with Pta6605 wild-type, bacteria were embedded and formed a biofilm-like structure in the matrix on the tobacco leaf surface. In contrast, mucoid material was rarely detected in the area surrounding the orf1 mutant. These results suggest that glycosylation of flagellin in Pta6605 is required for swarming motility, adhesion, biofilm formation, and bacterial virulence. Furthermore, the ability of nonglycosylated flagellin from Pta6605 to induce a defense response in tobacco cells was greater than that of glycosylated flagellin, suggesting that the glycan moiety of flagellin may mask the elicitor function of the flagellin molecule in its host plant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arora, S.K., Bangera, M., Lory, S. and Ramphal, R. 2001, A genomic island in Pseudomonas aeruginosa carries the determinants of flagellin glycosylation. Proc. Natl. Acad. Sci. USA 98: 9342–9347.

    Article  PubMed  CAS  Google Scholar 

  • Arora, S.K., Neely, A.N., Blair, B., Lory, S. and Ramphal, R. 2005, Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infect. Immun. 73: 4395–4398.

    Article  PubMed  CAS  Google Scholar 

  • Brimer, C.D. and Montie, T.C. 1998, Cloning and comparison of fliC genes and identification of glycosylation in the flagellin of Pseudomonas aeruginosa a-type strains. J. Bacteriol. 180: 3209–3217.

    PubMed  CAS  Google Scholar 

  • Eaves-Pyles, T.D., Wong, H.R., Odoms, K. and Pyles, R.B. 2001, Salmonella flagellin-dependent proinflammatory responses are localized to the conserved amino and carboxyl regions of the protein. J. Immunol. 167: 7009–7016.

    PubMed  CAS  Google Scholar 

  • Felix, G., Duran, J.D., Volko, S., and Boller, T. 1999, Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18: 265–276.

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Gómez, L. and Boller, T. 2000, FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5: 1003–1011.

    Article  PubMed  Google Scholar 

  • Guerry, P., Ewing, C.P., Schirm, M., Lorenzo, M., Kelly, J., Pattarini, D., Majam, G., Thibault, P. and Logan, S. 2006, Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol. Microbiol. 60: 299–311.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, F., Smith, K.D., Ozinsky, A., Hawn, T.R., Yi, E.C., Goodlett, D.R., Eng, J.K., Akira, S., Underhill, D.M. and Aderem, A. 2001, The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099–1103.

    Article  PubMed  CAS  Google Scholar 

  • Ichinose, Y., Shimizu, R., Taguchi, F., Takeuchi, K., Marutani, M., Mukaihara, T., Inagaki, Y., Toyoda, K. and Shiraishi, T. 2003a, Role of flagella and flagellin in plant – Pseudomonas syringae interactions. In N. S. Iacobellis (ed.), Pseudomonas Syringae and Related Pathogens. Kluwer, Dordrecht, The Netherland, pp. 311–318.

    Google Scholar 

  • Ichinose, Y., Shimizu, R., Ikeda, Y., Taguchi, F., Marutani, M., Mukaihara, T., Inagaki, Y., Toyoda, K. and Shiraishi, T. 2003b, Need for flagella for complete virulence of Pseudomonas syringae pv. tabaci: genetic analysis with flagella-defective mutants ΔfliC and ΔfliD in host tobacco plants. J. Gen. Plant Pathol. 69: 244–249.

    Article  CAS  Google Scholar 

  • Logan, S.M. 2006, Flagellar glycosylation – a new component of the motility repertoire? Microbiology 152: 1249–1262.

    Article  PubMed  CAS  Google Scholar 

  • Schäfer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G. and Puhler, A., 1994, Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69–73.

    Article  PubMed  Google Scholar 

  • Shimizu, R., Taguchi, F., Marutani, M., Mukaihara, T., Inagaki, Y., Toyoda, K., Shiraishi, T. and Ichinose, Y. 2003, The ΔfliD mutant of Pseudomonas syringae pv. tabaci, which secretes flagellin monomers, induces a strong hypersensitive reaction (HR) in non-host tomato cells. Mol. Genet. Genomics 269: 21–30.

    PubMed  CAS  Google Scholar 

  • Szymanski, C.M. and Wren, B.W. 2005, Protein glycosylation in bacterial mucosal pathogens. Nat. Rev. 3: 225–237.

    Article  CAS  Google Scholar 

  • Taguchi, F., Shimizu, R., Inagaki, Y., Toyoda, K., Shiraishi, T. and Ichinose, Y. 2003a, Post-translational modification of flagellin determines the specificity of HR. induction. Plant Cell Physiol. 44: 342–349.

    Article  PubMed  CAS  Google Scholar 

  • Taguchi, F., Shimizu, R., Nakajima, R., Toyoda, K., Shiraishi, T. and Ichinose, Y. 2003b, Differential effects of flagellins from Pseudomonas syringae pv. tabaci, tomato and glycinea on plant defense response. Plant Physiol. Biochem. 41: 165–174.

    Article  CAS  Google Scholar 

  • Taguchi, F., Takeuchi, K., Katoh, E., Murata, K., Suzuki, T., Marutani, M., Kawasaki, T., Eguchi, M., Katoh, S., Kaku, H., Yasuda, C., Inagaki, Y., Toyoda, K., Shiraishi, T. and Ichinose, Y. 2006a, Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv. tabaci. Cell. Microbiol. 8: 923–938.

    Article  PubMed  CAS  Google Scholar 

  • Taguchi, F., Ogawa, Y., Takeuchi, K., Suzuki, T., Toyoda, K., Shiraishi, T. and Ichinose, Y. 2006b, Homologue of 3-oxoacyl-(acyl carrier protein) synthase III gene located in glycosylation island of Pseudomonas syringae pv. tabaci regulates virulence factors via N-acyl homoserine lactone and fatty acid synthesis. J. Bacteriol. 188: 8560–8572.

    Article  Google Scholar 

  • Takeuchi, K., Taguchi, F., Inagaki, T., Toyoda, K., Shiraishi, T. and Ichinose, Y. 2003, Flagellin glycosylation island in Pseudomonas syringae pv. glycinea and its role in host specificity. J. Bacteriol. 185: 6658–6665.

    Article  PubMed  CAS  Google Scholar 

  • Taguchi, F., Shibata, S., Suzuki, T., Ogawa, Y., Aizawa, S., Takeuchi, K. and Ichinose, Y. 2008, Effects of glycosylation on swimming ability and flagella polymorphic transformation of Pseudomonas syringae pv. tabaci 6605. J. Bacteriol. 190: In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, B.V

About this chapter

Cite this chapter

Ichinose, Y., Taguchi, F., Takeuchi, K., Suzuki, T., Toyoda, K., Shiraishi, T. (2008). Role of Flagellin Glycosylation in Bacterial Virulence. In: Fatmi, M., et al. Pseudomonas syringae Pathovars and Related Pathogens – Identification, Epidemiology and Genomics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6901-7_18

Download citation

Publish with us

Policies and ethics