Skip to main content

Mesodermal Differentiation

  • Chapter

Part of the book series: Human Cell Culture ((HUCC,volume 6))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, S.E., Kim, S., Park, K.H., Moon, S.H., Lee, H.J., Kim, G.J., Lee, Y.J., Park, K.H., Cha, K.Y., and Chung, H.M. (2006) Primary bone-derived cells induce osteogenic differentiation without exogenous factors in human embryonic stem cells. Biochem. Biophys. Res. Commun., 340: 403–408.

    Article  PubMed  CAS  Google Scholar 

  • Barberi, T., Willis, L.M., Socci, N.D., and Studer, L. (2005) Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS. Med., 2: e161.

    Article  PubMed  CAS  Google Scholar 

  • Bielby, R.C., Boccaccini, A.R., Polak, J.M., and Buttery, L.D. (2004) In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng., 10: 1518–1525.

    PubMed  CAS  Google Scholar 

  • Bowles, K.M., Vallier, L., Smith, J.R., Alexander, M.R., and Pedersen, R.A. (2006) HOXB4 overexpression promotes hematopoietic development by human embryonic stem cells. Stem Cells, 24: 1359–1369.

    Article  PubMed  CAS  Google Scholar 

  • Cao, T., Heng, B.C., Ye, C.P., Liu, H., Toh, W.S., Robson, P., Li, P., Hong, Y.H., and Stanton, L.W. (2005) Osteogenic differentiation within intact human embryoid bodies result in a marked increase in osteocalcin secretion after 12 days of in vitro culture, and formation of morphologically distinct nodule-like structures. Tissue Cell, 37: 325–334.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, B. (1988) Patten's Foundations of Embryology, 5th edn. McGraw-Hill, New York.

    Google Scholar 

  • Chadwick, K., Wang, L., Li, L., Menendez, P., Murdoch, B., Rouleau, A., and Bhatia, M. (2003) Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood, 102: 906–915.

    Article  PubMed  CAS  Google Scholar 

  • Cerdan, C., Rouleau, A., and Bhatia, M. (2004) VEGF-A165 augments erythropoietic development from human embryonic stem cells. Blood, 103: 2504–2512.

    Article  PubMed  CAS  Google Scholar 

  • Dvash, T., Mayshar, Y., Darr, H., McElhaney, M., Barker, D., Yanuka, O., Kotkow, K.J., Rubin, L.L., Benvenisty, N., and Eiges, R. (2004) Temporal gene expression during differentiation of human embryonic stem cells and embryoid bodies. Hum. Reprod., 19: 2875–2883.

    Article  PubMed  CAS  Google Scholar 

  • Eiges, R., Schuldiner, M., Drukker, M., Yanuka, O., Itskovitz-Eldor, J., and Benvenisty, N. (2001) Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr. Biol., 11: 514–518.

    Article  PubMed  CAS  Google Scholar 

  • Gaur, M., Kamata, T., Wang, S., Moran, B., Shattil, S.J., and Leavitt, A.D. (2006) Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function. J. Thromb. Haemost., 4: 436–442.

    Article  PubMed  CAS  Google Scholar 

  • Gerecht-Nir, S., Cohen, S., Ziskind, A., and Itskovitz-Eldor, J. (2004a) Three-dimensional porous alginate scaffolds provide a conducive environment for generation of well-vascularized embryoid bodies from human embryonic stem cells. Biotechnol. Bioeng., 88: 313–320.

    Article  PubMed  CAS  Google Scholar 

  • Gerecht-Nir, S., Dazard, J.E., Golan-Mashiach, M., Osenberg, S., Botvinnik, A., Amariglio, N., Domany, E., Rechavi, G., Givol, D., and Itskovitz-Eldor, J. (2005) Vascular gene expression and phenotypic correlation during differentiation of human embryonic stem cells. Dev. Dyn., 232: 487–497.

    Article  PubMed  CAS  Google Scholar 

  • Gerecht-Nir, S., Osenberg, S., Nevo, O., Ziskind, A., Coleman, R., and Itskovitz-Eldor, J. (2004b) Vascular development in early human embryos and in teratomas derived from human embryonic stem cells. Biol. Reprod., 71: 2029–2036.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, S. (2000) Developmental Biology, 6th edn. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Goldstein, R.S., Drukker, M., Reubinoff, B.E., and Benvenisty, N. (2002) Integration and differentiation of human embryonic stem cells transplanted to the chick embryo. Dev. Dyn., 225: 80–86.

    Article  PubMed  CAS  Google Scholar 

  • He, J.Q., Ma, Y., Lee, Y., Thomson, J.A., and Kamp, T.J. (2003) Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ. Res., 93: 32–39.

    Article  PubMed  CAS  Google Scholar 

  • Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., Soreq, H., and Benvenisty, N. (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 6: 88–95.

    PubMed  CAS  Google Scholar 

  • Karp, J.M., Ferreira, L.S., Khademhosseini, A., Kwon, A.H., Yeh, J., and Langer, R. (2005) Cultivation of human embryonic stem cells without the embryoid body step enhances osteogenesis in vitro. Stem Cells [Epub ahead of print].

    Google Scholar 

  • Kaufman, D.S., Hanson, E.T., Lewis, R.L., Auerbach, R., and Thomson, J.A. (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA, 98: 10716–10721.

    Article  PubMed  CAS  Google Scholar 

  • Kehat, I., Gepstein, A., Spira, A., Itskovitz-Eldor, J., and Gepstein, L. (2002) High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circ. Res., 91: 659–661.

    Article  PubMed  CAS  Google Scholar 

  • Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J., and Gepstein, L. (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest., 108: 407–414.

    PubMed  CAS  Google Scholar 

  • Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., Huber, I., Satin, J., Itskovitz-Eldor, J., and Gepstein, L. (2004) Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol., 22: 1282–1289.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.J., Kim, B.S., Ryu, S.W., Yoo, J.H., Oh, J.H., Song, C.H., Kim, S.H., Choi, D.S., Seo, J.H., Choi, C.W., Shin, S.W., Kim, Y.H., and Kim, J.S. (2005) Hematopoietic differentiation of embryoid bodies derived from the human embryonic stem cell line SNUhES3 in co-culture with human bone marrow stromal cells. Yonsei. Med. J., 46: 693–699.

    Article  PubMed  Google Scholar 

  • Laflamme, M.A., Gold, J., Xu, C., Hassanipour, M., Rosler, E., Police, S., Muskheli, V., and Murry, C.E. (2005) Formation of human myocardium in the rat heart from human embryonic stem cells. Am. J. Pathol., 167: 663–671.

    PubMed  CAS  Google Scholar 

  • Levenberg, S., Golub, J.S., Amit, M., Itskovitz-Eldor, J., and Langer, R. (2002) Endothelial cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA, 99: 4391–4396.

    Article  PubMed  CAS  Google Scholar 

  • Levenberg, S., Huang, N.F., Lavik, E., Rogers, A.B., Itskovitz-Eldor, J., and Langer, R. (2003) Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc. Natl. Acad. Sci. USA, 100: 12741–12746.

    Article  PubMed  CAS  Google Scholar 

  • Lu, S.J., Li, F., Vida, L., and Honig, G.R. (2004) CD34 + CD38- hematopoietic precursors derived from human embryonic stem cells exhibit an embryonic gene expression pattern. Blood, 103: 4134–4141.

    Article  PubMed  CAS  Google Scholar 

  • Mossman, A.K., Sourris, K., Ng, E., Stanley, E.G., and Elefanty, A.G. (2005) Mixl1 and oct4 proteins are transiently co-expressed in differentiating mouse and human embryonic stem cells. Stem Cells Dev., 14: 656–663.

    Article  PubMed  CAS  Google Scholar 

  • Mummery, C., Ward-van Oostwaard, D., Doevendans, P., Spijker, R., van den Brink, S., Hassink, R., van der Heyden, M., Opthof, T., Pera, M., de la Riviere, A.B., Passier, R., and Tertoolen, L. (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation, 107: 2733–2740.

    Article  PubMed  CAS  Google Scholar 

  • Narayan, A.D., Chase, J.L., Lewis, R.L., Tian, X., Kaufman, D.S., Thomson, J.A., and Zanjani, E.D. (2006) Human embryonic stem cell-derived hematopoietic cells are capable of engrafting primary as well as secondary fetal sheep recipients. Blood, 107: 2180–2183.

    Article  PubMed  CAS  Google Scholar 

  • Passier, R., Oostwaard, D.W., Snapper, J., Kloots, J., Hassink, R.J., Kuijk, E., Roelen, B., de la Riviere, A.B., and Mummery, C. (2005) Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells, 23: 772–780.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, C., Hanson, E., Olivier, E., Inada, M., Kaufman, D.S., Gupta, S., and Bouhassira, E.E. (2005) Differentiation of human embryonic stem cells into hematopoietic cells by coculture with human fetal liver cells recapitulates the globin switch that occurs early in development. Exp. Hematol., 33: 1450–1458.

    Article  PubMed  CAS  Google Scholar 

  • Satin, J., Kehat, I., Caspi, O., Huber, I., Arbel, G., Itzhaki, I., Magyar, J., Schroder, E.A., Perlman, I., and Gepstein, L. (2004) Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes. J. Physiol., 559: 479–496.

    Article  PubMed  CAS  Google Scholar 

  • Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D.A., and Benvenisty, N. (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA, 97: 11307–11312.

    Article  PubMed  CAS  Google Scholar 

  • Segev, H., Kenyagin-Karsenti, D., Fishman, B., Gerecht-Nir, S., Ziskind, A., Amit, M., Coleman, R., and Itskovitz-Eldor, J. (2005) Molecular analysis of cardiomyocytes derived from human embryonic stem cells. Dev. Growth Differ., 47: 295–306.

    Article  PubMed  CAS  Google Scholar 

  • Snir, M., Kehat, I., Gepstein, A., Coleman, R., Itskovitz-Eldor, J., Livne, E., and Gepstein, L. (2003) Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol., 285: H2355–H2363.

    PubMed  CAS  Google Scholar 

  • Sottile, V., Thomson, A., and McWhir, J. (2003) In vitro osteogenic differentiation of human ES cells. Cloning Stem Cells, 5: 149–155.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998) Embryonic stem cell lines derived from human blastocysts. Science, 282: 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  • Tian, X., Morris, J.K., Linehan, J.L., and Kaufman, D.S. (2004) Cytokine requirements differ for stroma and embryoid body-mediated hematopoiesis from human embryonic stem cells. Exp. Hematol., 32: 1000–1009.

    Article  PubMed  CAS  Google Scholar 

  • Tian, X., Woll, P.S., Morris, J.K., Linehan, J.L., and Kaufman, D.S. (2006) Hematopoietic engraftment of human embryonic stem cell-derived cells is regulated by recipient innate immunity. Stem Cells, 24: 1370–1380.

    Article  PubMed  CAS  Google Scholar 

  • Tzukerman, M., Rosenberg, T., Ravel, Y., Reiter, I., Coleman, R., and Skorecki, K. (2003) An experimental platform for studying growth and invasiveness of tumor cells within teratomas derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA, 100: 13507–13512.

    Article  PubMed  CAS  Google Scholar 

  • Vodyanik, M.A., Bork, J.A., Thomson, J.A., and Slukvin, II. (2005) Human embryonic stem cell-derived CD34 + cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood, 105: 617–626.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Li, L., Shojaei, F., Levac, K., Cerdan, C., Menendez, P., Martin, T., Rouleau, A., and Bhatia, M. (2004) Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity, 21: 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Zhao, H.P., Lin, G., Xie, C.Q., Nie, D.S., Wang, Q.R., and Lu, G.X. (2005a) In vitro hematopoietic differentiation of human embryonic stem cells induced by co-culture with human bone marrow stromal cells and low dose cytokines. Cell Biol. Int., 29: 654–661.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Menendez, P., Shojaei, F., Li, L., Mazurier, F., Dick, J.E., Cerdan, C., Levac, K., and Bhatia, M. (2005b) Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J. Exp. Med., 201: 1603–1614.

    Article  PubMed  CAS  Google Scholar 

  • Woll, P.S., Martin, C.H., Miller, J.S., and Kaufman, D.S. (2005) Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. J. Immunol., 175: 5095–5103.

    PubMed  CAS  Google Scholar 

  • Xiong, C., Xie, C.Q., Zhang, L., Zhang, J., Xu, K., Fu, M., Thompson, W.E., Yang, L.J., and Chen, Y.E. (2005) Derivation of adipocytes from human embryonic stem cells. Stem Cells Dev., 14: 671–675.

    Article  PubMed  CAS  Google Scholar 

  • Xu, C., Inokuma, M.S., Denham, J., Golds, K., Kundu, P., Gold, J.D., and Carpenter, M.K. (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol., 19: 971–974.

    Article  PubMed  CAS  Google Scholar 

  • Xu, C., Police, S., Rao, N., and Carpenter, M.K. (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res., 91: 501–508.

    Article  PubMed  CAS  Google Scholar 

  • Xue, T., Cho, H.C., Akar, F.G., Tsang, S.Y., Jones, S.P., Marban, E., Tomaselli, G.F., and Li, R.A. (2005) Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation, 111: 11–20.

    Article  PubMed  Google Scholar 

  • Zambidis, E.T., Peault, B., Park, T.S., Bunz, F., and Civin, C.I. (2005) Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood, 106: 860–870.

    Article  PubMed  CAS  Google Scholar 

  • Zhan, X., Dravid, G., Ye, Z., Hammond, H., Shamblott, M., Gearhart, J., and Cheng, L. (2004) Functional antigen-presenting leucocytes derived from human embryonic stem cells in vitro. Lancet, 364: 163–171.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Sharon, N., Benvenisty, N. (2007). Mesodermal Differentiation. In: Masters, J.R., Palsson, B.O., Thomson, J.A. (eds) Human Cell Culture. Human Cell Culture, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5983-4_8

Download citation

Publish with us

Policies and ethics